
Reduction-Based Approaches to Implement
Modgil’s Extended Argumentation Frameworks

Wolfgang Dvořák1, Sarah Alice Gaggl2, Thomas Linsbichler3,
and Johannes Peter Wallner3

1 University of Vienna, Faculty of Computer Science, Austria
2 Technische Universität Dresden, Computational Logic Group, Germany

3 Vienna University of Technology, Institute of Information Systems, Austria

Abstract. This paper reconsiders Modgil’s Extended Argumentation
Frameworks (EAFs) that extend Dung’s abstract argumentation frame-
works by attacks on attacks. This allows to encode preferences directly
in the framework and thus also to reason about the preferences them-
selves. As a first step to reduction-based approaches to implement EAFs,
we give an alternative (but equivalent) characterization of acceptance in
EAFs. Then we use this characterization to provide EAF encodings for
answer set programming and propositional logic. Moreover, we address
an open complexity question and the expressiveness of EAFs.

1 Introduction

Since the seminal paper of Dung in 1995 [9] argumentation has emerged to one of
the major research fields in artificial intelligence and non-monotonic reasoning,
with Dung’s abstract argumentation frameworks (AFs) being one of the core for-
malisms. In this very simple yet expressive model, arguments and a binary attack
relation between them, denoting conflicts, are the only components one needs
for the representation of a wide range of problems and the reasoning therein.
Nowadays numerous semantics exist to solve the inherent conflicts between the
arguments by selecting sets of “acceptable” arguments.

In certain scenarios there are preferences about which arguments should go
into the set of acceptable arguments, e.g. because the source of one argument is
more trustworthy than the source of another [18]. Such preferences can have a
significant impact on the evaluation of discussions. Consider for example a sit-
uation with two mutually conflicting arguments a and b. The only possibilities
(under e.g. stable semantics of AFs) would be to accept either a or b. Thus, nei-
ther argument is skeptically justified, i.e. none of them appears in each solution,
but given a preference of argument a over b one can resolve this situation such
that a is skeptically justified. However, the basic Dung-style framework does not
support the handling of preferences within the framework, neither on a syntacti-
cal nor on a semantical level. For example it is not possible to model a situation
where one argument (resp. attack) is preferred over another one, or where some
particular preference weakens an attack between two arguments.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 249–264, 2015.
c© Springer International Publishing Switzerland 2015

250 W. Dvořák et al.

Several approaches for incorporating preferences have been proposed in the
literature. When instantiating an AF from a knowledge base one can deal with
preferences in the underlying logical formalism and resolve them when building
the framework (see e.g. [19]). Preferences can also be handled at the abstract
level by generalizations of AFs. In preference-based argumentation frameworks
(PAFs) [1] one has a partial ordering over the arguments, and an attack is only
successful if the attacked argument is not preferred over the attacker with respect
to the ordering. Thus the acceptability of an argument can be based either on
defense or on preference with respect to the attacking arguments. Value-based
argumentation frameworks (VAFs) [3] allow to assign values to the arguments.
An additional ordering over the values can be used to evaluate preferences in
a similar way as in PAFs. Brewka and Woltran introduced prioritized bipolar
abstract dialectical frameworks (BADFs) [5] which allow to express for each
statement a strict partial order on the links leading to it. Then, a statement is
accepted unless its attackers are jointly preferred.

All these approaches have in common that they are tailored to fixed pref-
erences. In some scenarios it might very well be the case that the assumed
preference ordering is itself open to debate. Modgil’s extended argumentation
frameworks (EAFs) [18] are particularly appealing in this regard, as they allow
to represent preferences as defeasible arguments themselves. More concretely,
this approach is based on the idea that a preference for one argument a over
another argument b can weaken an attack from b to a. Considering the example
with mutually attacking arguments from above, in EAFs one can resolve this sit-
uation by introducing an argument c which stands for a preference of a over b by
attacking the attack from b to a. Thereby, argument a is reinstated, while b can-
not be accepted. However, if c is attacked by another argument d, the argument
b can be reinstated again. Thus, EAFs can be used as a meta-argumentation ap-
proach to argue also about the preferences, where the acceptance of an argument
depends on whether it can be reinstated. For instance one can encode VAFs as
EAFs and then argue about the value ordering [18].

Although Modgil presented an extensive study of the new formalism and its
extensions to VAFs and logic programs in [18], several computational properties
of EAFs have been neglected therein. Dunne et al. [12] gave an exact complexity
classification for reasoning in EAFs. They showed that whether an argument is
acceptable w.r.t. a given set can be decided in polynomial time via a reduction to
an AF. Hence the reasoning tasks in EAFs have the same complexity as in AFs.
Later this reduction has also been turned into labeling-based algorithms [21].
In this work we will show the exact complexity of Grounded-Scepticism,
i.e. of deciding whether the grounded extension is contained in all preferred
extensions, which was left open in [12]. Moreover we will show that, despite
reasoning tasks having the same complexity, EAFs enjoy higher expressiveness
in terms of realizability [11] compared to Dung-style AFs.

