Decidable (Ac)counting with Parikh and Muller: Adding Presburger Arithmetic to Monadic Second-Order Logic over Tree-Interpretable Structures

Luisa Herrmann, Vincent Peth, and Sebastian Rudolph

Naples, CSL 2024, Feb 23

"There exists a path P s.t. 2x the number of as on $P \leq \text{the number of } bs \text{ not on } P$ "

Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships

"There exists a path P s.t. 2x the number of as on $P \leq$ the number of bs not on P"

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\#X \equiv_n m$ and Fin(X)

 \rightarrow coincides on (finite) words and trees with MSO

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\#X \equiv_n m$ and Fin(X)

 \rightarrow coincides on (finite) words and trees with MSO

• MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes $\#X \leq \#Y$

 \rightarrow undecidable in general, decidable fragment on words, trees

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\#X \equiv_n m$ and Fin(X)

 \rightarrow coincides on (finite) words and trees with MSO

- ▶ MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes $\#X \leq \#Y$ → undecidable in general, decidable fragment on words, trees
- Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic \rightarrow decidable but lacks non-unary relations

- Monadic Second-Order Logic (MSO) very expressive but very limited cardinality relationships
- Counting MSO (CMSO) includes $\#X \equiv_n m$ and Fin(X)

 \rightarrow coincides on (finite) words and trees with MSO

- ▶ MSO + Cardinality Constraints [Klaedtke, Rueß 03] includes $\#X \leq \#Y$ → undecidable in general, decidable fragment on words, trees
- Boolean Algebra + Presburger Arithmetic (BAPA) [Kuncak, Nguyen, Rinard 05]

includes set operations and arithmetic \rightarrow decidable but lacks non-unary relations

 \hookrightarrow we combine these approaches

Logic

- ω MSO·BAPA ... is undecidable
- the fragment ω MSO \bowtie BAPA
- ► ... and its normal form

Logic

- ω MSO·BAPA ... is undecidable
- the fragment ω MSO \bowtie BAPA
- ... and its normal form

Automata

- Parikh-Muller Tree Automata
- ... correspond to ω MSO \bowtie BAPA
- ► ... have decidable emptiness problem

Logic

- ω MSO·BAPA ... is undecidable
- the fragment ω MSO \bowtie BAPA
- ... and its normal form

Automata

- Parikh-Muller Tree Automata
- ... correspond to ω MSO \bowtie BAPA
- ► ... have decidable emptiness problem

Decidability

signature $S = S_C \cup S_P$

countable S-structure $\mathfrak{A} = (A, \cdot^{\mathfrak{A}})$

From CMSO to ω MSO·BAPA

From CMSO to ω MSO·BAPA

signature $S = S_C \cup S_P$ countable S-structure $\mathfrak{A} = (A, \cdot^{\mathfrak{A}})$

From CMSO to ω MSO·BAPA

signature $S = S_C \cup S_P$ countable S-structure $\mathfrak{A} = (A, \cdot^{\mathfrak{A}})$

"There exists a path P s.t. 2x the number of as on $P \leq$ the number of bs not on P"

by encoding positive Diophantine equations on labeled trees

 $\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$

by encoding positive Diophantine equations on labeled trees

$$\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

• unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}

by encoding positive Diophantine equations on labeled trees

$$\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

- unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}
- $\bullet \ \varphi_{\text{sol}} \coloneqq 2 \cdot \# P_{xyy} + 5 \cdot \# P_y + 3 \cdot \# P_z = 5 \cdot \# P_{xyz}$

by encoding positive Diophantine equations on labeled trees

$$\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

- unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}
- $\varphi_{sol} \coloneqq 2 \cdot \#P_{xyy} + 5 \cdot \#P_y + 3 \cdot \#P_z = 5 \cdot \#P_{xyz}$
- ensure that $|P_{xy}| = |P_x| \cdot |P_y|$

by encoding positive Diophantine equations on labeled trees

 $\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

- unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}
- $\varphi_{sol} \coloneqq 2 \cdot \#P_{xyy} + 5 \cdot \#P_y + 3 \cdot \#P_z = 5 \cdot \#P_{xyz}$
- ensure that $|P_{xy}| = |P_x| \cdot |P_y|$

 $arphi_{
m lab}$ for appropriate labeling

by encoding positive Diophantine equations on labeled trees

 $\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

• unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}

•
$$\varphi_{sol} \coloneqq 2 \cdot \#P_{xyy} + 5 \cdot \#P_y + 3 \cdot \#P_z = 5 \cdot \#P_{xyz}$$

