
Reasoning over Existential Rules with Acyclicity Notions David Carral 1

Reasoning over Existential Rules
with Acyclicity Notions and the
Datalog-first Restricted Chase

David Carral

Slides available at https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

Preliminaries

Reasoning over Existential Rules with Acyclicity Notions David Carral /333

∀x, y, z . (HasParent(x, y) ∧ HasSister(y, z) → HasAunt(x, z))
∀x . (Human(x) → ∃y . (HasParent(x, y) ∧ Human(y)))

∀x, y, w . (P(x, a, y) ∧ R(y, w) ∧ S(w, x) → ∃v . (R(w, v) ∧ A(v)))

Existential Rules

Reasoning over Existential Rules with Acyclicity Notions David Carral /333

Existential Rules

HasParent(x, y) ∧ HasSister(y, z) → HasAunt(x, z)
Human(x) → ∃y .HasParent(x, y) ∧ Human(y)
P(x, a, y) ∧ R(y, w) ∧ S(w, x) → ∃v .R(w, v) ∧ A(v)

Reasoning over Existential Rules with Acyclicity Notions David Carral /333

Existential Rules

Facts
HasFriend(stan, kyle)

P(a, c,d)

HasParent(x, y) ∧ HasSister(y, z) → HasAunt(x, z)
Human(x) → ∃y .HasParent(x, y) ∧ Human(y)
P(x, a, y) ∧ R(y, w) ∧ S(w, x) → ∃v .R(w, v) ∧ A(v)

Reasoning over Existential Rules with Acyclicity Notions David Carral /333

Existential Rules

Facts
HasFriend(stan, kyle)

P(a, c,d)

HasParent(x, y) ∧ HasSister(y, z) → HasAunt(x, z)
Human(x) → ∃y .HasParent(x, y) ∧ Human(y)
P(x, a, y) ∧ R(y, w) ∧ S(w, x) → ∃v .R(w, v) ∧ A(v)

BCQs
∃x, y .HasConflictOfInterest(x, y)

∃x, y, z, w .P(x, y, z) ∧ R(x, w) ∧ A(w)

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

DirectedBy(ai, spielberg)
ActsIn(judeLaw, ai)

Director(spielberg)

The Chase Algorithm

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

DirectedBy(ai, spielberg)
ActsIn(judeLaw, ai)

Director(spielberg)

The Chase Algorithm

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

DirectedBy(ai, spielberg)
ActsIn(judeLaw, ai)

Director(spielberg)

The Chase Algorithm

ActsIn

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

Director(spielberg)

The Chase Algorithm

ActsIn

DirectedBy

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

Director(spielberg)

The Chase Algorithm

ActsIn

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

The Chase Algorithm

ActsIn

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

The Chase Algorithm

Features

ActsIn

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

: Actor

The Chase Algorithm

Features

ActsIn

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

: Actor

The Chase Algorithm

Features

ActsIn
Directs

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral /334

spielberg

ai

judeLaw

Features(x, y) ⟶ Actor(y)

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x)

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

: Actor

The Chase Algorithm

Features

ActsIn

DirectsActor

Directs

DirectedBy

: Director

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

 /335

b : Bicycle

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, fv(x)) ⋀ Wheel(fv(x))

Wheel(x) ⟶ IsPartOf(x, fw(x)) ⋀ Bicycle(fw(x))

 /335

b : Bicycle

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

HasPart

IsPartOf

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

HasPart

IsPartOf

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

HasPart

IsPartOf

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral

Bicycle(x) ⟶ HasPart(x, v(x)) ⋀ Wheel(v(x))

Wheel(x) ⟶ IsPartOf(x, w(x)) ⋀ Bicycle(w(x))

 /335

b : Bicycle

v(b) : Wheel

w(v(b)) : Bicycle

v(w(v(b))) : Wheel

HasPart

IsPartOf

HasPart

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

HasPart

IsPartOf IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

HasPart

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

1

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12

3

Reasoning over Existential Rules with Acyclicity Notions David Carral /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12

3
4

Reasoning over Existential Rules with Acyclicity Notions David Carral /337

b : Bicycle

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /337

b : Bicycle

v(b) : Wheel
HasPart

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /337

b : Bicycle

v(b) : Wheel

IsPartOf

HasPart

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Acyclicity Notions

Acyclicity Notions

Restricted Chase (Non)Termination for
Existential Rules with Disjunctions

David Carral, Irina Dragoste, and Markus Krötzsch
[IJCAI 2017]

