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▸ Monadic Second-Order Logic (MSO) very expressive but very limited cardinality rela5onships

▸ Coun5ng MSO (CMSO) includes #𝑋 ≡! 𝑚 and Fin 𝑋

→ coincides on (finite) words and trees with MSO

▸ MSO + Cardinality Constraints [Klaedtke, Rueß 03]  includes #𝑋 ≤ #𝑌

→ undecidable in general, decidable fragment on words, trees

▸ Boolean Algebra + Presburger Arithme5c (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set opera5ons and arithme5c 
→ decidable but lacks non-unary rela5ons
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Logic

▸ 𝜔MSO·BAPA ... is undecidable

▸ the fragment 𝜔MSO⋈BAPA

▸ … and its normal form

Automata

▸ Parikh-Muller Tree Automata

▸ … correspond to 𝜔MSO⋈BAPA

▸ … have decidable empBness problem
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by encoding posi-ve Diophan-ne equa-ons on labeled trees 𝒟 ≔ 2𝑥𝑦& + 5𝑦 + 3𝑧 = 5𝑥𝑦𝑧

𝜑𝒟 ≔ 𝜑)*+ ∧ 𝜑+,- ∧ 𝜑./*0

▸ unary predicates   𝑃' , 𝑃( , 𝑃) , 𝑃'( , 𝑃'(( , 𝑃'()

▸ 𝜑*+, ≔ 2 ⋅ #𝑃'(( + 5 ⋅ #𝑃( + 3 ⋅ #𝑃) = 5 ⋅ #𝑃'()

▸ ensure that   |𝑃'(| = |𝑃'| ⋅ |𝑃(|

𝜑,-. for appropriate labeling

𝜑/0+1 ≔ ⋀','( ∀𝑧 ∈ 𝑃' . ∃𝑍. sub 𝑧, 𝑍 ∧ # 𝑍 ∩ 𝑃'( =345 #𝑃(

Full 𝜔MSO!BAPA is undecidable
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Proposi-on.   For any posi-ve Diophan-ne equa-on 𝒟, sa-sfac-on of 𝜑𝒟 over (finite or infinite) labeled trees
coincides with solvability of 𝒟.
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The Fragment 𝜔MSO⋈BAPA

𝜑 ∷= Q 𝜄%, … , 𝜄7 𝑆 𝜄 #𝑆 ≡7 𝑚 Fin 𝑆 𝑡% ≤ 𝑡& 𝑡% ≤fin 𝑡&

¬𝜑 𝜑 ∨ 𝜑8 ∃𝑥. 𝜑 ∃𝑋. 𝜑 ∃𝑘. 𝜑

[ˈoːmzoǁˌbapa] 

Individual and set variables in an 𝜔MSO·BAPA formula 𝜑 can be

• asser-ve: free or “outermost” existen-ally quan-fied (not in the scope of ∀ or ¬)

• delicate: non-asser-ve and ▸ occurring in   𝑡% ≤(345) 𝑡& or

▸ occurring together with a delicate variable in atom
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Sa#sfiability of 𝜑 = ∃𝑋!…𝑋". ⋁𝑖(𝜑# ∧ ⋀𝑗𝜒#,%)

over infinite labeled trees decidable?



8

Sa#sfiability of 𝜑 = ∃𝑋!…𝑋". ⋁𝑖(𝜑# ∧ ⋀𝑗𝜒#,%)

over infinite labeled trees decidable?

Tree Automata!
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Coun0ng with Tree Automata

𝑎

𝑏 𝑏

𝑏 𝑐 𝑏 𝑎

𝑎 𝑏𝑐

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

▸ use finite number of global counters

▸ increment counters on finite ini-al segment

▸ test counter configura-on a posteriori 

∈ { 𝑖, 𝑗 ∣ 𝑖, 𝑗 ∈ ℕ, 𝑖 ≤ 𝑗}?