Recently the reduction-based approach for the implementation of argumenta-
tion related problems became very popular. In particular reductions to well es-
tablished formalisms like answer set programming (ASP) [6,20] and propositional

Reduction-Based Approaches to Implement Modgil’s EAFs 251

logic turned out to be suitable for the relevant reasoning problems [15,4,13].
So far, no such approach is known for EAFs. We believe this is partly due to
fact that the given characterizations for the acceptance of an argument are not
well suited for such encodings. Thus we will first present an alternative, but
equivalent, characterization for the acceptance of an argument which then al-
lows us to design succinct ASP encodings for all standard semantics of EAFs.
These encodings have been incorporated in the web-interface GERD - Gen-
teel Extended argumentation Reasoning Device and are freely accessible under
http://gerd.dbai.tuwien.ac.at. Furthermore, the alternative characteriza-
tion facilitates encodings in terms of propositional formulas which we will exem-
plify on the admissible semantics.

The organization of the remainder of the paper is as follows: In Section 2 we
give the necessary background on argumentation and answer set programming.
In Section 3 we first show an alternative characterization of acceptance and then
exploit this characterization to encode the semantics in answer set programming
and propositional logic. Further, in Section 4 we provide an exact complexity
characterization of Grounded-Scepticism, an open problem raised in [12] and
show that all the EAF semantics from [18], except grounded, are more expressive
than their counterparts in standard Dung AFs. Finally we conclude in Section 5.

2 Background

In this section we briefly introduce Dung’s abstract argumentation frameworks
(AFs) [9] (for an introduction to abstract argumentation see [2]) and Modgil’s
extended argumentation frameworks (EAFs) [18]. We first give the definition of
AFs. In contrast to [9] we restrict ourselves to finite frameworks.

Definition 1. An Argumentation Framework (AF) is a pair F = (A,R) where
A is a non-empty, finite set of arguments and R ⊆ A×A is the attack relation.

The idea of EAFs is to express preferences of arguments over each other
by allowing attacks on attacks. This allows one to argue about the preferences
themselves. Attacks on attacks are implemented by an additional relation D
which relates arguments to attacks in R.

Definition 2. An Extended Argumentation Framework (EAF) is a triple F =
(A,R,D) where (A,R) is an AF and D ⊆ A × R a relation describing an
argument x attacking an attack (y, z) ∈ R. Moreover, whenever {(x, (y, z)),
(x′, (z, y))} ⊆ D then {(x, x′), (x′, x)} ⊆ R. 1

Given a set of arguments S ⊆ A, an attack (x, y) ∈ R succeeds w.r.t. S (we
write x !S y) iff there is no z ∈ S with (z, (x, y)) ∈ D. By RS we denote the
relation containing all attacks (x, y) ∈ R that succeed w.r.t. S. A set S ⊆ A is
said to be conflict-free in F , i.e. S ∈ cf (F), if x $!S y and {(x, y), (y, x)} $⊆ R
for all x, y ∈ S.

1 Note that this property is essential for showing Dung’s fundamental lemma for EAFs.
However our implementations would still work for EAFs violating this property.

http://gerd.dbai.tuwien.ac.at

252 W. Dvořák et al.

a

b

c d

e

Fig. 1. The EAF F from Example 1

Now, as attacks can be defeated themselves, when defending an argument we
have to make sure that also the used attacks are defended.

Definition 3. Given an EAF F = (A,R,D), S ⊆ A, and v !S w. Then RS ⊆
RS is a reinstatement set for v !S w if it satisfies the following conditions:

R1 v !S w ∈ RS.
R2 For each (y, z) ∈ RS it holds that y ∈ S.
R3 For every (y, z) ∈ RS and every (x, (y, z)) ∈ D there is a (y′, x) ∈ RS.

An argument a ∈ A is acceptable w.r.t. (or defended by) a set S ⊆ A if
whenever z !S a then there is a y ∈ S with y !S z and there is a reinstatement
set for y !S z. For any S ∈ cf (F) the characteristic function FF is defined as
FF (S) = {x | x is acceptable w.r.t. S}.

Example 1. Consider the EAF F = (A,R,D) from Figure 1, and let S = {b, d}.
Then, RS = {(b, a), (b, c), (b, e), (d, c), (e, d)}, and there are the following rein-
statement sets for the succeeding attacks:

– RS for b !S a: {(b, a)}; – RS for b !S c: {(b, c), (b, a)};
– RS for b !S e: {(b, e)}; – RS for d !S c: {(d, c), (b, a)}.

There is no reinstatement set for e !S d, as e $∈ S. Regarding acceptability,
the argument d is acceptable w.r.t. S because for e !S d we have b ∈ S with
b !S e with RS = {(b, e)}. Furthermore, b is acceptable w.r.t. S as well. !

Definition 4. Given an EAF F = (A,R,D), a conflict-free set S is

– an admissible set, i.e. S ∈ adm(F), if each a ∈ S is acceptable w.r.t. S,
– a preferred extension, i.e. S ∈ prf (F), if S is a ⊆-maximal admissible set,
– a stable extension, i.e. S ∈ stb(F), if for each b /∈ S, there is some a ∈ S

with a !S b,
– a complete extension, i.e. S ∈ com(F), if a ∈ S iff a is acceptable w.r.t. S,
– and the grounded extension grd(F) is given by grd(F) =

⋃
k≥1 Fk

F (∅).