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]

Acyclicity Notions for Universal Termination

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

`

Skolem
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),

Restricted Model-Summarising Acyclicity (RMSA), and
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

`

Skolem
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),

Restricted Model-Summarising Acyclicity (RMSA), and
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem
Chase

Datalog-first
Restricted
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),

Restricted Model-Summarising Acyclicity (RMSA), and
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem
Chase

Datalog-first
Restricted
Chase

Reasoning over Existential Rules with Acyclicity Notions David Carral /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),

Restricted Model-Summarising Acyclicity (RMSA), and
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem
Chase

Datalog-first
Restricted
Chase

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

The MFA Check

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

The MFA Check

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

The MFA Check

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

HasPart

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem
term (with a repeated function symbol) appears.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

MFA

The MFA Check

HasPart

Bicycle(x) ⟶ ∃y . HasPart(x, v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

HasPart

w(★) : Bicycle

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★) HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★) HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

v(w(v(★))) : Wheel

HasPart
IsPartOf HasPart

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3311

HasPart,
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

v(w(v(★))) : Wheel

HasPart
IsPartOf HasPart

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

Not MFA!

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts

containing a single constant “★”), then it terminates on all sets of facts.
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

v(w(t)) : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

v(w(t)) : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

v(w(t)) : Wheel

w(t) : Bicycle

t : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase.

v(w(t)) : Wheel

w(t) : Bicycle

t : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

IsPartOf

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase.

v(w(t)) : Wheel

w(t) : Bicycle

t : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

IsPartOf

HasPart

Reasoning over Existential Rules with Acyclicity Notions David Carral /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the

must have been derived to derive this fact. By checking these facts we can in some cases
determine that the application of the rule and substitution that generates this fact is blocked.

Example: Suppose for a contradiction that the fact Wheel(v(w(t))) with t some term is
derived during the computation of a chase sequence.

* Such a fact may only be derived via application of the red rule on Bicycle(w(t))
which in turn may only be derived if the blue rule is applied. Hence, Wheel(t) and
IsPartOf(t, w(t)) and are also part of the chase before Wheel(v(w(t))) is derived.

* Because the green rule is Datalog, DirectedBy(v(t), t) is also part of the chase.
* The red rule may not be applied to introduce Director(v(w(t))) since its application

with respect to the substitution {x / w(t)} is restricted.

v(w(t)) : Wheel

w(t) : Bicycle

t : Wheel

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

IsPartOf

HasPart

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

HasPart

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

HasPart

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle
v(w(★)) : Wheel

HasPartIsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3313

* Perform a chase like construction on the critical instance.
* Only apply an existential rule with respect to a substitution if this pair is not blocked.
* Give up if the procedure does not stop before the occurrence of a cyclic term.

HasPart,
IsPartOf

Bicycle, Wheel : ★

v(★) : Wheel

DirectedBy

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf RMFA

The RMFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v)

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x)

IsPartOf(x, y) ⟶ HasPart(y, x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

Real-world Coverage

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

0

305

610

915

1220

MFA (884) RMFA (936)

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

0

305

610

915

1220

MFA (884) RMFA (936)

+6%

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

* We developed a cyclicity notion, i.e.,
sufficient condition for chase non-
termination: Restricted Model-Faithful
Cyclicity (RMFC)

0

305

610

915

1220

MFA (884) RMFA (936)

+6%

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

* We developed a cyclicity notion, i.e.,
sufficient condition for chase non-
termination: Restricted Model-Faithful
Cyclicity (RMFC)

0

305

610

915

1220

MFA (884) RMFA (936)

+6%

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3314

* We selected all rule sets from the
MOWLCorp with less than 1000 rules of
the form

* We also considered (all) the rule sets in
the Oxford Ontology Library.