• ensure that $|P_{xy}| = |P_x| \cdot |P_y|$

 $arphi_{
m lab}$ for appropriate labeling

 $\varphi_{\text{prod}} \coloneqq \bigwedge_{x,xy} \forall z \in P_x. \exists Z. \operatorname{sub}(z,Z) \land \#(Z \cap P_{xy}) =_{\operatorname{fin}} \#P_y$

by encoding positive Diophantine equations on labeled trees

$$\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

- unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}
- $\varphi_{sol} \coloneqq 2 \cdot \#P_{xyy} + 5 \cdot \#P_y + 3 \cdot \#P_z = 5 \cdot \#P_{xyz}$
- ensure that $|P_{xy}| = |P_x| \cdot |P_y|$

 $arphi_{
m lab}$ for appropriate labeling

Proposition. For any positive Diophantine equation \mathcal{D} , satisfaction of $\varphi_{\mathcal{D}}$ over (finite or infinite) labeled trees coincides with solvability of \mathcal{D} .

by encoding positive Diophantine equations on labeled trees

$$\mathcal{D} \coloneqq 2xy^2 + 5y + 3z = 5xyz$$

 $\varphi_{\mathcal{D}} \coloneqq \varphi_{\text{sol}} \land \varphi_{\text{lab}} \land \varphi_{\text{prod}}$

- unary predicates P_x , P_y , P_z , P_{xy} , P_{xyy} , P_{xyz}
- $\varphi_{sol} \coloneqq 2 \cdot \#P_{xyy} + 5 \cdot \#P_y + 3 \cdot \#P_z = 5 \cdot \#P_{xyz}$
- ensure that $|P_{xy}| = |P_x| \cdot |P_y|$

 $arphi_{
m lab}$ for appropriate labeling

Proposition. For any positive Diophantine equation \mathcal{D} , satisfaction of $\varphi_{\mathcal{D}}$ over (finite or infinite) labeled trees coincides with solvability of \mathcal{D} .

Proposition. Satisfiability of the class of ω MSO·BAPA sentences of the shape $\varphi_{\mathcal{D}}$ is undecidable.

 $\varphi ::= \mathbb{Q}(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\mathsf{fin}} t_2 \mid$

 $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

```
\varphi ::= Q(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\mathsf{fin}} t_2 \mid\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi
```

Individual and set variables in an ω MSO·BAPA formula φ can be

• assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)

```
\varphi ::= Q(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\operatorname{fin}} t_2 \mid\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi
```

Individual and set variables in an ω MSO·BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and \blacktriangleright occurring in $t_1 \leq_{(fin)} t_2$ or

occurring together with a delicate variable in atom

 $\varphi ::= Q(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\operatorname{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

Individual and set variables in an ω MSO·BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- delicate: non-assertive and \blacktriangleright occurring in $t_1 \leq_{(fin)} t_2$ or

occurring together with a delicate variable in atom

 φ is an ω MSO \bowtie BAPA formula iff each of its predicate atoms $Q(\iota_1, ..., \iota_n)$ contains at most one delicate variable

$\exists A. \operatorname{Path}(A) \land 2 \cdot \#(A \cap P_a) \leq \#(A^c \cap P_b)$

good!

Individual and set variables in an ω MSO·BAPA formula φ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- **delicate**: non-assertive and \blacktriangleright occurring in $t_1 \leq_{(fin)} t_2$ or

occurring together with a delicate variable in atom

 φ is an ω MSO \bowtie BAPA formula iff each of its predicate atoms $Q(\iota_1, ..., \iota_n)$ contains at most one delicate variable

 $\exists X \exists V \forall Y \exists Y'. \operatorname{Path}(X) \land \varphi_{\operatorname{MSO}}(V) \land \\ \#(X \cap Y \cap V) \leq \#(Y' \cap V) \land (\forall z. Y'(z) \Rightarrow \operatorname{P}_{\operatorname{red}}(z))$

Individual and set variables in an ω MSO·BAPA formula ϕ can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- **delicate**: non-assertive and \blacktriangleright occurring in $t_1 \leq_{\text{(fin)}} t_2$ or

occurring together with a delicate variable in atom

 φ is an ω MSO \bowtie BAPA formula iff each of its predicate atoms $Q(\iota_1, ..., \iota_n)$ contains at most one delicate variable

good!