Example 2. For the EAF F from Figure 1 we have the following extensions:
adm(F) = {∅, {e}, {b}, {b, d}, {b, e}}, stb(F) = com(F) = prf (F) = {{b, d},
{b, e}}, and {b, d} is the unique grounded extension. !

Reduction-Based Approaches to Implement Modgil’s EAFs 253

2.1 Answer Set Programming

In this section we recall the basics of logic programs under the answer set se-
mantics [6,20].

We fix a countable set U of (domain) elements, also called constants. An atom
is an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti
is either a variable or an element from U . An atom is ground if it is free of
variables. BU denotes the set of all ground atoms over U . A rule r is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a, b1, . . . , bm are atoms, and “not ” stands for default
negation. The head of r is the set H(r) = {a} and the body of r is B(r) =
{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r)
= {bk+1, . . . , bm}. A constraint is a rule with empty head. A rule r is safe if each
variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A
fact is a ground rule with empty body. An (input) database is a set of facts. A
program is a finite set of rules. For a program π and an input database D, we
often write π(D) instead of D ∪ π.

For any program π, let UP be the set of all constants in π. Gr(π) is the set of
rules rσ obtained by applying, to each rule r ∈ π, all possible substitutions σ from
the variables in r to elements of UP. An interpretation I ⊆ BU satisfies a ground
rule r iffH(r)∩I $= ∅ whenever B+(r) ⊆ I and B−(r)∩I = ∅. I satisfies a ground
program π, if each r ∈ π is satisfied by I. A non-ground rule r (resp., a program
π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,
Gr(π)). I ⊆ BU is an answer-set of π iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. We
denote the set of answer-sets of π by AS(π).

3 Reduction-Based Approaches to EAFs

Towards reductions to answer set programming encodings and propositional logic
we first give an alternative characterization of acceptance.

3.1 An Alternative Characterization of Acceptance

Reinstatement sets are defined for a single attack in an EAF F = (A,R,D)
and a set of arguments S ⊆ A. Here we show that we just need to consider one
reinstatement set for all attacks in RS .

Lemma 1. If RS, RS ′ are reinstatement sets for y !S z and y′ !S z′ respec-
tively then RS ∪RS ′ is a reinstatement set for both y !S z and y′ !S z′.

Proof. We have to verify conditions R1-R3 from Definition 3.
R1) We have y !S z ∈ RS ∪RS ′ and y′ !S z′ ∈ RS ∪RS ′ as the former is
contained in RS and the latter is in RS ′.

254 W. Dvořák et al.

R2) Consider (y, z) ∈ RS ∪RS′ and w.l.o.g. assume that (y, z) ∈ RS. As RS is
a reinstatement set for y !S z we have y ∈ S.
R3) Consider (y, z) ∈ RS ∪RS ′ with (x, (y, z)) ∈ D and again w.l.o.g. assume
that (y, z) ∈ RS. As RS is a reinstatement set for y !S z we have that there
is a (y′, x) ∈ RS and thus also (y′, x) ∈ RS ∪RS ′. *+

As the union of two reinstatement sets for the same set S is again a reinstate-
ment set there exists a unique maximal reinstatement set. This is by a standard
argument: assume that there are two of them then the union of them would be
a larger one contradicting the maximality of the original ones. This leads us to
the definition of the maximal reinstatement set RS[S] of a set S.

Definition 5. Given an EAF (A,R,D) and S ⊆ A. The (unique) maximal
reinstatement set RS[S] of S is the maximal subset of RS satisfying

R2 For each (y, z) ∈ RS[S] it holds that y ∈ S.
R3 For every (y, z) ∈ RS[S] and every (x, (y, z)) ∈ D there is a (y′, x) ∈ RS[S].

We next show that when it comes to the verification of extensions S in EAFs
we only have to consider the maximal reinstatement set RS[S] instead of all
possible reinstatement sets for each attack y !S z.

Proposition 1. Given an EAF F = (A,R,D), S ⊆ A, and y !S z. There
exists a reinstatement set for y !S z iff RS[S] is a reinstatement set for y !S z.

Proof. ⇒: Towards a contradiction assume that there is a reinstatement set RS
for y !S z but y !S z /∈ RS[S]. Then by Lemma 1 the set RS ∪RS[S] would
be a reinstatement set for y !S z. Thus RS[S] ⊂ RS ∪RS[S] and RS ∪RS[S]
satisfying R2 and R3 contradicting the maximality of RS[S].

⇐: By assumption RS[S] is a reinstatement set for y !S z. *+

Next we reformulate the condition for an argument to be acceptable.

Corollary 1. Given an EAF F = (A,R,D), an argument a ∈ A is acceptable
w.r.t. S ⊆ A if whenever z !S a then there is some y ∈ S with (y, z) ∈ RS[S].

Given S, the reinstatement set RS[S] can be computed in polynomial time.

Proposition 2. Given an EAF (A,R,D) and S ⊆ A. RS[S] can be computed
in polynomial time.

Proof. The proof proceeds as follows. We first present a procedure to compute
RS[S] and then show correctness and that it terminates in polynomial time.