* We developed a cyclicity notion, i.e.,
sufficient condition for chase non-
termination: Restricted Model-Faithful
Cyclicity (RMFC)

0

305

610

915

1220

MFA (884) RMFA (936)

+6% +54%

Real-world Coverage

A(x) → ∃y . R(x, y) ∧ B(y)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3315

Membership Checks

RJA RMSA RMFA

No restrictions ExpTime ExpTime 2-ExpTime

Variables per
rule bounded P P 2-ExpTime

Reasoning over Existential Rules with Acyclicity Notions David Carral /3315

Membership Checks

RJA RMSA RMFA

No restrictions ExpTime ExpTime 2-ExpTime

Variables per
rule bounded P P 2-ExpTime

BCQ entailment: 2-ExpTime

Ensuring Tractability
of the Chase

Ensuring Tractability
of the Chase

Tractable Query Answering for Expressive
Ontologies and Existential Rules

David Carral, Irina Dragoste, and Markus Krötzsch
[ISWC 2017]

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

Existential Dependency Graph

A(x) → ∃y . S(x, y) ∧ B(y)
B(x) → ∃z .R(x, z) ∧ D(z)
D(x) → E(x)
E(x) → ∃w .R(x, w)

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

A(c)
S(c, y(c)), B(y(c))
R(y(c), z(y(c))), D(z(y(c)))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

A(c)
S(c, y(c)), B(y(c))
R(y(c), z(y(c))), D(z(y(c)))

z(y(c))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))
B(c)
R(c, z(c)), D(z(c)),
E(z(c)),
R(z(c), w(z(c)))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

B(c)
R(c, z(c)), D(z(c)),
E(z(c)),
R(z(c), w(z(c)))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

A(c)
S(c, y(c)),B(y(c)),
C(y(c)),
E(y(c)),
R(y(c), w(y(c)))

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

A(c)
S(c, y(c)),B(y(c)),
C(y(c)),
E(y(c)),
R(y(c), w(y(c)))

w(y(c))
z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z(y(c))

w(z(c))

w(y(c))
z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3317

A(x) → S(x, y(x)) ∧ B(y(x))
B(x) → R(x, z(x)) ∧ D(z(x))
D(x) → E(x)
E(x) → R(x, w(x))

B(x) ∧ C(x) → E(x)
S(x, y) → C(x)

Existential Dependency Graph

y

w

z

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw
z(c)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw
z(c)

w(z(c))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw y(w(z(c)))
z(c)

w(z(c))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw

z(y(w(z(c))))

y(w(z(c)))
z(c)

w(z(c))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw

z(y(w(z(c))))

y(w(z(c)))
z(c)

w(z(c)) w(z(y(w(z(c)))))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw

z(y(w(z(c))))

y(w(z(c)))
z(c)

w(z(c)) w(z(y(w(z(c)))))

………

Reasoning over Existential Rules with Acyclicity Notions David Carral /3318

(a) Acyclicity

y

zw Remark. If the existential
dependency graph of a given set
of rules is acyclic, then the set of
terms introduced during the
computation of the chase is finite.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3319

(f) Arity at Most 1
Film(x) → ∃y . IsFilmDirectedBy(x, y) ∧ Director(y)

A(x) ∧ B(x, w) ∧ C(x, z) → ∃z .R(x, w, z)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3319

(f) Arity at Most 1
Film(x) → ∃y . IsFilmDirectedBy(x, y) ∧ Director(y)
Film(x) → IsFilmDirectedBy(x, y(x)) ∧ Director(y(x))

A(x) ∧ B(x, y) ∧ C(x, z) → ∃z .R(x, y, z)
A(x) ∧ B(x, w) ∧ C(x, z) → R(x, w, z(x, w))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3319

(f) Arity at Most 1
Film(x) → ∃y . IsFilmDirectedBy(x, y) ∧ Director(y)
Film(x) → IsFilmDirectedBy(x, y(x)) ∧ Director(y(x))

A(x) ∧ B(x, y) ∧ C(x, z) → ∃z .R(x, y, z)
A(x) ∧ B(x, w) ∧ C(x, z) → R(x, w, z(x, w))

Remark. If the arity of every function symbol in the
skolemisation of a program is at most 1, then every term
in the chase is of the form x1(…xn(c)…) with c constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3320

(f) Arity at Most 1

Remark. If the arity of every function symbol in the
skolemisation of a program is at most 1, then every term
in the chase is of the form x1(…xn(c)…) with c constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3320

(f) Arity at Most 1

Remark. If the arity of every function symbol in the
skolemisation of a program is at most 1, then every term
in the chase is of the form x1(…xn(c)…) with c constant.

