Decidable (Ac)counting with Parikh and Muller:

Adding Presburger Arithmetic to Monadic Second-Order Logic
over Tree-Interpretable Structures

Luisa Herrmann, Vincent Peth, and Sebastian Rudolph
Naples, CSL 2024, Feb 23

We want to compare cardinalities!

We want to compare cardinalities!

"There exists a path P s.t. $\quad 2 x$ the number of a on $P \leq$ the number of bs not on P "

We want to compare cardinalities!

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

"There exists a path P s.t. $2 x$ the number of a on $P \leq$ the number of b s not on P "

We want to compare cardinalities!

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\# X \equiv_{n} m$ and Fin (X)
\rightarrow coincides on (finite) words and trees with MSO

"There exists a path P s.t. $2 x$ the number of a on $P \leq$ the number of b s not on P "

We want to compare cardinalities!

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\# X \equiv_{n} m$ and Fin (X)
\rightarrow coincides on (finite) words and trees with MSO
- MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes \#X \leq \#Y
\rightarrow undecidable in general, decidable fragment on words, trees

We want to compare cardinalities!

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\# X \equiv_{n} m$ and Fin (X)
\rightarrow coincides on (finite) words and trees with MSO
- MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes \#X \leq \#Y
\rightarrow undecidable in general, decidable fragment on words, trees
- Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic

\rightarrow decidable but lacks non-unary relations

We want to compare cardinalities!

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\# X \equiv_{n} m$ and Fin (X)
\rightarrow coincides on (finite) words and trees with MSO
- MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes \#X $\leq \# Y$
\rightarrow undecidable in general, decidable fragment on words, trees
- Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic

\rightarrow decidable but lacks non-unary relations

\hookrightarrow we combine these approaches

Content

Content

Logic

- $\omega \mathrm{MSO} \cdot \mathrm{BAPA} .$. is undecidable
- the fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$
- ... and its normal form

Content

Logic

- $\omega \mathrm{MSO} \cdot \mathrm{BAPA} .$. is undecidable
- the fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$
- ... and its normal form

Automata

- Parikh-Muller Tree Automata
- ... correspond to ω MSO \bowtie BAPA
- ... have decidable emptiness problem

Content

Logic

- $\omega \mathrm{MSO} \cdot \mathrm{BAPA} .$. is undecidable
- the fragment $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$
- ... and its normal form

Automata

- ... have decidable emptiness problem

From CMSO to $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$

signature $\mathbb{S}=\mathbb{S}_{C} \cup \mathbb{S}_{P}$
countable \mathbb{S}-structure $\mathfrak{A}=\left(A,{ }^{\cdot 2}\right)$

From CMSO to $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$

```
constants or variables
\varphi::=Q Q (\iota1,\ldots,片)| X(\imath)| #X \equivnm | Fin(X) |
    \neg\varphi| \varphi\vee \varphi'| \existsx.\varphi | \existsX.\varphi |
```

From CMSO to $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$
constants or variables

$$
\begin{aligned}
& \varphi::=\mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi|
\end{aligned}
$$

set terms $\quad\left(X^{c} \cap Y\right) \cup P$
constan
signature $\mathbb{S}=\mathbb{S}_{C} \cup \mathbb{S}_{P}$
countable \mathbb{S}-structure $\mathfrak{A}=\left(A,{ }^{\mathfrak{R}}\right)$

$$
\neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi| \exists k . \varphi
$$

$\exists A . \operatorname{Path}(A) \wedge 2 \cdot \#\left(A \cap \mathrm{P}_{a}\right) \leq \#\left(A^{c} \cap \mathrm{P}_{b}\right)$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\text {sol }}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\text {sol }}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$
- ensure that $\left|P_{x y}\right|=\left|P_{x}\right| \cdot\left|P_{y}\right|$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\text {sol }}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$
- ensure that $\left|P_{x y}\right|=\left|P_{x}\right| \cdot\left|P_{y}\right|$
$\varphi_{\text {lab }}$ for appropriate labeling