Procedure:

– Start with U = RS ∩ (S ×A).
– Repeat until fixed-point is reached:

• For each y !S z ∈ U : if there is (x, (y, z)) ∈ D such that there is no
(y′, x) ∈ U then remove y !S z from U .

– return RS[S] = U

Reduction-Based Approaches to Implement Modgil’s EAFs 255

Correctness: To prove correctness we show (1) that the fixed-point satisfies R2
and R3. and (2) that in each iteration only attacks which are not in RS[S] are
removed, i.e. RS[S] ⊆ U holds during the whole procedure.

(1) The property R2 is ensured by the initialization U = RS ∩ (S ×A), that
is at each time the set U only contains (y, z) with y ∈ S. Now consider property
R3. As the algorithm terminated we have that for every y !S z ∈ U , if there is
a (x, (y, z)) ∈ D then there is also a (y′, x) ∈ U . That is R3 holds.

(2) We prove this by induction on the number of iterations n. As base case
we consider n = 1 meaning that the algorithm returns U = RS ∩ (S × A). As
by definition RS[S] ⊆ RS ∩ (S ×A) we are fine. Now let Ui be the set after the
i-th iteration. For the induction step we assume that RS[S] ⊆ Un−1 and show
that then also RS[S] ⊆ Un. To this end consider a (y, z) ∈ Un−1 \ Un. Then
there is an (x, (y, z)) ∈ D such that there is no (y′, x) ∈ Un−1. But this implies
that there is an (x, (y, z)) ∈ D such that there is no (y′, x) ∈ RS[S] and thus,
because of property R3, (y, z) $∈ RS[S]. Hence RS[S] ⊆ Un.

Polynomial-Time: For the initialization step notice that RS can be computed
in polynomial time and also checking whether an attack has its source in S is
easy. As in each iteration of the loop, except the last one, at least one attack is
removed from the set, there are at most as many iterations as attacks. Finally
the condition in the loop can be tested in polynomial time. *+

3.2 Answer Set Programming Encodings

In this section we present ASP encodings based on our characterization of EAF
acceptance of arguments. In our encodings we will use atoms in(a) to represent
that an argument a is in an extension. The answer-sets of the combination of an
encoding for a semantics σ with an ASP representation of an EAF F are in a 1-to-
1 correspondence to σ(F). More formally we have the following correspondence.

Definition 6. Let I be an interpretation, I a set of interpretations, S a set and
S a set of sets. We define I ∼= S iff {a | in(a) ∈ I} = S. Further, I ∼= S iff there
is a bijective function f : I → S such that for each I ∈ I we have I ∼= f(I).

For readability we partition the encodings into several modules. We begin with
the input database for a given EAF F = (A,R,D), i.e. the facts representing
the EAF.

F̂ :={arg(x). | x ∈ A}∪
{att(x, y). | (x, y) ∈ R}∪
{d(x, y, z). | (x, (y, z)) ∈ D}

That is, arg(x) is a fact that represents that x is an argument in F . The
binary predicate att(x, y) indicates that there is an attack from x to y and
d(x, y, z) signifies that there is an attack from x to the attack from y to z.

256 W. Dvořák et al.

Listing 1.1. Module πcf

% guess a s e t S
in (X) ← arg (X) , not out (X) .
out (X) ← arg (X) , not in (X) .

% mutua l l y a t t a c k i ng arguments are f orb i dden in a c f s e t
← att (X,Y) , att (Y,X) , in (X) , in (Y) .

% cance l ed a t t a c k s v i a D
cancel (X,Y) ← att (X,Y) , in (Z) , d(Z ,X,Y) .
succeed (X,Y) ← att (X,Y) , not cancel (X,Y) .
← in (X) , in (Y) , succeed (X,Y) .

The first basic module πcf is shown in Listing 1.1. Comments can be distin-
guished from rules by the preceding ’%’ symbol. The first two lines encode a
typical ASP guess. The in and out predicates identify a subset S of the argu-
ments in the given EAF. If in(x) is present in an answer-set then x ∈ S and
otherwise we have out(x) in the answer-set and x /∈ S. The first constraint en-
codes that mutually attacking arguments cannot be in a conflict-free set of F .
Using the predicates succeed and cancel we can derive all attacks (x, y) which
are canceled by a (z, (x, y)) ∈ D, s.t. z ∈ S for the guessed S. The last line
encodes that no two conflicting arguments can be in S, if an attack in either
direction succeeds.

Next we look at module πrs in Listing 1.2, which computes RS[S] in the
predicate rs. Intuitively the “procedure” is as in the proof of Proposition 2. We
collect with rsinit all successful attacks coming from an argument in S. If for
such an attack (y, z) there is an x ∈ A s.t. (x, (y, z)) ∈ D, then we need to
check if the attack (y, z) is reinstated by RS[S], in particular we need to check
if there is an attack (y′, x) ∈ RS[S]. We mark such a case with todef(x, y, z).
The procedure for computing the maximal reinstatement set now starts with
the initial set of attacks and iteratively removes attacks until a fixed-point is
reached. We remove (y, z) if there is an (x, (y, z)) ∈ D, s.t. in the set of the
current iteration there is no (y′, x).

