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∀x, y, z . (HasParent(x, y) ∧ HasSister(y, z) → HasAunt(x, z))
∀x . (Human(x) → ∃y . (HasParent(x, y) ∧ Human(y)))

∀x, y, w . (P(x, a, y) ∧ R(y, w) ∧ S(w, x) → ∃v . (R(w, v) ∧ A(v)))

Existential Rules
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Features(x, y) ⟶ Actor(y) 

ActsIn(x, y) ⟶ Features(y, x)

DirectedBy(x, y) ⟶ Directs(y, x) 

Directs(x, y) ⋀ Features(y, z) ⟶ DirectsActor(x, z)

DirectedBy(ai, spielberg)
ActsIn(judeLaw, ai)

Director(spielberg)

The Chase Algorithm
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Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

 /335

b : Bicycle

The Skolem Chase
HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)
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Bicycle(x) ⟶ HasPart(x, fv(x)) ⋀ Wheel(fv(x)) 

Wheel(x) ⟶ IsPartOf(x, fw(x)) ⋀ Bicycle(fw(x))

 /335

b : Bicycle

The Skolem Chase
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The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 
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Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

HasPart

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

1



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12

3



Reasoning over Existential Rules with Acyclicity Notions David Carral  /336

b : Bicycle

v(b) : Wheel

Bicycle : w(v(b))

HasPart
IsPartOf

The Restricted Chase

HasPart

IsPartOf

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)

b : Bicycle

1
2

3
4

1
2

3
4

12

3
4



Reasoning over Existential Rules with Acyclicity Notions David Carral  /337

b : Bicycle

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /337

b : Bicycle

v(b) : Wheel
HasPart

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /337

b : Bicycle

v(b) : Wheel

IsPartOf

HasPart

The Datalog-First Restricted Chase
Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Acyclicity Notions



Acyclicity Notions

Restricted Chase (Non)Termination for 
Existential Rules with Disjunctions 

David Carral, Irina Dragoste, and Markus Krötzsch 
[IJCAI 2017] 



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]

Acyclicity Notions for Universal Termination



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

`

Skolem 
Chase



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),                                            

Restricted Model-Summarising Acyclicity (RMSA), and                        
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

`

Skolem 
Chase



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),                                            

Restricted Model-Summarising Acyclicity (RMSA), and                        
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem 
Chase

Datalog-first 
Restricted 
Chase



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),                                            

Restricted Model-Summarising Acyclicity (RMSA), and                        
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem 
Chase

Datalog-first 
Restricted 
Chase



Reasoning over Existential Rules with Acyclicity Notions David Carral  /339

* Weak Acyclicity (WA) [Theor. Comput. Sci. 2005]
* Joint Acyclicity (JA) [IJCAI 2011]
* Model-Summarising Acyclicity (MSA) and                                           

Model-Faithful Acyclicity (MFA) [J. Artif. Intell. Res. 2013]
* Restricted Joint Acyclicity (RJA),                                            

Restricted Model-Summarising Acyclicity (RMSA), and                        
Restricted Model-Faithful Acyclicity (RMFA) [IJCAI 2017]

Acyclicity Notions for Universal Termination

WA

JA

MSA

MFA

RJA

RMSA

RMFA

`

Skolem 
Chase

Datalog-first 
Restricted 
Chase

Bicycle(x) ⟶ ∃v . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃w . IsPartOf(x, w) ⋀ Bicycle(w) 

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

The MFA Check



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

The MFA Check



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

The MFA Check



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

The MFA Check

HasPart

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3310

* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 
containing a single constant “★”), then it terminates on all sets of facts.

* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 
term (with a repeated function symbol) appears.

HasPart, 
IsPartOf

Bicycle, Wheel : ★

v(★)

Directs

HasPart

w(★) : Bicycle
v(w(★))DirectedBy

IsPartOf

IsPartOf

MFA

The MFA Check

HasPart

Bicycle(x) ⟶ ∃y . HasPart(x, v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

w(★) : Bicycle

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

HasPart

w(★) : Bicycle

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

HasPart

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★) HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★) HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

HasPart
IsPartOf

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

v(w(v(★))) : Wheel

HasPart
IsPartOf HasPart

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3311

HasPart, 
IsPartOf

Bicycle, Wheel : ★

Wheel : v(★)

IsPartOf

HasPart

w(v(★)) : Bicycle

v(w(v(★))) : Wheel

HasPart
IsPartOf HasPart

w(★) : Bicycle
v(w(★)) : WheelHasPart

IsPartOf

IsPartOf

Not MFA!

