Exercise 12.1. Let \(\mathcal{L} \) be a fragment of first-order logic for which finite model entailment and arbitrary model entailment coincide, i.e., for every \(\mathcal{L} \)-theory \(T \) and every \(\mathcal{L} \)-formula \(\varphi \), we find that \(\varphi \) is true in all models of \(T \) if and only if \(\varphi \) is true in all finite models of \(T \).

(a) Give an example for a proper fragment of first-order logic with this property.

(b) Give an example for a proper fragment of first-order logic without this property.

(c) Show that entailment is decidable in any fragment with this property.

Exercise 12.2. Consider the following set of tgds \(\Sigma \):

\[
\begin{align*}
A(x) & \rightarrow \exists y. R(x, y) \land B(y) \\
B(x) & \rightarrow \exists y. S(x, y) \land A(y) \\
R(x, y) & \rightarrow S(y, x) \\
S(x, y) & \rightarrow R(y, x)
\end{align*}
\]

Does the oblivious chase universally terminate for \(\Sigma \)? What about the restricted chase?

Exercise 12.3. Is the following set of tgds \(\Sigma \) weakly acyclic?

\[
\begin{align*}
B(x) & \rightarrow \exists y. S(x, y) \land A(x) \\
A(x) \land C(x) & \rightarrow \exists y. R(x, y) \land B(y)
\end{align*}
\]

Does the skolem chase universally terminate for \(\Sigma \)?

Exercise 12.4. Termination of the oblivious (resp. restricted) chase over a set of tgds \(\Sigma \) implies the existence of a finite universal model for \(\Sigma \). Is the converse true? That is, does the existence of a finite universal model for \(\Sigma \) imply termination of the oblivious (resp. restricted) chase?

Exercise 12.5. Consider a set of tgds \(\Sigma \) that does not contain any constants. A term is **cyclic** if it is of the form \(f(t_1, \ldots, t_n) \) and, for some \(i \in \{1, \ldots, n\} \), the function symbol \(f \) syntactically occurs in \(t_i \). Then \(\Sigma \) is **model-faithful acyclic** (MFA) iff no cyclic term occurs in the skolem chase of \(\Sigma \cup I_* \), where \(I_* \) is the critical instance.

Show the following claims:

1. Checking MFA membership is decidable.

2. Is the set of tgds from Exercise 12.3 MFA?

3. If a set of tgds \(\Sigma \) without constants is MFA, then the skolem chase universally terminates for \(\Sigma \).