Decidable (Ac)counting with Parikh and Muller:
Adding Presburger Arithmetic to Monadic Second-Order Logic
over Tree-Interpretable Structures

Luisa Herrmann, Vincent Peth, and Sebastian Rudolph

Naples, CSL 2024, Feb 23

We want to compare cardinalities!

We want to compare cardinalities!

“There exists a path P s.t. 2xthe number of ason P < the number of bs not on P”

We want to compare cardinalities!

» Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

“There exists a path P s.t. 2x the number of as on P < the number of bs not on P”
2

We want to compare cardinalities!

» Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

» Counting MSO (CMSO) includes #X =,, m and Fin(X)

— coincides on (finite) words and trees with MSO

“There exists a path P s.t. 2x the number of as on P < the number of bs not on P”
2

We want to compare cardinalities!

» Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

» Counting MSO (CMSO) includes #X =,, m and Fin(X)

— coincides on (finite) words and trees with MSO

» MSO + Cardinality Constraints [Klaedtke, Ruer 03] includes #X < #V

— undecidable in general, decidable fragment on words, trees

“There exists a path P s.t. 2x the number of as on P < the number of bs not on P”
2

We want to compare cardinalities!

» Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

» Counting MSO (CMSO) includes #X =,, m and Fin(X)

— coincides on (finite) words and trees with MSO

» MSO + Cardinality Constraints [Klaedtke, Ruer 03] includes #X < #V

— undecidable in general, decidable fragment on words, trees

» Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic
— decidable but lacks non-unary relations .

“There exists a path P s.t. 2x the number of as on P < the number of bs not on P”
2

We want to compare cardinalities!

» Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

» Counting MSO (CMSO) includes #X =,, m and Fin(X)

— coincides on (finite) words and trees with MSO

» MSO + Cardinality Constraints [Klaedtke, Ruer 03] includes #X < #V

— undecidable in general, decidable fragment on words, trees

» Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic
— decidable but lacks non-unary relations .

S we combine these approaches

“There exists a path P s.t. 2x the number of as on P < the number of bs not on P”
2

Content

» wMSO-BAPA ... is undecidable
> the fragment wMSOXBAPA

» ...and its normal form

v

>

wMSQO-BAPA ... is undecidable
the fragment wMSOXBAPA

... and its normal form

Parikh-Muller Tree Automata
... correspond to wMSOXBAPA

... have decidable emptiness problem

v

>

wMSQO-BAPA ... is undecidable
the fragment wMSOXBAPA

... and its normal form

Parikh-Muller Tree Automata
... correspond to wMSOXBAPA

... have decidable emptiness problem

From CMSO to wMSO-BAPA signature 5 = 5¢ U'Sp

countable S-structure A = (4, %)

signature S =S, U Sp

From CMSO to wMSO-BAPA

[constants or variables

@ = QUq,....ty) | X | #X =, m | Fin(X) |

countable S-structure A = (4, %)

- | Vv | Ix.@o | 3X. @ |

sighature S =S,.USp

From CMSO to wMSO-BAPA

countable S-structure A = (4, -91)
setterms (X‘NnY)uP
[constants or @le—sJ

P = Q(tlr---:ln) | S | #5 =nm | Fin(S) |

- | Vv | Ix.@o | 3X. @ |

sighature S =S,USp

From CMSO to wMSO-BAPA

constants or variables

= QU wity) | S@ | #5=,m | Fin(S) | ¢, =1, | & =45 62 |

countable S-structure A = (4, -91)
setterms (X‘NnY)uP

-9 | Ve | Tx. | AX. @ | Tk. @

number terms 3#5, + #S5, + k J

sighature S =S,.USp

From CMSO to wMSO-BAPA

constants or variables

= QU wity) | S@ | #5=,m | Fin(S) | ¢, =1, | & =45 62 |

countable S-structure A = (4, -91)
setterms (X‘NnY)uP

-9 | Ve | Tx. | AX. @ | Tk. @

number terms 3#5, + #S5, + k }

b JA.Path(4) A 2 -#(ANP,) < #(A°NPy)

“There exists a path P s.t. 2x the number of ason P < the number of bs not on P”

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

> unary predicates Py, By, P, , Pey , Peyy » Pyyz

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

P

> unary predicates Py, P,, P, , Py, Pryy s Prys

y)