$$\varphi_{\text{prod}} \coloneqq \bigwedge_{x,xy} \forall z \in P_x. \exists Z. \operatorname{sub}(z,Z) \land \#(Z \cap P_{xy}) =_{\operatorname{fin}} \#P_y$$

bad! \mathfrak{S}

Individual and set variables in an ω MSO·BAPA formula arphi can be

- assertive: free or "outermost" existentially quantified (not in the scope of \forall or \neg)
- **delicate**: non-assertive and \blacktriangleright occurring in $t_1 \leq_{(fin)} t_2$ or

occurring together with a delicate variable in atom

 φ is an ω MSO \bowtie BAPA formula iff each of its predicate atoms $Q(\iota_1, ..., \iota_n)$ contains at most one delicate variable

 $\varphi ::= Q(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\mathsf{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

 $\varphi ::= Q(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\mathsf{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

 $\varphi' = \exists X_1 \dots X_n . \forall_i (\varphi_i \land \Lambda_j \chi_{i,j})$ φ_i CMSO formulae $\chi_{i,i}$ Parikh constraints $3 + \#X_2 \leq_{\text{fin}} 2 \cdot \#Y + \#X_1$

 $\varphi ::= \mathbb{Q}(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\operatorname{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

Elimination

 $\varphi ::= \mathbb{Q}(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\operatorname{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

Normalization of ω MSO \bowtie BAPA

 $\varphi ::= \mathbb{Q}(\iota_1, \dots, \iota_n) \mid S(\iota) \mid \#S \equiv_n m \mid \operatorname{Fin}(S) \mid t_1 \le t_2 \mid t_1 \le_{\operatorname{fin}} t_2 \mid$ $\neg \varphi \mid \varphi \lor \varphi' \mid \exists x. \varphi \mid \exists X. \varphi \mid \exists k. \varphi$

Satisfiability of $\varphi = \exists X_1 \dots X_n$. $V_i(\varphi_i \land \Lambda_j \chi_{i,j})$

over infinite labeled trees decidable?

Satisfiability of $\varphi = \exists X_1 \dots X_n$. $V_i(\varphi_i \land \Lambda_j \chi_{i,j})$

over infinite labeled trees decidable?

Tree Automata!

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

"There exists a path P s.t. 2x the number of as on $P \leq_{fin}$ the number of bs not on P"

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

• use finite number of global counters

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

a

b

4

 $\in \{(i,j) \mid i,j \in \mathbb{N}, i \leq j\}?$

4

Idea: generalize Parikh Automata [Klaedtke, Rueß 03]

- use finite number of global counters
- increment counters on finite initial segment
- test counter configuration a posteriori

"There exists a path P s.t. 2x the number of as on $P \leq_{fin}$ the number of bs not on P"

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

Parikh-Muller Tree Automata

PMTA $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

Parikh-Muller Tree Automata

PMTA
$$\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$$

• $Q = Q_P \cup Q_\omega$ finite set of states

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

Parikh-Muller Tree Automata

PMTA $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$

- $Q = Q_P \cup Q_\omega$ finite set of states
- $\Xi = (\Sigma \times D) \cup \Sigma$ alphabet

Parikh-Muller Tree Automata

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

PMTA $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$

- $Q = Q_P \cup Q_\omega$ finite set of states
- $\Xi = (\Sigma \times D) \cup \Sigma$ alphabet
- $\Delta = \Delta_P \cup \Delta_{\omega}$ transitions

 $\Delta_{P}: \qquad p \to a \begin{pmatrix} 2 \\ 0 \end{pmatrix} \langle p_{1}, p_{2} \rangle$ $p \to b \begin{pmatrix} 0 \\ 1 \end{pmatrix} \langle q_{1}, p_{1} \rangle$ $\Delta_{\omega}: \qquad q \to c \langle q_{1}, q_{2} \rangle$

tree $\zeta \in T_{\Xi}^{\omega}$

reading the initial "counting" segment

reading the remaining tree

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

Parikh-Muller Tree Automata

PMTA $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$

- $Q = Q_P \cup Q_\omega$ finite set of states
- $\Xi = (\Sigma \times D) \cup \Sigma$ alphabet
- $\Delta = \Delta_P \cup \Delta_{\omega}$ transitions