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\text {sol }}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$
- ensure that $\left|P_{x y}\right|=\left|P_{x}\right| \cdot\left|P_{y}\right|$
$\varphi_{\text {lab }}$ for appropriate labeling

$$
\varphi_{\text {prod }}:=\Lambda_{x, x y} \forall z \in P_{x} \cdot \exists Z \cdot \operatorname{sub}(z, Z) \wedge \#\left(Z \cap P_{x y}\right)==_{\text {fin }} \# P_{y}
$$

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\text {sol }}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$
- ensure that $\left|P_{x y}\right|=\left|P_{x}\right| \cdot\left|P_{y}\right|$
$\varphi_{\text {lab }}$ for appropriate labeling

Proposition. For any positive Diophantine equation \mathcal{D}, satisfaction of $\varphi_{\mathcal{D}}$ over (finite or infinite) labeled trees coincides with solvability of \mathcal{D}.

Full $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ is undecidable

by encoding positive Diophantine equations on labeled trees

$$
\mathcal{D}:=2 x y^{2}+5 y+3 z=5 x y z
$$

$$
\varphi_{\mathcal{D}}:=\varphi_{\mathrm{sol}} \wedge \varphi_{\mathrm{lab}} \wedge \varphi_{\mathrm{prod}}
$$

- unary predicates $P_{x}, P_{y}, P_{z}, P_{x y}, P_{x y y}, P_{x y z}$
- $\varphi_{\mathrm{sol}}:=2 \cdot \# P_{x y y}+5 \cdot \# P_{y}+3 \cdot \# P_{z}=5 \cdot \# P_{x y z}$
- ensure that $\left|P_{x y}\right|=\left|P_{x}\right| \cdot\left|P_{y}\right|$
$\varphi_{\text {lab }}$ for appropriate labeling

$x y$
$x y$

Proposition. For any positive Diophantine equation \mathcal{D}, satisfaction of $\varphi_{\mathcal{D}}$ over (finite or infinite) labeled trees coincides with solvability of \mathcal{D}.

Proposition. Satisfiability of the class of $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ sentences of the shape $\varphi_{\mathcal{D}}$ is undecidable.

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}[$ ['o:mzol|,bapa]

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x \cdot \varphi|\exists X . \varphi| \exists k . \varphi
\end{aligned}
$$

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}[$ ['o:mzol|,bapa]

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x \cdot \varphi|\exists X . \varphi| \exists k \cdot \varphi
\end{aligned}
$$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}[$ ['o:mzol|,bapa]

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x \cdot \varphi|\exists X . \varphi| \exists k \cdot \varphi
\end{aligned}
$$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and - occurring in $t_{1} \leq_{\text {(fin) }} t_{2}$ or
- occurring together with a delicate variable in atom

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}[$ ['o:mzol|,bapa]

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi| \exists k \cdot \varphi
\end{aligned}
$$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and - occurring in $t_{1} \leq_{(f i n)} t_{2}$ or
- occurring together with a delicate variable in atom φ is an $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ formula iff each of its predicate atoms $Q\left(\iota_{1}, \ldots, \iota_{n}\right)$ contains at most one delicate variable

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ ['o:mzol||bapa]

$\exists A . \operatorname{Path}(A) \wedge 2 \cdot \#\left(A \cap \mathrm{P}_{a}\right) \leq \#\left(A^{c} \cap \mathrm{P}_{b}\right)$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and - occurring in $t_{1} \leq_{(f i n)} t_{2}$ or
- occurring together with a delicate variable in atom
φ is an $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$ formula iff each of its predicate atoms $\mathrm{Q}\left(\iota_{1}, \ldots, l_{n}\right)$ contains at most one delicate variable

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ ['o:mzol||bapa]

$\exists X \exists V \forall Y \exists Y^{\prime} . \operatorname{Path}(X) \wedge \varphi_{\mathrm{MSO}}(V) \wedge$ $\#(X \cap Y \cap V) \leq \#\left(Y^{\prime} \cap V\right) \wedge\left(\forall z \cdot Y^{\prime}(z) \Rightarrow \mathrm{P}_{\mathrm{red}}(z)\right)$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and - occurring in $t_{1} \leq_{(f i n)} t_{2}$ or
- occurring together with a delicate variable in atom
φ is an $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$ formula iff each of its predicate atoms $\mathrm{Q}\left(\iota_{1}, \ldots, l_{n}\right)$ contains at most one delicate variable