> Qo1 =2 #Pyyy + 5 #P, + 3 #P, =5 #P,,,

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

> unary predicates Py, Py, P, , Py, , Peyy » Pyyz

> Qo1 = 2+ #Pyy, + 5 #P, +3 - #P, =5 - #P,,

» ensure that |P, 1P| - 1B

yl =

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

P

> unary predicates Py, P,, P, , Py, Pryy s Prys

yl
> Qo1 = 2+ #Pyy, + 5 #P, +3 - #P, =5 - #P,,

» ensure that |P, 1P| - 1B

yl =

(1ap fOr appropriate labeling

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

> unary predicates Py, Py, P, , Py, , Peyy » Pyyz

> Qo1 = 2+ #Pyy, + 5 #P, +3 - #P, =5 - #P,,

» ensure that |P, 1P| - 1B

yl =

(1ap fOr appropriate labeling

Pprod = Mxxy V2 € P.3Z.sub(z,Z) A#(Z N P,,) =g, #P,

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

> unary predicates Py, Py, P, , Py, , Peyy » Pyyz

> Qo1 = 2+ #Pyy, + 5 #P, +3 - #P, =5 - #P,,

» ensure that |P, 1P| - 1B

yl =

Xy

(1ap fOr appropriate labeling

Proposition. For any positive Diophantine equation D, satisfaction of @ over (finite or infinite) labeled trees
coincides with solvability of D.

Full wMSQO-BAPA is undecidable

by encoding positive Diophantine equations on labeled trees D :=2xy? + 5y + 3z = 5xyz

Pp = Psol N P1ab N Pprod

> unary predicates Py, Py, P, , Py, , Peyy » Pyyz

> Qo1 = 2+ #Pyy, + 5 #P, +3 - #P, =5 - #P,,

» ensure that |P, 1P| - 1B

yl =

Xy

(1ap fOr appropriate labeling

Proposition. For any positive Diophantine equation D, satisfaction of @ over (finite or infinite) labeled trees
coincides with solvability of D.

Proposition. Satisfiability of the class of wMSO-BAPA sentences of the shape ¢4, is undecidable.

The Fragment wMSOMBAPA ['o:mzol| bapa]

@ = QU .,) | S | #S =, m | Fin(S) | t; < t5 |t <gin t2 |

@ leve |Ix.e|3X. @3k @

The Fragment wMSOMBAPA ['o:mzol| bapa]

@ = QU o,) | SO | #S =, m | Fin(S) | t; < t5 | 1 <gin t2 |

@ |loVve' |Ax.@|3AX.@ | Ik.@

Individual and set variables in an wMSO-BAPA formula ¢ can be

e assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)

The Fragment wMSOXBAPA ['o:mzo| bapa]

@ = QU o,) | SO | #S =, m | Fin(S) | t; < t5 | 1 <gin t2 |

@ |loVve' |Ax.@|3AX.@ | Ik.@

Individual and set variables in an wMSO-BAPA formula ¢ can be

e assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)
* delicate: non-assertive and » occurringin t; <(fip) t; Or

» occurring together with a delicate variable in atom

The Fragment wMSOXBAPA ['o:mzo| bapa]

@ = Qg .,) | S | #S =, m | Fin(S) | t; <ty | t; <fin t3 |

@ loVve' |Ax.@|IX. @ |Tk. @

Individual and set variables in an wMSO-BAPA formula ¢ can be

» assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)
* delicate: non-assertive and > occurringin t; <) t Or

» occurring together with a delicate variable in atom

@ is an wMSOXBAPA formula iff each of its predicate atoms Q(¢4, ..., L,;) contains at most one delicate variable

The Fragment wMSOXBAPA ['o:mzo| bapa]

JA.Path(A) A 2-#(ANPy) <#(A° NPy
good!

Individual and set variables in an wMSO-BAPA formula ¢ can be

» assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)
. . non-assertive and » occurringin t; <n) t; Or

» occurring together with a delicate variable in atom

@ is an wMSOXBAPA formula iff each of its predicate atoms Q(¢4, ..., L,;) contains at most one delicate variable

The Fragment wMSOXBAPA ['o:mzo| bapa]

3X3VvY3ay'. Path(X) N\ QDMSO(V) N\

HXNYNnV)S#V' ' NV)ANVzZ.Y'(2) = Preq(2))
good!

