Review: Query Complexity

Query answering as decision problem
\[\sim \] consider Boolean queries

Various notions of complexity:
- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq \text{ExpTime} \]
Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries.
The algorithm showed that FO query evaluation is in L

\sim can we do any better?
The algorithm showed that FO query evaluation is in L
\[\sim \text{ can we do any better?} \]

What could be better than L?

$? \subseteq L \subseteq \text{NL} \subseteq P \subseteq \ldots$
The algorithm showed that FO query evaluation is in L
\[\leadsto \text{can we do any better?}\]

What could be better than L?

\[? \subseteq L \subseteq NL \subseteq P \subseteq \ldots\]

\[\leadsto \text{we need to define circuit complexities first}\]
Definition 5.1: A **Boolean circuit** is a finite, directed, acyclic graph where

- each node that has no predecessors is an **input node**
- each node that is not an input node is one of the following types of **logical gate:** AND, OR, NOT
- one or more nodes are designated **output nodes**

→ we will only consider Boolean circuits with exactly one output

→ propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1
Example

A Boolean circuit over an input string $x_1 x_2 \ldots x_n$ of length n
Example

A Boolean circuit over an input string \(x_1 x_2 \ldots x_n \) of length \(n \)

\[
\text{Corresponds to formula } (x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)
\]
\[
\sim \text{ accepts all strings with at least two 1s}
\]
Circuits as a Model for Parallel Computation

Previous example:

\begin{itemize}
 \item size: number of gates = total number of computing steps
 \item depth: longest path of gates = time for parallel computation
\end{itemize}

\(\sim n^2\) processors working in parallel
\(\sim\) computation finishes in 2 steps

\(\sim\) circuits as a refinement of polynomial time that takes parallelizability into account
Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits

\Rightarrow each circuit only has a finite number of different inputs

\Rightarrow not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?
Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits

→ each circuit only has a finite number of different inputs

→ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C_n ($n \geq 0$) that can easily\(^a\) be computed from n.

A language $L \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \geq 0}$ of Boolean circuits if for each word w of length $|w|$:

$$w \in L \text{ if and only if } C_{|w|}(w) = 1$$

\(^a\)We don’t discuss the details here; see course Complexity Theory.
How to measure the computing power of Boolean circuits?

Relevant metrics:

- **size** of the circuit: overall number of gates
 (as function of input size)
- **depth** of the circuit: longest path of gates
 (as function of input size)
- **fan in**: two inputs per gate or any number of inputs per gate?
Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

- **size** of the circuit: overall number of gates
 (as function of input size)
- **depth** of the circuit: longest path of gates
 (as function of input size)
- **fan in**: two inputs per gate or any number of inputs per gate?

Important classes of circuits: **small-depth circuits**

Definition 5.3: \((C_n)_{n \geq 0}\) is a family of small-depth circuits if

- the size of \(C_n\) is polynomial in \(n\),
- the depth of \(C_n\) is poly-logarithmic in \(n\), that is, \(O(\log^k n)\).
The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: \(\text{NC}^k \) is the class of problems that can be solved by uniform families of circuits \((C_n)_{n \geq 0} \) of fan-in \(\leq 2 \), size polynomial in \(n \), and depth in \(O(\log^k n) \).

The class NC is defined as \(\text{NC} = \bigcup_{k \geq 0} \text{NC}^k \).

(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: \(\text{AC}^k \) and AC are defined like \(\text{NC}^k \) and NC, respectively, but for circuits with arbitrary fan-in.

(A is for “Alternating”: AND-OR gates alternate in such circuits)
family of polynomial size, constant depth, arbitrary fan-in circuits \leadsto in AC^0
Example

family of polynomial size, constant depth, arbitrary fan-in circuits \leadsto in AC^0

We can eliminate arbitrary fan-ins by using more layers of gates:

family of polynomial size, logarithmic depth, bounded fan-in circuits \leadsto in NC^1
The previous sketch can be generalised:

\[\text{NC}^0 \subseteq \text{AC}^0 \subseteq \text{NC}^1 \subseteq \text{AC}^1 \subseteq \ldots \subseteq \text{AC}^k \subseteq \text{NC}^{k+1} \subseteq \ldots \]

Only few inclusions are known to be proper: \(\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \)
The previous sketch can be generalised:

\[\text{NC}^0 \subseteq \text{AC}^0 \subseteq \text{NC}^1 \subseteq \text{AC}^1 \subseteq \ldots \subseteq \text{AC}^k \subseteq \text{NC}^{k+1} \subseteq \ldots \]

Only few inclusions are known to be proper: \(\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \)

Direct consequence of above hierarchy: \(\text{NC} = \text{AC} \)

Interesting relations to other classes:

\[\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{AC}^1 \subseteq \ldots \subseteq \text{NC} \subseteq \text{P} \]

Intuition:

- Problems in NC are parallelisable (known from definition)
- Problems in \(\text{P} \setminus \text{NC} \) are inherently sequential (educated guess)

However: it is not known if \(\text{NC} \neq \text{P} \)
Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC^0 with respect to data complexity.

Proof:

- **Membership:** For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- **Hardness:** Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)
Assumptions:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain
From Query to Circuit

Assumptions:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

- one input node for each possible database tuple (over given schema and active domain)
 \(\sim \) true or false depending on whether tuple is present or not
- Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula
 \(\sim \) true or false depending on whether the subformula holds for this tuple or not
- Logical operators correspond to gate types: basic operators obvious, \(\forall \) as generalised conjunction, \(\exists \) as generalised disjunction
- subformula with \(n \) free variables \(\sim \) \(|\text{adom}|^n \) gates
 \(\sim \) especially: \(|\text{adom}|^0 = 1 \) output gate for Boolean query
Example

We consider the formula

$$\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$$

Over the database instance:

<table>
<thead>
<tr>
<th>R:</th>
<th>S:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

Active domain: \{a, b, c\}
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$

<table>
<thead>
<tr>
<th></th>
<th>$R(a, a)$</th>
<th>$R(a, b)$</th>
<th>$R(a, c)$</th>
<th>$S(a, a)$</th>
<th>$S(b, a)$</th>
<th>$S(b, b)$</th>
<th>$S(b, c)$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: \(\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z) \)
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: \(\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z) \)
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC^0-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- How can we study the expressiveness of query languages?