The Fragment $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ ['o:mzol||bapa]

$$
\operatorname{sub}(z, Z):=\forall y \cdot Z(y) \Leftrightarrow<^{*}(z, y)
$$

$$
\varphi_{\text {prod }}:=\bigwedge_{x, x y} \forall z \in \mathrm{P}_{x} \cdot \exists Z \cdot \operatorname{sub}(z, Z) \wedge \#\left(Z \cap \mathrm{P}_{x y}\right)={ }_{\text {fin }} \# \mathrm{P}_{y}
$$

Individual and set variables in an ω MSO•BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and - occurring in $t_{1} \leq_{(f i n)} t_{2}$ or
- occurring together with a delicate variable in atom
φ is an $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ formula eff each of its predicate atoms $Q\left(\iota_{1}, \ldots, l_{n}\right)$ contains at most one delicate variable

Normalization of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$
$\varphi::=\mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right|$ $\neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi| \exists k . \varphi$

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\imath)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x \cdot \varphi|\exists X \cdot \varphi| \exists k \cdot \varphi
\end{aligned}
$$

$$
\varphi^{\prime}=\exists X_{1} \ldots X_{n} \cdot \bigvee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)
$$

$\varphi_{i} \mathrm{CMSO}$ formulae

$$
\chi_{i, j} \text { Parikh constraints }
$$

$$
3+\# X_{2} \leq_{\text {fin }} 2 \cdot \# Y+\# X_{1}
$$

Normalization of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi| \exists k . \varphi
\end{aligned}
$$

Normalization of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x \cdot \varphi|\exists X . \varphi| \exists k \cdot \varphi
\end{aligned}
$$

$$
\varphi^{\prime}=\exists X_{1} \ldots X_{n} \cdot \bigvee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)
$$

Proposition. For each ω MSO \triangle BAPA formula φ we can compute an equivalent formula φ^{\prime} of the form

$$
\varphi^{\prime}=\exists X_{1} \ldots X_{n} \cdot \bigvee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)
$$

where φ_{i} are CMSO formulae and $\chi_{i, j}$ are Parikh constraints.

Normalization of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$

$$
\begin{aligned}
\varphi::= & \mathrm{Q}\left(\iota_{1}, \ldots, \iota_{n}\right)|S(\iota)| \# S \equiv_{n} m|\operatorname{Fin}(S)| t_{1} \leq t_{2}\left|t_{1} \leq_{\text {fin }} t_{2}\right| \\
& \neg \varphi\left|\varphi \vee \varphi^{\prime}\right| \exists x . \varphi|\exists X . \varphi| \exists k . \varphi
\end{aligned}
$$

$$
\varphi^{\prime}=\exists X_{1} \ldots X_{n} \cdot \vee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)
$$

Proposition. For each $\omega \mathrm{MSO} \bowtie$ BAPA formula φ we can compute a formula φ^{\prime} of the form

$$
\varphi^{\prime}=\exists X_{1} \ldots X_{n} \cdot \bigvee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)
$$

where φ_{i} are MSO formulae and $\chi_{i, j}$ are Parikh constraints that is equivalent to φ over labeled infinite binary trees.

Satisfiability of $\varphi=\exists X_{1} \ldots X_{n} . \vee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)$

over infinite labeled trees decidable?

Satisfiability of $\varphi=\exists X_{1} \ldots X_{n} . \vee_{i}\left(\varphi_{i} \wedge \wedge_{j} \chi_{i, j}\right)$

over infinite labeled trees decidable?

Tree Automata!