The fixed-point computation is simulated by the predicate unattacked upto
and remove. The latter predicate marks attacks to be removed from rsinit in
order to compute the unique maximal reinstatement set in rs. We iterate for
each removal candidate marked by todef(x, y, z) over each argument n in the
EAF. If rsinit(n, x) is not derivable or remove(n, x) was derived then (n, x)
is not in the maximal reinstatement set and thus does not defend the attack
(y, z) from (x, (y, z)). If this holds for all arguments in the EAF, then (y, z) is
not defended and we mark it for removal by remove(y, z). For achieving this we
use the module πorder to impose an order on the arguments. This is a standard
module used in several ASP encodings of AF semantics, e.g. in [15]. We present
here only the main predicates defined in this module. The predicate lt(x, y)

Reduction-Based Approaches to Implement Modgil’s EAFs 257

Listing 1.2. Module πrs

% r s i n i t r ep r e s en t s a l l succeed ing a t t a c k s coming from S
rs in i t (Y,Z) ← in (Y) , succeed (Y,Z) .

% removal cand ida te s
todef (X,Y,Z) ← rs in i t (Y,Z) , d(X,Y,Z) .

% remove a t t a c k s
unattacked upto (X,Y,Z ,N) ← inf (N) , todef (X,Y,Z) ,

not rs in i t (N,X) .
unattacked upto (X,Y,Z ,N) ← inf (N) , todef (X,Y,Z) , remove(N,X) .
unattacked upto (X,Y,Z ,N) ← succ (M,N) ,

unattacked upto (X,Y,Z ,M) ,
not rs in i t (N,X) .

unattacked upto (X,Y,Z ,N) ← succ (M,N) ,
unattacked upto (X,Y,Z ,M) ,
remove(N,X) .

unattacked (X,Y, Z) ← sup (N) , unattacked upto (X,Y,Z ,N) .
remove(Y,Z) ← unattacked (X,Y, Z) .

% rs r ep r e s en t s RS[S]
rs (X,Y) ← rs in i t (X,Y) , not remove(X,Y) .

is used to relate x and y, s.t. x is ordered lower than y. Using succ(x, y) we
derive that y is the immediate successor of x in this ordering and lastly inf and
sup are the infimum and supremum elements. Now, we start with the infimum
argument and go through the successor predicate succ to the next argument. If
(y, z) is undefended up to the supremum then we have to remove it. Intuitively
unattacked upto(x, y, z, n) states that (x, (y, z)) is not successfully attacked
by an attack in RS[S] up to the argument n in the ordering. Lastly, in rs we
simply derive all attacks from rsinit, for which we cannot derive that the attack
should be removed. The attacks derived via rs correspond to RS[S].

In πdefense (Listing 1.3) we simply state that each y is defeated if there is an
attack in our reinstatement set given by rs. Note that we still refer to a guessed
set S. Using this we derive which arguments are undefended. Now we present our
ASP encoding for admissible sets. We combine the modules for the conflict-free
property, reinstatement sets, order and defense and add an intuitive constraint
ensuring that if an argument is in, then it has to be defended.

πadm := πcf ∪ πrs ∪ πorder ∪ πdefense ∪ {← in(X),undefended(X).}

It is straightforward to extend this encoding to complete semantics as follows.

πcom := πadm ∪ {← out(X), not undefended(X).}

258 W. Dvořák et al.

Listing 1.3. Module πdefense

% arguments which are de f e a t ed by RS[S]
defeated (Y) ← rs (X,Y) .

% undefended arguments
undefended(A) ← arg (A) , succeed (Z ,A) , not defeated (Z) .

Listing 1.4. Module πrange

in range (Z) ← in (Y) , succeed (Y,Z) .

For the stable semantics we compute for S ⊆ A the set {a | b !S a, b ∈ S}.
This is encoded in πrange in Listing 1.4. Stable semantics can be computed via

πstb := πcf ∪ πrange ∪ {← out(Z), not in range(Z).}

The 1-to-1 correspondence between the answer-sets of our encodings and the
σ-extensions is summarized in the following proposition.

Proposition 3. For any EAF F : (i) AS(πcf (F̂)) ∼= cf (F); (ii) AS(πadm(F̂)) ∼=
adm(F); (iii) AS(πcom(F̂)) ∼= com(F); and (iv) AS(πstb(F̂)) ∼= stb(F).

Encodings for grounded semantics of EAFs are straightforward to achieve via
techniques used in [15]. Essentially by starting with the empty set we derive the
grounded extension of a given EAF, by iteratively applying the characteristic
function of EAFs [18]. The ASP encoding of the characteristic function is based
on the module πrs .

In spirit of promising approaches for computing reasoning tasks under pre-
ferred semantics [8,13] in AFs we can compute preferred extensions in EAFs by
iteratively using simple adaptations of encodings for admissible semantics. The
basic idea is to traverse the search space of admissible (or complete) extensions
and iteratively compute larger admissible sets until we reach a maximal set. By
restricting the future search space to admissible sets not contained in previously
found preferred extensions, we can compute all preferred extensions in this way.