The MFA Check
* Fact: If the Skolem chase terminates on the critical instance (the set of all possible facts 

containing a single constant “★”), then it terminates on all sets of facts. 
* MFA Check: Perform chase with the critical instance, check if it stops; give up if a cyclic skolem 

term (with a repeated function symbol) appears.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the 

must have been derived to derive this fact. By checking these facts we can in some cases 
determine that the application of the rule and substitution that generates this fact is blocked.

Bicycle(x) ⟶ ∃y . HasPart(x, v) ⋀ Wheel(v) 

Wheel(x) ⟶ ∃y . IsPartOf(x, w) ⋀ Bicycle(w)

HasPart(x, y) ⟶ IsPartOf(y, x) 

IsPartOf(x, y) ⟶ HasPart(y, x)



Reasoning over Existential Rules with Acyclicity Notions David Carral  /3312

The RMFA Check: Blocked Checks
* Problem: Datalog-first restricted chase termination is not monotone!
* In particular, it always terminates on the critical instance.
* Idea: for each fact that occurs in the chase sequence, we can re-trace a necessary fact set the 

must have been derived to derive this fact. By checking these facts we can in some cases 
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(a) Acyclicity

y

zw Remark. If the existential 
dependency graph of a given set 
of rules is acyclic, then the set of 
terms introduced during the 
computation of the chase is finite.
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(f) Arity at Most 1
Film(x) → ∃y . IsFilmDirectedBy(x, y) ∧ Director(y)

A(x) ∧ B(x, w) ∧ C(x, z) → ∃z .R(x, w, z)
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skolemisation of a program is at most 1, then every term 
in the chase is of the form x1(…xn(c)…) with c constant.
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(a) The dependency graph 
is acyclic. 

(f) The arity of all 
function symbols in 
the skolemisation of 
the program is at 
most 1.

(w) The number 
of variables per 
rule is bounded.

Rules can be applied 
in polynomial time

The number of facts is 
polynomial in the 
number of terms

All skolem terms 
correspond to some path in 
the dependency graph and 
some constant

The number of paths in 
the dependency graph 
is polynomial

Polynomiality

Ensuring Tractability

(b) The length of the braids in the 
dependency graph is bounded.

Caveats.
1. Fixed query size. 
2. Horn rule set.
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A1 ⊓ … ⊓ An ⊑ B ↦
n

⋀
i=1

Ai(x) → B(x)

A ⊑ B1 ⊔ … ⊔ Bn ↦ A(x) →
n

⋁
i=1

Bi(x)

A ⊑ ∀R . B ↦ A(y) ∧ R(x, y) → B(x)
A ⊑ ∃R . B ↦ A(x) → ∃y . R(x, y) ∧ B(y)

R ⊑ S ↦ R(x, y) → S(x, y)
R ∘ S ⊑ V ↦ R(x, y) ∧ S(y, z) → S(x, z)

R1 ⊓ … ⊓ Rn ⊑ S ↦
n

⋀
i=1

Ri(x, y) → S(x, y)

A(a) ↦ A(a)
R(a, b) ↦ R(a, b)

Real-world coverage: SRI Ontologies
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Remark 1. Deciding CQ entailment for SRI 
ontologies is 2ExpTime-Hard and in 
3ExpTime.
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SRI Axioms
Remark 2. 
1. Every rule in an SRI ontology has at most 3 variables. 
2. Every function symbol in the skolemisation of a SRI 
ontology has arity one
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SRI Axioms
Remark 2. 
1. Every rule in an SRI ontology has at most 3 variables. 
2. Every function symbol in the skolemisation of a SRI 
ontology has arity one

Corollary. To guarantee that tractable CQ entailment over a 
SRI ontology is possible we only need to verify the following: 
1. Acyclicity. 
2. Braid length in the dependency graph is bounded.
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Evaluation Results

Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Acyclicity
MOWL Corpus Oxford Ontology Repo
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Evaluation Results

Ontologies 1576 225
Acyclic 974 (61.8%) 170 (75.6%)

Acyclicity

Braid Length

1 2 3 4 5 6 11 22 23 25 Total
851 153 56 61 11 1 1 2 7 1 1144
74 88 93 98 99 99 99 99.1 99.3 99.9 100

MOWL Corpus + Oxford
(max. length 

of a braid)
(count)

MOWL Corpus Oxford Ontology Repo
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More Results!



VLog



VLog

Efficient Model Construction for Horn Logic 
with VLog — System Description 

Jacopo Urbani, Markus Krötzsch, Ceriel J. H. Jacobs, 
Irina Dragoste, and David Carral 

[IJCAR 2018] 
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An Implementation for  the DF Restricted Chase
Consider a rule set R and an instance I .
Let R∀ and R∃ = {r1, …, rn} be the sets of all Datalog and non-Datalog rules in R, respectively .
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Performance: VLog vs RDFox
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