Individual and set variables in an wMSO-BAPA formula ¢ can be

» assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)
. . non-assertive and » occurringin t; <n) t; Or

» occurring together with a delicate variable in atom

@ is an wMSOXBAPA formula iff each of its predicate atoms Q(¢4, ..., L,;) contains at most one delicate variable

sub(z,2) =Vy.Z(y) © <" (2,v)

Dprod = /\ Vz € Pp.3Z.sub(z,Z) A#(Z N Pyy) =gin #P,
XXy bad! ®

Individual and set variables in an wMSO-BAPA formula ¢ can be

» assertive: free or “outermost” existentially quantified (not in the scope of V¥ or =)
. . non-assertive and » occurringin t; <n) t; Or

» occurring together with a delicate variable in atom

@ is an wMSOXBAPA formula iff each of its predicate atoms Q(¢4, ..., L,;) contains at most one delicate variable

Normalization of wMSO>BAPA @ 3= QU e tn) | SO I #S =, m | Fin(S) | t; Sty | t1 <fin L, |

@ leVve |3x.@|3X. @ |3k ¢

Normalization of wMSO>BAPA 0= QU vy ty) | SO I #S =, m|Fin(S) | &, < t, | & <fin &y |

@ |loVve' |Ax.@|3AX.@ | Ik.@

@' =3X; .. X Vi(@i A N xij)

[®; CMSO formulae Xi j Parikh constraints

3+ #X, <pn 2 - #Y + #X,

Normalization of wMSO>BAPA 0= QU vy ty) | SO I #S =, m|Fin(S) | &, < t, | & <fin &y |

@ |loVve' |Ax.@|3AX.@ | Ik.@

!/
@ =3X1 .. Xn. V(@i A N xij)
Simplification & Presburgerization
Skolemization

® € wMSOXBAPA Disentangling

; CMSO formulae . Pari i
[Qi Xi j Parikh constraints S

3+ #X, <pn 2 - #Y + #X, <

@' in normal form
Vennification

De-Skolemization Number
Variable
Elimination

Normalization of wMSO>BAPA @ = Qy, -,) | S | #S =, m | Fin(S) | t; <ty | t; <fin L2 |

@ loVve' |Ax.@|IX. @ | Tk. @

I _
@ =3X; ..Xn. Vi(@i A A xij)
Simplification & Presburgerization
Skolemization

@ € wMSOXBAPA Disentangling

[@; CMSO formulae Xi j Parikh constraints
’ Quantifiers

3+ #X, <pn 2 - #Y + #X, <

@' in normal form

\ Vennification

Proposition. For each wMSOXBAPA formula ¢ we can compute an equivalent formula ¢’ of the form
@' =3X; .. Xp. V(@i N N xij)

where ¢; are CMSO formulae and y; ; are Parikh constraints.

Normalization of wMSO>BAPA @ = Qy, -,) | S | #S =, m | Fin(S) | t; <ty | t; <fin L2 |

@ |loVve' |Ax.@|3AX.@ | Ik.@

I _
@ =3X; ..Xn. Vi(@i A A xij)
Simplification & Presburgerization
Skolemization

@ € wMSOXBAPA Disentangling

[@; CMSO formulae Xi j Parikh constraints
’ Quantifiers

3+ #X, <pn 2 - #Y + #X, <

@' in normal form

\ Vennification

Proposition. For each wMSOXBAPA formula ¢ we can compute a formula ¢’ of the form

QD' = 3X; ... X,. Vi(@; A /\j)(i,j)

where ¢; are MSO formulae and y; ; are Parikh constraints that is equivalent to ¢ over labeled infinite binary trees.

J

Satisfiability of ¢ = 3X; ... X,,. Vi(@; A A xi5)

over infinite labeled trees decidable?

Satisfiability of ¢ = 3X; ... X,,. Vi(@; A A xi5)

over infinite labeled trees decidable?

Tree Automata!