We implemented reasoning for EAFs under conflict-free, admissible, complete,
grounded, preferred and stable semantics in the tool “GERD” available online2.
Except for preferred semantics, we provide a single ASP encoding for download
which computes all extensions of the desired semantics if augmented with an
input database representing the given EAF. For solving one can use modern ASP
solvers, like clingo [17]. For preferred semantics we provide a UNIX bash script,
which calls clingo repeatedly to compute preferred extensions in the manner
described above. In Fig. 2 one can see a screenshot of the web-interface.

2 See http://gerd.dbai.tuwien.ac.at

http://gerd.dbai.tuwien.ac.at

Reduction-Based Approaches to Implement Modgil’s EAFs 259

Fig. 2. Web-interface for ASP encodings of EAF semantics

3.3 Propositional Encoding

Our alternative characterization is not only useful in the context of ASP. To
exemplify this we encode admissible semantics in terms of propositional logic.
Notice that such encodings are the basis to generalize several (implementation)
approaches studied for abstract argumentation, like for using SAT and QBF-
solvers [4,16], monadic second order logic encodings [14], and approaches using
iterative SAT-calls [8,13].

The idea of propositional logic encodings is to give a formula such that the
models of the formula correspond to the extensions of the EAF. Given an EAF
F = (A,R,D) for each x ∈ A we introduce a variable ax encoding that x is
in the extension S, i.e. x is in the extension iff ax is true in the corresponding
model. Then for each pair (y, z) ∈ R we introduce variables ry,z encoding that
y !S z. The truth-values of ry,z can be defined in terms of ax.

ϕr =
∧

(x,(y,z))∈D

(¬ax ∨ ¬ry,z) ∧
∧

(y,z)∈R

(ry,z ∨ (
∨

(x,(y,z))∈D

ax))

The first part saying that for each attack (x, (y, z)) either x $∈ S or y $!S z.
The second part is the reverse direction saying that either y !S z or there is an
attack (x, (y, z)) with x ∈ S. We are now ready to encode conflict-freeness.

ϕcf =
∧

(x,y)∈R

(¬ax ∨ ¬ay ∨ ¬rx,y) ∧
∧

(x,y),(y,x)∈R

(¬ax ∨ ¬ay)

The first part says that for each (x, y) ∈ R either x $∈ S or y $∈ S or the attack
must be canceled by S. The second part encodes the condition that mutually
conflicting arguments cannot be in the same conflict-free set.

260 W. Dvořák et al.

To test admissibility we need a reinstatement set RS which is encoded by
variables rsy,z , i.e. the attack (y, z) ∈ R is in the reinstatement set RS iff rsy,z
is true in the corresponding model.

ϕRS =
∧

(y,z)∈R

((¬rsy,z ∨ ay) ∧ (¬rsy,z ∨ ry,z)) ∧
∧

(x,(y,z))∈D

(¬rsy,z ∨
∨

(z′,x)∈R

rsz′,x)

The first part stating that if an attack (y, z) is in RS then y ∈ S and y !S z.
The second one says that for each (x, (y, z)) either there is an attack (z′, x) in
RS or (y, z) cannot be in RS.

Finally we can encode the condition for a set S defending its arguments.

ϕdef =
∧

(y,z)∈R

(¬az ∨ ¬ry,z ∨
∨

(x,y)∈R

rsx,y)

So for each attack (y, z) either z $∈ S, the attack is canceled by S or y is
counter attacked by an attack in RS.

Now it is straight forward to show the following proposition.

Proposition 4. Consider the function Ext(M) = {x ∈ A | ax ∈ M} map-
ping models to extensions. For any EAF F we have adm(F) = {Ext(M) |
M is model of ϕr ∧ ϕcf ∧ ϕRS ∧ ϕdef}.

4 Complexity and Expressiveness of EAFs

In this section we first use our characterization of acceptance to answer an open
complexity-question from [12]. Second, given that the complexity of the main
reasoning tasks in EAFs and AFs coincide and complexity is often considered
as an indicator for expressiveness one might expect that they have the same
expressiveness. We answer this negatively by showing that for each semantics
considered in this paper, except grounded, EAFs are more expressive than AFs.

4.1 Complexity of Grounded-Scepticism

Modgil [18] observed that in EAFs the grounded extension is not always con-
tained in all the preferred extensions. This is in contrast to Dung’s AFs where
this is always the case and grounded semantics can be seen as strictly more
skeptical than skeptical preferred reasoning, i.e. than considering the arguments
that are contained in all preferred extensions. Dunne et al. [12] introduced the
computational problem of Grounded-Scepticism, i.e. deciding whether the
grounded extension is contained in all the preferred extensions, and gave a coNP
lower bound but left the exact complexity open.

Theorem 1. Grounded-Scepticism is ΠP
2 -complete.

Reduction-Based Approaches to Implement Modgil’s EAFs 261

AF F

x

a

b

g

Fig. 3. The AF F ′ from the proof of Theorem 1, for A = {a, b, x}

Proof. We first show membership in ΠP
2 . This is by a ΣP

2 algorithm for disprov-
ing that the grounded extension is contained in each preferred extension. This
algorithm first computes the grounded extension G which is in P [12] and then
guesses a preferred extension E. Then the NP-oracle is used to verify that E is
a preferred extension and finally G ⊆ E is tested.