 $\Delta_{P}: \qquad p \to a \begin{pmatrix} 2 \\ 0 \end{pmatrix} \langle p_{1}, p_{2} \rangle$ $p \to b \begin{pmatrix} 0 \\ 1 \end{pmatrix} \langle q_{1}, p_{1} \rangle$ $\Delta_{\omega}: \qquad q \to c \langle q_{1}, q_{2} \rangle$

reading the initial "counting" segment

• $\mathcal{F} \subseteq 2^{Q_{\omega}}$ final state sets

• $C \subseteq \mathbb{N}^s$ semilinear set

tree $\zeta \in T_{\Xi}^{\omega}$

reading the remaining tree

dimension $s \in \mathbb{N}$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

dimension $s \in \mathbb{N}$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

tree $\zeta \in T_{\Xi}^{\omega}$

run κ of ζ is successful if

Muller acceptance condition holds

dimension $s \in \mathbb{N}$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

tree $\zeta \in T_{\Xi}^{\omega}$

run κ of ζ is successful if

- Muller acceptance condition holds
- Parikh condition: $\Psi(\frown) \in C$ holds

dimension $s \in \mathbb{N}$

 $a\begin{pmatrix}0\\0\end{pmatrix}$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

run κ of ζ is successful if

- Muller acceptance condition holds
- Parikh condition: $\Psi(\frown) \in C$ holds

 $\mathcal{L}(\mathcal{A}) = \{ \xi \in T_{\Sigma} \mid \exists \zeta \in T_{\Xi}^{\omega} \text{ with } (\zeta)_{\Sigma} = \xi \text{ and } \exists \text{ successful run } \kappa \text{ on } \zeta \}$

dimension $s \in \mathbb{N}$

counter increments $D \subseteq_{\text{fin}} \mathbb{N}^s$

run κ of ζ is successful if

"There exists a path P s.t. 2x the number of as on $P \leq_{fin} find the number of <math>b$ s not on P"

- Muller acceptance condition holds
- Parikh condition: $\Psi(\frown) \in C$ holds

 $\mathcal{L}(\mathcal{A}) = \{\xi \in T_{\Sigma} \mid \exists \zeta \in T_{\Xi}^{\omega} \text{ with } (\zeta)_{\Sigma} = \xi \text{ and } \exists \text{ successful run } \kappa \text{ on } \zeta\}$

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

- ► $\mathcal{A}_q = (Q_\omega, q, \Delta_\omega, \mathcal{F})$ Muller tree automaton for each $q \in Q_\omega$
- $F_P = \{q \in Q_\omega \mid \mathcal{L}(\mathcal{A}_q) \neq \emptyset\}$

Emptiness of PMTA

Satisfiability of ω MSO \bowtie BAPA

Theorem.	ω MSOMBAPA = PMTA	(on infinite labeled trees)	
Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSpace-complete.			

Satisfiability of ω MSO \bowtie BAPA

Theorem.	ω MSOMBAPA = PMTA	(on infinite labeled trees)
Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSpace-complete.		

Corollary. Satisfiability of ω MSO \bowtie BAPA on infinite labeled trees is decidable.

Satisfiability of ω MSO \bowtie BAPA

Theorem. ω MSO \bowtie BAPA = PMTA (on infinite labeled trees)

Theorem. Given a PMTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is PSPACE-complete.

Corollary. Satisfiability of ω MSO \bowtie BAPA on infinite labeled trees is decidable.

can be lifted with MSO-interpretations to all tree-interpretable classes

Theorem. Satisfiability of ω MSO \bowtie BAPA is decidable over the classes of finite or countable S-structures of bounded treewidth, cliquewidth, and partitionswidth.

Summary

- highly expressive logic ω MSO·BAPA for cardinality relationships \rightarrow undecidable in general
- fragment ω MSO \bowtie BAPA: still expressive and admits normal form
- Parikh-Muller tree automata correspond to ω MSO \bowtie BAPA on infinite trees
- ... and have a decidable emptiness problem
- satisfiability of ω MSO \bowtie BAPA on infinite trees and tree-interpretable classes is decidable
- decidability showcases: coupling with FO_{Pres}^2 , μ -calculus with global Presburger constraints

Summary

- highly expressive logic ω MSO·BAPA for cardinality relationships \rightarrow undecidable in general
- fragment ω MSO \bowtie BAPA: still expressive and admits normal form
- Parikh-Muller tree automata correspond to ω MSO \bowtie BAPA on infinite trees
- ... and have a decidable emptiness problem
- satisfiability of ω MSO \bowtie BAPA on infinite trees and tree-interpretable classes
- decidability showcases: coupling with FO_{Pres}^2 , μ -calculus with global Presburger constraints

Thank you!