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(1ap fOr appropriate labeling

Proposition. For any positive Diophantine equation D, satisfaction of @ over (finite or infinite) labeled trees
coincides with solvability of D.

Proposition. Satisfiability of the class of wMSO-BAPA sentences of the shape ¢4, is undecidable.
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\ Vennification
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ldea: generalize Parikh Automata [Klaedtke, Ruels 03]
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counter increments D S, N°
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Q = 0p U0, finite set of states
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A=ApUA, transitions :
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Theorem. wMSONXBAPA = PMTA (on infinite labeled trees) J
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Theorem. Given a PMTA A, deciding L(A) # @ is PSPace-complete. J

Proof. Given PMTA A = (Q,E,q;, A F,C)withQ = Qp U Q,, U {q,;}.

> Ag = (Qw,q, Ay, F) Muller tree automaton for each q € Q,,

|

> Fp ={q €Q, | L(A,) # 0} ﬁ PSpaCE-complete

» Ap = (Q,XXD,q,, Ap, Fy, C) Parikh tree automaton
—, final states /

" initial states

LA) =0 iff L(Ap)#=0

Muller tree automata
NP-complete ]
<
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Satisfiability of wMSOXBAPA

Corollary. Satisfiability of wMSOMBAPA on infinite labeled trees is decidable.

_




Theorem. wMSONXBAPA = PMTA (on infinite labeled trees)

Theorem. Given a PMTA A, deciding L(A) # @ is PSpace-complete.

Corollary. Satisfiability of wMSOMBAPA on infinite labeled trees is decidable.

Theorem. Satisfiability of wMSOMBAPA is decidable over the classes of finite or countable S-structures of
bounded treewidth, cliquewidth, and partitionswidth.



Summary

» highly expressive logic wMSO-BAPA for cardinality relationships - undecidable in general
» fragment wMSOMNBAPA: still expressive and admits normal form

» Parikh-Muller tree automata correspond to wMSOXBAPA on infinite trees

» ...and have a decidable emptiness problem

» satisfiability of wMSOMBAPA on infinite trees and tree-interpretable classes is decidable

» decidability showcases: coupling with FOlfres , lu-calculus with global Presburger constraints
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Summary

» highly expressive logic wMSO-BAPA for cardinality relationships - undecidable in general
» fragment wMSOMNBAPA: still expressive and admits normal form

» Parikh-Muller tree automata correspond to wMSOXBAPA on infinite trees

» ...and have a decidable emptiness problem

» satisfiability of wMSOMBAPA on infinite trees and tree-interpretable classes

» decidability showcases: coupling with FOlfres , lu-calculus with global Presburger constraints

Thank you!
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