To obtain hardness we give a reduction from the ΠP
2 -hard problem SkeptAF

prf ,
that is deciding whether an argument x ∈ A is skeptically accepted w.r.t. prf in
Dung AFs [10]. To this end consider an instance F = (A,R), x ∈ A of SkeptAF

prf .
W.l.o.g. we can assume that (x, x) /∈ R. We construct an EAF F ′ = (A′, R′, D′)
with A′ = A ∪ {g}, R′ = R ∪ {(g, a) | a ∈ A \ {x}} and D′ = {(b, (g, a)) | a, b ∈
A \ {x}} (see also Figure 3). Clearly F ′ can be constructed in polynomial time.

To complete the proof we next show that x is skeptically accepted in F iff
grd(F ′) ⊆ E for each E ∈ prf (F ′). To this end we show that com(F ′) =
{{g, x}} ∪ {E ∪ {g} | E ∈ com(F)}. First as g is not attacked at all it has
to be contained in each complete extension. Considering S = {g} we have that
RS[S] = {(g, a) | a ∈ A \ {x}} and thus that g defends x and thus x must
be in the grounded extension. Now consider S = {g, x}. Still RS[S] = {(g, a) |
a ∈ A \ {x}} and none of the a ∈ A \ {x} is acceptable as a is not defended
against (g, a). Hence, {g, x} is the grounded extension. Next consider an S with
S ∩ (A \ x) $= ∅. Then !S corresponds to R. As no attack in R is attacked by
D′ we have that E ∪ {g} is complete iff E ∈ com(F).

By the above we have that either (i) prf (F ′) = {E∪{g} | E ∈ prf (F)} if there
is an E ∈ prf (F) with x ∈ E, or (ii) prf (F ′) = {{g, x}}∪{E∪{g} | E ∈ prf (F)}
otherwise. In the former {g, x} is contained in all preferred extensions of F ′ iff
x was skeptically accepted in F and in the latter {g, x} is not contained in all
preferred extensions but also x was not skeptically accepted in F . Hence, {g, x}
is contained in all preferred extensions of F ′ iff x is skeptically accepted in F . *+

4.2 Expressiveness of EAFs

Recently the expressiveness of the most prominent semantics of AFs was studied
in terms of realizability [11]. A collection of sets of arguments S, frequently called
extension-set in the remainder of this section, is said to be realizable under a
semantics σ, if there exists some AF F such that the σ-extensions of F coin-
cide with S, i.e. σ(F) = S. In the following we show that the additional modelling

262 W. Dvořák et al.

a

b

c

(a) Conflict-free.

a

b c

d

e

(b) Stable.

a a′

x3 x4

x2 x1

b′ b

(c) Admissible, preferred,
and complete.

Fig. 4. EAFs witnessing the increased expressive power compared to AFs

power of EAFs also gives rise to increased expressiveness. This means that for
every semantics under consideration, except grounded, there are extension-sets
obtained by some EAF which do not have an AF as syntactic counterpart. We
show EAFs with sets of extensions which cannot be realized under the corre-
sponding AF-semantics in the following example (see also Figure 4).

Conflict-Free Sets: Given an arbitrary AF F , it holds that cf (F) is downward
closed, that is for every E ∈ cf (F) also E′ ∈ cf (F) for each E′ ⊆ E. This is,
as already pointed out in [12], not necessarily true in EAFs. For example, the
conflict-free sets of the EAF F1 in Figure 4a coincide with {∅, {a}, {b}, {c},
{b, c}, {a, b, c}}, which cannot be the collection of conflict-free sets of any AF.
Observe that for E = {a, b, c} both {a, b} ⊆ E and {a, c} ⊆ E, but neither one
of those sets is a conflict-free set of F1. This comes by the fact that the success
of attacks can be conditioned by the presence of arguments.

Stable Semantics: It was shown in [11] that for every AF F = (A,R), the stable
extensions of F , denoted by S, form a tight set, i.e. the following holds: S ⊆
max⊆{S ⊆ A | ∀a, b ∈ S ∃T ∈ S : {a, b} ⊆ T }. One can check that this condition
does not hold for the extension-set T = {{a, b}, {a, c, e}, {b, d, e}}. Hence there is
no AF F with stb(F) = T. On the other hand, the EAF F2 depicted in Figure 4b
has exactly T as stable extensions.

Preferred Semantics: The preferred semantics is among the most expressive se-
mantics in AFs. For a collection of sets of arguments S, the property called
adm-closed is decisive for prf -realizability [11]: For each A,B ∈ S such that
A∪B $∈ S (for prf just A $= B) there have to be some a, b ∈ (A ∪B) with !C ∈
S : {a, b} ⊆ C. Now consider the extension-set U = {{a, b}, {a′, b′}, {a, a′, x1},
{a′, b, x2}, {b, b′, x3}, {a, b′, x4}} and observe that A = {a, b} and B = {a′, b′}
violate the condition. Each pair of arguments in (A∪B) occurs together in some
element of U and is therefore necessarily without conflict in every AF trying to
realize U. On the other hand, we can again find an EAF realizing U under the
preferred semantics, namely F3 shown in Figure 4c, where conflicts are resolved
by attacks from the xi-arguments.