Counting with Tree Automata

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]

» use finite number of global counters

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]

» use finite number of global counters

» increment counters on finite initial segment

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]

» use finite number of global counters

» increment counters on finite initial segment

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]

» use finite number of global counters

» increment counters on finite initial segment

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

‘4

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]
» use finite number of global counters e{(i,)1i,jeNi<j}

» increment counters on finite initial segment

» test counter configuration a posteriori

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

4 4
|dea: generalize Parikh Automata [Klaedtke, Rueld 03]
» use finite number of global counters a e{(i,j)1i,jEN,i <j}?
> increment counters on finite initial segment
> test counter configuration a posteriori b b
semilinear set: finite union of sets € € N¥ of the form C = {Vy + m¥; + -+ + my¥; | m4, ..., m; € N} J
/'/. \‘\ I. \'\ .I./ \'\‘

'/' \ N .\ 7 \
K \ I ‘\ I. \
. , p 5 .
\ \ 7 \
/

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

Counting with Tree Automata

ldea: generalize Parikh Automata [Klaedtke, Ruels 03]
» use finite number of global counters a e{(i,j)1i,jEN,i <j}?
» increment counters on finite initial segment

> test counter configuration a posteriori

semilinear set: finite union of sets € € N¥ of the form C = {Vy + m¥; + -+ + my¥; | m4, ..., m; € N}
‘/./ \‘\ / .\‘ I., \,\. / \.\‘

Theorem [Ginsburg, Spanier 64]. semilinear sets = Presburger sets

. - . . .
\ \ / \

“There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

dimension s €N

Parikh-Muller Tree Automata

counter increments D Sg, NS

PMTA A =(Q,5,q;,AF,C)

tree { € TS

10

dimension s €N

Parikh-Muller Tree Automata

counter increments D Sg, NS

PMTA A = (Q,E,q;,A, F, C)

> Q =(Qp U, finitesetof states

tree { € TS

10

dimension s €N

Parikh-Muller Tree Automata | .
counter increments D Sy N

PMTA A = (Q,5,q;, A F,C)

> Q =0pUQ, finiteset of states

» E=(ZxD)U X alphabet

tree € T

10

dimension s €N

Parikh-Muller Tree Automata

counter increments D S, N°

PMTA A = (Q,3,q;,A F, C)

> Q =0pUQ, finiteset of states

» E=(IxD)UY alphabet KK
» A=A, UA, transitions
2 tree { € TS
Ap: p—a (0) (P1, P2) reading the initial “counting” segment
0
A,: q—c{(qy,q;) reading the remaining tree

10

dimension s €N

Parikh-Muller Tree Automata

v

v

v

v

v

counter increments D S, N°

PMTA A = (Q,3,q;,A F, C)

Q = 0p U0, finite set of states

E=(ExD)UZ alphabet e
A=ApUA, transitions :
2 tree { € TS
Ap: p—a (0) (P1, P2) reading the initial “counting” segment

P"b((l))<(hrp1>

A,: q—c{(qy,q;) reading the remaining tree

F < 2% final state sets

C € N° semilinear set

10

Parikh-Muller Tree Automata

{u
run k of {

dimension s €N

counter increments D Sg, NS

tree { € TS

11

dimension s €N

Parikh-Muller Tree Automata

counter increments D S, N°

./‘
L
’ ‘\

Y0 |
run k of ¢ tree € T

run k of ¢ is successful if

> Muller acceptance condition holds

11

dimension s €N

Parikh-Muller Tree Automata

counter increments D S, N°

./‘
gy
’ ‘\

Y0 ‘
run k of { tree € T

run k of ¢ is successful if

> Muller acceptance condition holds

» Parikh condition: ¥(«<) € C holds

11

dimension s €N

Parikh-Muller Tree Automata

counter increments D S, N°

Y(EN) =

./‘
L
’ ‘\

Y0 |
run k of ¢ tree € T

run k of ¢ is successful if

> Muller acceptance condition holds

» Parikh condition: ¥(«<) € C holds

L(A) ={¢ €Ty | AC € T’ with ({)» = & and 3 successful run k on (}

11

dimension s €N

Parikh-Muller Tree Automata

counter increments D S, N°

./‘
L
’ ‘\

Y0 |
run k of ¢ tree € T

run K of C is successful if “There exists a path P s.t. 2xthe number of ason P <g, the number of bs not on P”

> Muller acceptance condition holds

» Parikh condition: ¥(«<) € C holds

L(A) ={¢ €Ty | AC € T’ with ({)» = & and 3 successful run k on (}

11

Correspondence of wMSOXBAPA and PMTA

@ € wMSONBAPA

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
Induction on structure of

@ = 3X; ...Xn.Vi(QOi AN /\j)(i,j)

» PMTA recognize MSO sentences [Rabin]
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
/ Induction on structure of
@ = 3X; ...Xn.Vi(QOi AN /\j)(i,j)