Counting with Tree Automata

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters

0	0

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

0	0

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

$\in\{(i, j) \mid i, j \in \mathbb{N}, i \leq j\} ?$

semilinear set: finite union of sets $C \subseteq \mathbb{N}^{S}$ of the form $C=\left\{\vec{v}_{0}+m_{1} \vec{v}_{1}+\cdots+m_{l} \vec{v}_{l} \mid m_{1}, \ldots, m_{l} \in \mathbb{N}\right\}$

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

Counting with Tree Automata

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

$\in\{(i, j) \mid i, j \in \mathbb{N}, i \leq j\} ?$

semilinear set: finite union of sets $C \subseteq \mathbb{N}^{s}$ of the form $C=\left\{\vec{v}_{0}+m_{1} \vec{v}_{1}+\cdots+m_{l} \vec{v}_{l} \mid m_{1}, \ldots, m_{l} \in \mathbb{N}\right\}$

Theorem [Ginsburg, Spanier 64].

$$
\text { PMTA } \mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)
$$

tree $\zeta \in \mathrm{T}_{\Xi}^{\omega}$

$$
\text { PMTA } \mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)
$$

- $Q=Q_{P} \cup Q_{\omega}$ finite set of states

tree $\zeta \in \mathrm{T}_{\Xi}^{\omega}$

$$
\text { PMTA } \mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)
$$

- $Q=Q_{P} \cup Q_{\omega}$ finite set of states
- $\Xi=(\Sigma \times D) \cup \Sigma$ alphabet

tree $\zeta \in \mathrm{T}_{\Xi}^{\omega}$

PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$

- $Q=Q_{P} \cup Q_{\omega}$ finite set of states
- $\Xi=(\Sigma \times D) \cup \Sigma$ alphabet
- $\Delta=\Delta_{P} \cup \Delta_{\omega}$ transitions

$$
\begin{aligned}
\Delta_{P}: \quad p & \rightarrow a\binom{2}{0}\left\langle p_{1}, p_{2}\right\rangle \\
& p \rightarrow b\binom{0}{1}\left\langle q_{1}, p_{1}\right\rangle
\end{aligned}
$$

$$
\Delta_{\omega}: \quad q \rightarrow c\left\langle q_{1}, q_{2}\right\rangle \quad \text { reading the remaining tree }
$$

$$
\text { PMTA } \mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)
$$

- $Q=Q_{P} \cup Q_{\omega}$ finite set of states
- $\Xi=(\Sigma \times D) \cup \Sigma$ alphabet
- $\Delta=\Delta_{P} \cup \Delta_{\omega}$ transitions

$$
\begin{array}{lll}
\Delta_{P}: & p \rightarrow a\binom{2}{0}\left\langle p_{1}, p_{2}\right\rangle & \text { reading the initial "counting } \\
& p \rightarrow b\binom{0}{1}\left\langle q_{1}, p_{1}\right\rangle & \\
\Delta_{\omega}: & q \rightarrow c\left\langle q_{1}, q_{2}\right\rangle & \text { reading the remaining tree }
\end{array}
$$

- $\mathcal{F} \subseteq 2^{Q \omega}$ final state sets
- $C \subseteq \mathbb{N}^{s}$ semilinear set

tree $\zeta \in \mathrm{T}_{\Xi}^{\omega}$

run κ of ζ is successful if
- Muller acceptance condition holds

run κ of ζ is successful if
- Muller acceptance condition holds
- Parikh condition: $\Psi(,) \in C$ holds

run κ of ζ is successful if
- Muller acceptance condition holds
- Parikh condition: $\Psi() \in C$ holds

$$
\mathcal{L}(\mathcal{A})=\left\{\xi \in T_{\Sigma} \mid \exists \zeta \in T_{\Xi}^{\omega} \text { with }(\zeta)_{\Sigma}=\xi \text { and } \exists \text { successful run } \kappa \text { on } \zeta\right\}
$$

run κ of ζ is successful if

"There exists a path P s.t. $2 x$ the number of a on $P \leq_{\text {fin }}$ the number of b s not on P "

- Muller acceptance condition holds
- Parikh condition: $\Psi() \in C$ holds

$$
\mathcal{L}(\mathcal{A})=\left\{\xi \in T_{\Sigma} \mid \exists \zeta \in T_{\Xi}^{\omega} \text { with }(\zeta)_{\Sigma}=\xi \text { and } \exists \text { successful run } \kappa \text { on } \zeta\right\}
$$

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Correspondence of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ and PMTA

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

- $\mathcal{A}_{q}=\left(Q_{\omega}, q, \Delta_{\omega}, \mathcal{F}\right)$ Muller tree automaton for each $q \in Q_{\omega}$