Corollary. Every term
occurring in the chase
corresponds to a path
in the dependency
graph and a constant.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3320

(f) Arity at Most 1

Remark. If the arity of every function symbol in the
skolemisation of a program is at most 1, then every term
in the chase is of the form x1(…xn(c)…) with c constant.

Corollary. Every term
occurring in the chase
corresponds to a path
in the dependency
graph and a constant.

y

z

w

v

Reasoning over Existential Rules with Acyclicity Notions David Carral /3320

(f) Arity at Most 1

Remark. If the arity of every function symbol in the
skolemisation of a program is at most 1, then every term
in the chase is of the form x1(…xn(c)…) with c constant.

Corollary. Every term
occurring in the chase
corresponds to a path
in the dependency
graph and a constant.

y

z

w

v

v(w(z(y(c)))
y(v(c))

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

All skolem terms
correspond to some path in
the dependency graph and
some constant

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

All skolem terms
correspond to some path in
the dependency graph and
some constant

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

Polynomiality

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3321

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

(?)

Polynomiality

Ensuring Tractability

Reasoning over Existential Rules with Acyclicity Notions David Carral /3322

Braids

Reasoning over Existential Rules with Acyclicity Notions David Carral /3322

Braids

Reasoning over Existential Rules with Acyclicity Notions David Carral /3322

Braids

Reasoning over Existential Rules with Acyclicity Notions David Carral /3322

Braids

Reasoning over Existential Rules with Acyclicity Notions David Carral /3323

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

Polynomiality

Ensuring Tractability

(?)

Reasoning over Existential Rules with Acyclicity Notions David Carral /3323

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

Polynomiality

Ensuring Tractability

(b) The length of the braids in the
dependency graph is bounded.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3323

(a) The dependency graph
is acyclic.

(f) The arity of all
function symbols in
the skolemisation of
the program is at
most 1.

(w) The number
of variables per
rule is bounded.

Rules can be applied
in polynomial time

The number of facts is
polynomial in the
number of terms

All skolem terms
correspond to some path in
the dependency graph and
some constant

The number of paths in
the dependency graph
is polynomial

Polynomiality

Ensuring Tractability

(b) The length of the braids in the
dependency graph is bounded.

Caveats.
1. Fixed query size.
2. Horn rule set.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 2.
1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 2.
1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 2.
1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 2.
1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3324

A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies

Remark 2.
1. SRI rules feature at most 3 variables.
2. Every function symbol in the skolemisation
of a SRI ontology is of arity one.

Remark 1. Deciding CQ entailment for SRI
ontologies is 2ExpTime-Hard and in
3ExpTime.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3325

SRI Axioms
Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.
2. Every function symbol in the skolemisation of a SRI
ontology has arity one

Reasoning over Existential Rules with Acyclicity Notions David Carral /3325

SRI Axioms
Remark 2.
1. Every rule in an SRI ontology has at most 3 variables.
2. Every function symbol in the skolemisation of a SRI
ontology has arity one

Corollary. To guarantee that tractable CQ entailment over a
SRI ontology is possible we only need to verify the following:
1. Acyclicity.
2. Braid length in the dependency graph is bounded.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3326

Evaluation Results

Reasoning over Existential Rules with Acyclicity Notions David Carral /3326

Evaluation Results

Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Acyclicity
MOWL Corpus Oxford Ontology Repo

Reasoning over Existential Rules with Acyclicity Notions David Carral /3326

Evaluation Results

Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Acyclicity

Braid Length

1 2 3 4 5 6 11 22 23 25 Total
851 153 56 61 11 1 1 2 7 1 1144
74 88 93 98 99 99 99 99.1 99.3 99.9 100

MOWL Corpus + Oxford
(max. length

of a braid)
(count)

MOWL Corpus Oxford Ontology Repo

Reasoning over Existential Rules with Acyclicity Notions David Carral /3327

More Results!

VLog

VLog

Efficient Model Construction for Horn Logic
with VLog — System Description

Jacopo Urbani, Markus Krötzsch, Ceriel J. H. Jacobs,
Irina Dragoste, and David Carral

[IJCAR 2018]

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase
Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀
r1

r2

rn

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀
r1

r2

rn

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2 G2

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀ R*∀
r1

r2

rn

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2 G2

G21 G22 G2n

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀ R*∀
r1

r2

rn
r2

r1 rn

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2 G2

G21 G22 G2n

F3

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀ R*∀
r1

r2

rn
r2

r1 rn

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2 G2

G21 G22 G2n

F3

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀ R*∀
r1

r2

rn
r2

r1 rn

F4

Reasoning over Existential Rules with Acyclicity Notions David Carral /3329

An Implementation for the DF Restricted Chase

I = F1 G1

G11

G12

G1n

F2 G2

G21 G22 G2n

F3Ch(R, I) = Fm

Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
The Datalog-first restricted chase of R and I, denoted with Ch(R, I), is computed as follows.