Reduction-Based Approaches to Implement Modgil’s EAFs 263

Admissible and Complete Semantics: Finally one can also show that adm(F3)
(resp. com(F3)) are not realizable by AFs under the admissible (resp. complete)
semantics, indicating the increase in expressiveness for admissible and complete
semantics. Towards a contradiction assume that adm(F3) (resp. com(F3)) could
be realized by an AF F under admissible (resp. complete) semantics. Then the
preferred extensions prf (F) of F are just the ⊆-maximal sets in adm(F3) (resp.
com(F3)) and thus prf (F) = U. However, this contradicts the observation from
above that U is not prf -realizable in AFs.

5 Conclusion

In this work we revisited Modgil’s extended argumentation frameworks [18], an
appealing approach to incorporate preferences in abstract argumentation for-
malisms. We provided a different, yet equivalent, characterization of acceptance
in EAFs, of which we made use of in reductions to two well-established for-
malisms. First we presented ASP encodings for all semantics together with an
implementation in the online tool GERD. Second we encoded admissible se-
mantics in terms of propositional logic as a basis for implementation approaches
such as SAT- and QBF-solving. Moreover, we addressed a problem which was left
open in the complexity analysis of EAFs [12] by showing that deciding whether
the grounded extension is contained in all preferred extensions is ΠP

2 -complete
for EAFs. Finally we showed that the additional modelling capabilities within
EAFs give rise to higher expressiveness for all but the grounded semantics.

Making use of the propositional encoding of admissible semantics in an (itera-
tive) SAT-based implementation of EAF reasoning tasks is an obvious direction
of future work. Moreover, the performance of our ASP-based implementation
could be compared to labeling-based algorithms [21] in an empirical evaluation.
Finally, the connection of EAFs to ADFs [7], a very recent and general argu-
mentation formalism, should be explored, particularly by providing an efficient
translation from EAFs to ADFs.

Acknowledgements. We express our gratitude to Gerd Brewka, to whom this
Festschrift is dedicated. Each of the authors visited Gerd’s group in Leipzig in the
course of their work, which has led to many ongoing and fruitful collaborations
and discussions. Insights gained through these visits have been, and continue to
be, influential for our works.

We further thank Günther Charwat and Andreas Pfandler for their support for
developing the web front-end GERD, Gerald Weidinger for his contributions to
earlier versions of the ASP encodings and Pietro Baroni for his helpful comments
on an earlier version of this paper.

This research has been supported by the Austrian Science Fund (FWF).
Thomas Linsbichler’s work has been funded by FWF project I1102 and Johannes
Wallner’s work has been funded by FWF project P25521.

264 W. Dvořák et al.

References

1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. Ann. Math. Artif. Intell. 34(1-3), 197–215 (2002)

2. Baroni, P., Caminada, M.W.A., Giacomin, M.: An introduction to argumentation
semantics. Knowledge Eng. Review 26(4), 365–410 (2011)

3. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proc.
NMR, pp. 59–64 (2004)

5. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: Proc. KR 2010,
pp. 102–111. AAAI Press (2010)

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Di-
alectical Frameworks Revisited. In: Proc. IJCAI, pp. 803–809. AAAI Press / IJCAI
(2013)

8. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred exten-
sions in abstract argumentation: A SAT-based approach. In: Black, E., Modgil, S.,
Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 176–193. Springer, Heidelberg
(2014)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

10. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif.
Intell. 141(1/2), 187–203 (2002)

11. Dunne, P.E., Dvořák, W., Linsbichler, T., Woltran, S.: Characteristics of multiple
viewpoints in abstract argumentation. In: Proc. KR, pp. 72–81. AAAI Press (2014)

12. Dunne, P.E., Modgil, S., Bench-Capon, T.J.M.: Computation in extended argu-
mentation frameworks. In: Proc. ECAI, pp. 119–124. IOS Press (2010)

13. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision
procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

14. Dvořák, W., Szeider, S., Woltran, S.: Abstract argumentation via monadic second
order logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012.
LNCS, vol. 7520, pp. 85–98. Springer, Heidelberg (2012)

15. Egly, U., Gaggl, S.A., Woltran, S.: Answer-Set Programming Encodings for Argu-
mentation Frameworks. Argument and Computation 1(2), 147–177 (2010)

16. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using Quantified
Boolean Formulas. In: Proc. COMMA, pp. 133–144. IOS Press (2006)

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schnei-
der, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communi-
cations 24(2), 105–124 (2011)

18. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. In-
tell. 173(9-10), 901–934 (2009)

19. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

20. Niemelä, I.: Logic Programming with Stable Model Semantics as a Constraint
Programming Paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

21. Nofal, S., Dunne, P.E., Atkinson, K.: Towards experimental algorithms for abstract
argumentation. In: Proc. COMMA, pp. 217–228. IOS Press (2012)

	Reduction-Based Approaches to Implement Modgil's Extended Argumentation Frameworks
	1Introduction
	2Background
	2.1Answer Set Programming

	3Reduction-Based Approaches to EAFs
	3.1An Alternative Characterization of Acceptance
	3.2Answer Set Programming Encodings
	3.3Propositional Encoding

	4Complexity and Expressiveness of EAFs
	4.1Complexity of Grounded-Scepticism
	4.2Expressiveness of EAFs

	5Conclusion