Muller tree automata
final states /
initial states

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

- $\mathcal{A}_{q}=\left(Q_{\omega}, q, \Delta_{\omega}, \mathcal{F}\right)$ Muller tree automaton for each $q \in Q_{\omega}$
- $F_{P}=\left\{q \in Q_{\omega} \mid \mathcal{L}\left(\mathcal{A}_{q}\right) \neq \emptyset\right\}$

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

- $\mathcal{A}_{q}=\left(Q_{\omega}, q, \Delta_{\omega}, \mathcal{F}\right)$ Muller tree automaton for each $q \in Q_{\omega}$
- $F_{P}=\left\{q \in Q_{\omega} \mid \mathcal{L}\left(\mathcal{A}_{q}\right) \neq \emptyset\right\}$ \square PSPACE-complete

Parikh tree automaton

Emptiness of PMTA

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Proof. Given PMTA $\mathcal{A}=\left(Q, \Xi, q_{I}, \Delta, \mathcal{F}, C\right)$ with $Q=Q_{P} \cup Q_{\omega} \cup\left\{q_{I}\right\}$.

- $\mathcal{A}_{q}=\left(Q_{\omega}, q, \Delta_{\omega}, \mathcal{F}\right)$ Muller tree automaton for each $q \in Q_{\omega}$
- $F_{P}=\left\{q \in Q_{\omega} \mid \mathcal{L}\left(\mathcal{A}_{q}\right) \neq \emptyset\right\}$

PSPACE-complete

- $\mathcal{A}_{P}=\left(Q, \Sigma \times D, q_{I}, \Delta_{P}, F_{p}, C\right)$ Parikh tree automaton

$$
\mathcal{L}(\mathcal{A}) \neq \varnothing \quad \text { iff } \quad \mathcal{L}\left(\mathcal{A}_{P}\right) \neq \varnothing
$$

Muller tree automata

Parikh tree
automaton

Satisfiability of $\omega \mathrm{MSO} \bowtie$ BAPA

Theorem.

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \varnothing$ is PSPACE-complete.

Satisfiability of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$

Theorem.
$\omega \mathrm{MSO} \bowtie \mathrm{BAPA}=\mathrm{PMTA}$ (on infinite labeled trees)

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \varnothing$ is PSPACE-complete.

Corollary. Satisfiability of $\omega \mathrm{MSO}$ BAPA on infinite labeled trees is decidable.

Satisfiability of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$

Theorem.
$\omega \mathrm{MSO} \bowtie B A P A=P M T A$ (on infinite labeled trees)

Theorem. Given a PMTA \mathcal{A}, deciding $\mathcal{L}(\mathcal{A}) \neq \varnothing$ is PSPACE-complete.

Corollary. Satisfiability of $\omega \mathrm{MSO} \mathrm{\bowtie BAPA}$ on infinite labeled trees is decidable.
can be lifted with MSO-interpretations
to all tree-interpretable classes

Theorem. Satisfiability of $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$ is decidable over the classes of finite or countable \mathbb{S}-structures of bounded treewidth, cliquewidth, and partitionswidth.

Summary

- highly expressive logic ω MSO•BAPA for cardinality relationships \rightarrow undecidable in general
- fragment $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$: still expressive and admits normal form
- Parikh-Muller tree automata correspond to ω MSO \bowtie BAPA on infinite trees
- ... and have a decidable emptiness problem
- satisfiability of $\omega \mathrm{MSO} \bowtie$ BAPA on infinite trees and tree-interpretable classes is decidable
- decidability showcases: coupling with $\mathrm{FO}_{\text {Pres }}^{2}$, μ-calculus with global Presburger constraints

Summary

- highly expressive logic $\omega \mathrm{MSO} \cdot \mathrm{BAPA}$ for cardinality relationships \rightarrow undecidable in general
- fragment $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$: still expressive and admits normal form
- Parikh-Muller tree automata correspond to ω MSO \bowtie BAPA on infinite trees
- ... and have a decidable emptiness problem
- satisfiability of $\omega \mathrm{MSO} \bowtie \mathrm{BAPA}$ on infinite trees and tree-interpretable classes
- decidability showcases: coupling with $\mathrm{FO}_{\text {Pres }}^{2}$, μ-calculus with global Presburger constraints