R*∀ R*∀
r1

r2

rn
r2

r1 rn

F4

Reasoning over Existential Rules with Acyclicity Notions David Carral /3330

Performance: VLog vs RDFox

Conclusions

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets
* Efficient implementation for acyclicity checks

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets
* Efficient implementation for acyclicity checks
* Optimise chase reasoners

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets
* Efficient implementation for acyclicity checks
* Optimise chase reasoners
* The disjunctive case

Reasoning over Existential Rules with Acyclicity Notions David Carral /3332

Problem Solved?
This is it, everybody should use existential rules +
acyclicity notions!
Surely not, a lot of work still needs to be done:

* Experiments with non-DL existential rule sets
* Develop tools that can assist knowledge

engineers in “repairing” non-acyclic rule sets
* Efficient implementation for acyclicity checks
* Optimise chase reasoners
* The disjunctive case

Bibliography

Reasoning over Existential Rules with Acyclicity Notions David Carral 34

Reasoning over Existential Rules
with Acyclicity Notions and the
Datalog-first Restricted Chase

David Carral

Slides available at https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

https://iccl.inf.tu-dresden.de/web/Existential-rules-acyclicity

Reasoning over Existential Rules with Acyclicity Notions David Carral 35

Bibliography:
Sections

* First section
Restricted Chase (Non)Termination for Existential Rules with Disjunctions [IJCAI 2017]
https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en

* Second section
Tractable Query Answering for Expressive Ontologies and Rules [ISWC 2017]
https://iccl.inf.tu-dresden.de/web/Inproceedings3163/en

* Third section
Efficient Model Construction for Horn Logic with VLog [IJCAR 2018]
https://iccl.inf.tu-dresden.de/web/Article3046/en

https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3163/en
https://iccl.inf.tu-dresden.de/web/Article3046/en

Reasoning over Existential Rules with Acyclicity Notions David Carral 36

Bibliography:
Rule Engines

* VLog
Efficient Model Construction for Horn Logic with VLog [IJCAR 2018]
https://iccl.inf.tu-dresden.de/web/Article3046/en
Column-Oriented Datalog Materialization for Large Knowledge Graphs [AAAI 2016]
http://korrekt.org/papers/Urbani-Jacobs-Kroetzsch_Vlog-datalog-materialization-AAAI2016.pdf

* RDFox
Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems [AAAI 2014]
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2014/MNPHO14a.pdf

https://iccl.inf.tu-dresden.de/web/Article3046/en
http://korrekt.org/papers/Urbani-Jacobs-Kroetzsch_Vlog-datalog-materialization-AAAI2016.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2014/MNPHO14a.pdf

Reasoning over Existential Rules with Acyclicity Notions David Carral 37

Bibliography:
Acyclicity Notions

* Restricted Model-Faithful Acyclicity (RMFA)
Restricted Chase (Non)Termination for Existential Rules with Disjunctions. [IJCAI 2017]
https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en

* Model-Faithful Acyclicity (MFA)
Acyclicity Notions for Existential Rules and Their Application to QA in Ontologies [J. Artif. Intell. Res. 47]
https://iccl.inf.tu-dresden.de/web/Article4005/en

* Joint Acyclicity (JA)
Extending Decidable Existential Rules by Joining Acyclicity and Guardedness [IJACI 2011]
https://iccl.inf.tu-dresden.de/web/Inproceedings3149/en

* Weak Acyclicity (WA)
Data Exchange: Semantics and Query Answering [Theor. Comput. Sci. 336]
https://www.sciencedirect.com/science/article/pii/S030439750400725X

https://iccl.inf.tu-dresden.de/web/Inproceedings3140/en
https://iccl.inf.tu-dresden.de/web/Article4005/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3149/en
https://www.sciencedirect.com/science/article/pii/S030439750400725X