» PMTA recognize MSO sentences [Rabin]

Construction of formula ¢

3X; ---XIQIVP- @Ppart N Prun N Pacc
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
/ Induction on structure of
@ = 3X; ...Xn.Vi(QOi AN /\j)(i,j)

» PMTA recognize MSO sentences [Rabin]

Construction of formula ¢

377 75 729 L ZE 3Ky X 9| VP. @part A Prun A Pace
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

ZF: counter i is increased by k }

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
/ Induction on structure of
@ = 3X; ...Xn.Vi(QOi AN /\j)(i,j)

» PMTA recognize MSO sentences [Rabin]

Construction of formula ¢

377 75 729 L ZE 3Ky X 9| VP. @part A Prun A Pace
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

ZF: counter i is increased by k }

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
/ Induction on structure of
@ = 3X; ...Xn.Vi(QOi AN /\j)(i,j)

» PMTA recognize MSO sentences [Rabin]

Construction of formula ¢

377 75 29 L ZE 3K X 9| VP @part A Prun A Pace /N Ppariz) N Oc
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

ZF: counter i is increased by k }

PMTA A

12

Correspondence of wMSOXBAPA and PMTA

@ € wMSOXBAPA
/ Induction on structure of
@ = 3X; ...Xn.Vi((pi AN /\in,j)

» PMTA recognize MSO sentences [Rabin]

Construction of formula ¢

377 25 78 78 3K XioYP. @part A @run A Pace /N Ppari(z) N Oc
» PMTA recognize Parikh constraints

» PMTA are closed under U, N, relabeling

ZF: counter i is increased by k }

PMTA A

Theorem. wMSONXBAPA = PMTA (on infinite labeled trees) J

12

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSpaceE-complete.

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

—, final states /

/

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

) —, final states /

" initial states

Muller tree automata

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

> Ag = (Qw,q, Ay, F) Muller tree automaton for each q € Q,,

—, final states /

" initial states

Muller tree automata

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

> Ag = (Qw,q, Ay, F) Muller tree automaton for each q € Q,,

» Fp ={q €Q, | L(A,) * 0}

—, final states /

" initial states

Muller tree automata

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

> Ag = (Qw,q, Ay, F) Muller tree automaton for each q € Q,,

|

> Fp ={q €Q, | L(A,) # 0} ﬁ PSpaCE-complete

—, final states /

" initial states

Muller tree automata

13

Emptiness of PMTA

Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

> Ag = (Qw,q, Ay, F) Muller tree automaton for each q € Q,,

|

> Fp ={q €Q, | L(A,) # 0} ﬁ PSpaCE-complete

» Ap = (Q,XXD,q,, Ap, Fy, C) Parikh tree automaton
—, final states /

" initial states

LA) =0 iff L(Ap)#=0

Muller tree automata
NP-complete]
<

13

Satisfiability of wMSOXBAPA

Satisfiability of wMSOXBAPA

Corollary. Satisfiability of wMSOMBAPA on infinite labeled trees is decidable.

_

Theorem. wMSONXBAPA = PMTA (on infinite labeled trees)

Theorem. Given a PMTA A, deciding L(A) # @ is PSpace-complete.

Corollary. Satisfiability of wMSOMBAPA on infinite labeled trees is decidable.

Theorem. Satisfiability of wMSOMBAPA is decidable over the classes of finite or countable S-structures of
bounded treewidth, cliquewidth, and partitionswidth.

Summary

» highly expressive logic wMSO-BAPA for cardinality relationships - undecidable in general
» fragment wMSOMNBAPA: still expressive and admits normal form

» Parikh-Muller tree automata correspond to wMSOXBAPA on infinite trees

» ...and have a decidable emptiness problem

» satisfiability of wMSOMBAPA on infinite trees and tree-interpretable classes is decidable

» decidability showcases: coupling with FOlfres , lu-calculus with global Presburger constraints

15

Summary

» highly expressive logic wMSO-BAPA for cardinality relationships - undecidable in general
» fragment wMSOMNBAPA: still expressive and admits normal form

» Parikh-Muller tree automata correspond to wMSOXBAPA on infinite trees

» ...and have a decidable emptiness problem

» satisfiability of wMSOMBAPA on infinite trees and tree-interpretable classes

» decidability showcases: coupling with FOlfres , lu-calculus with global Presburger constraints

Thank you!

15