“There exists a path 𝑃 s.t. 2x the number of 𝑎s on 𝑃 ≤!"# the number of 𝑏s not on 𝑃” 
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Parikh-Muller Tree Automata

PMTA 𝒜 = (𝑄, Ξ, 𝑞x, Δ, ℱ, 𝐶)

▸ 𝑄 = 𝑄" ∪ 𝑄C finite set of states

▸ Ξ = Σ×𝐷 ∪ Σ alphabet

▸ Δ = Δ" ∪ ΔD transi-ons

Δ": 𝑝 → 𝑎 2
0 𝑝%, 𝑝& reading the ini:al “coun:ng“ segment

𝑝 → 𝑏 0
1 𝑞%, 𝑝%

ΔC: 𝑞 → 𝑐 𝑞%, 𝑞& reading the remaining tree

▸ ℱ ⊆ 2E! final state sets

▸ 𝐶 ⊆ ℕ@ semilinear set

dimension   𝑠 ∈ ℕ

counter increments   𝐷 ⊆'() ℕ*

tree 𝜁 ∈ TFC
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Parikh-Muller Tree Automata
dimension   𝑠 ∈ ℕ

counter increments   𝐷 ⊆'() ℕ*
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run 𝜅 of 𝜁 is successful if

▸ Muller acceptance condi-on holds

▸ Parikh condi-on: Ψ ∈ 𝐶 holds

𝑝!

𝑝! 𝑝"

𝑝" 𝑝! 𝑝" 𝑝"

𝑝! 𝑝"𝑞#

𝑞#

𝑞#

run 𝜅 of 𝜁
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𝑝!

𝑝! 𝑝"

𝑝" 𝑝! 𝑝" 𝑝"

𝑝! 𝑝"𝑞#

𝑞#

𝑞#

run 𝜅 of 𝜁

Ψ( ) = 2
• 2

3$
3% ∈( )

𝑛7
𝑛8
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“There exists a path 𝑃 s.t. 2x the number of 𝑎s on 𝑃 ≤!"# the number of 𝑏s not on 𝑃” 



12

Correspondence of 𝜔MSO⋈BAPA and PMTA

𝜑 ∈ 𝜔MSO⋈BAPA

PMTA 𝒜

Induc-on on structure of 

𝜑 = ∃𝑋%…𝑋7. ⋁𝑖(𝜑< ∧ ⋀𝑗𝜒<,=)

▸ PMTA recognize MSO sentences [Rabin]

▸ PMTA recognize Parikh constraints

▸ PMTA are closed under ∪, ∩, relabeling

∃𝑍79…𝑍7:…𝑍*9…𝑍*:.
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Theorem.   𝜔MSO⋈BAPA = PMTA (on infinite labeled trees)



Proof.  Given PMTA 𝒜 = (𝑄, Ξ, 𝑞G , Δ, ℱ, 𝐶) with 𝑄 = 𝑄" ∪ 𝑄C ∪ {𝑞G}.

▸ 𝒜H = (𝑄C , 𝑞, ΔC , ℱ) Muller tree automaton for each 𝑞 ∈ 𝑄C

▸ 𝐹" = {𝑞 ∈ 𝑄C ∣ ℒ 𝒜H ≠ ∅}

▸ 𝒜" = (𝑄, Σ×𝐷, 𝑞G , Δ" , 𝐹I, 𝐶) Parikh tree automaton

ℒ 𝒜 ≠ ∅ iff ℒ 𝒜" ≠ ∅

◀

13

Emp0ness of PMTA

Theorem.   Given a PMTA 𝒜, deciding ℒ 𝒜 ≠ ∅ is PSPACE-complete.

final states /
ini-al states
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Sa0sfiability of 𝜔MSO⋈BAPA

Theorem.   Given a PMTA 𝒜, deciding ℒ 𝒜 ≠ ∅ is PSPACE-complete.

Theorem.   𝜔MSO⋈BAPA = PMTA (on infinite labeled trees)
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Corollary.   Sa-sfiability of 𝜔MSO⋈BAPA on infinite labeled trees is decidable.

can be li_ed with MSO-interpreta-ons
to all tree-interpretable classes

Theorem.   Sa-sfiability of 𝜔MSO⋈BAPA is decidable over the classes of finite or countable 𝕊-structures of 
bounded treewidth, cliquewidth, and par--onswidth. 
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Summary

▸ highly expressive logic 𝜔MSO·BAPA for cardinality rela5onships → undecidable in general 

▸ fragment 𝜔MSO⋈BAPA: s5ll expressive and admits normal form

▸ Parikh-Muller tree automata correspond to 𝜔MSO⋈BAPA on infinite trees

▸ … and have a decidable emp5ness problem

▸ sa5sfiability of 𝜔MSO⋈BAPA on infinite trees and tree-interpretable classes is decidable

▸ decidability showcases: coupling with FOPres
# , μ-calculus with global Presburger constraints
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Thank you!


