

Sebastian Rudolph

International Center for Computational Logic TU Dresden

Existential Rules – Lecture 3

Adapted from slides by Andreas Pieris and Michaël Thomazo Winter Term 2025/2026

Syntax of Existential Rules

An existential rule is an expression

$$\forall \mathbf{X} \forall \mathbf{Y} \ (\varphi(\mathbf{X}, \mathbf{Y}) \to \exists \mathbf{Z} \ \psi(\mathbf{X}, \mathbf{Z}))$$
 body head

- X,Y and Z are tuples of variables of V
- $\varphi(X,Y)$ and $\psi(X,Z)$ are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies, and Datalog[±] rules

Semantics of Existential Rules

An instance J is a model of the rule

$$\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$$

written as $J \models \sigma$, if the following holds:

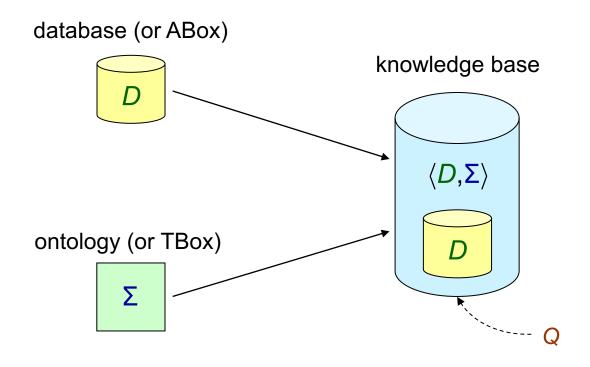
whenever there exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$,

then there exists $g \supseteq h_{|X}$ such that $g(\psi(X,Z)) \subseteq J$

 $\{t \mapsto h(t) \mid t \in X\}$ – the restriction of h to X

- Given a set Σ of existential rules, J is a model of Σ , written as $J \models \Sigma$, if the following holds: for each $\sigma \in \Sigma$, $J \models \sigma$
- It can be shown that $J \models \Sigma$ iff J is a model of the first-order theory $\bigwedge_{\sigma \in \Sigma} \sigma$

Ontology-Based Query Answering (OBQA)



existential rules

 $\forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$

Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

$$\exists Y (\varphi(X,Y))$$

- X and Y are tuples of variables of V
- $\varphi(X,Y)$ is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

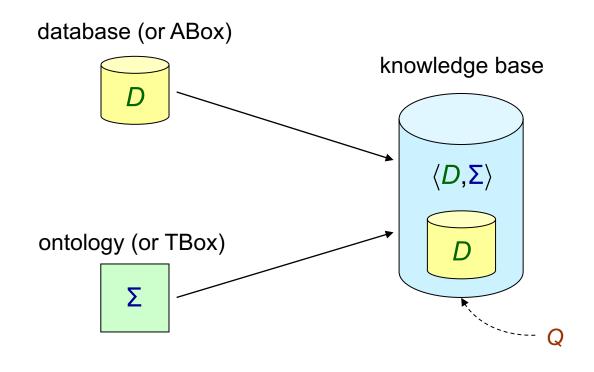
Semantics of Conjunctive Queries

• A match of a CQ $\exists Y (\varphi(X,Y))$ in an instance J is a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$ i.e., all the atoms of the query are satisfied

The answer to Q = ∃Y (φ(X,Y)) over J is the set of tuples
 Q(J) = {h(X) | h is a match of Q in J}

The answer consists of the witnesses for the free variables of the query

Ontology-Based Query Answering (OBQA)



existential rules

$$\forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$$

conjunctive queries

 $\exists Y (\varphi(X,Y))$

OBQA: Formal Definition

active domain – constants occurring in D

CQ-Answering:

Input: database D, existential rules Σ , CQ Q = $\exists Y (\varphi(X,Y))$, tuple $f \in adom(D)^{|X|}$

Question: decide whether $\mathbf{t} \in \operatorname{certain}(\mathbf{Q}, \langle D, \Sigma \rangle) = \bigcap_{J \in \operatorname{models}(D \wedge \Sigma)} \mathbf{Q}(J)_{\downarrow}$

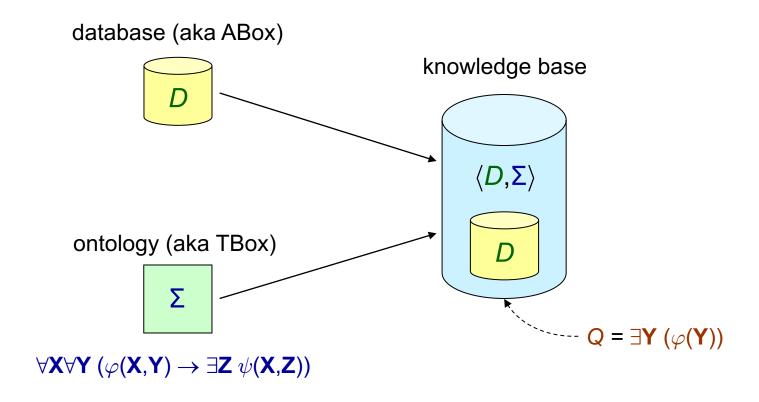
$$\mathbf{t} \in \operatorname{certain}(\mathbf{Q}, \langle D \Sigma \rangle) \quad \text{iff} \quad \mathbf{t} \in \bigcap_{J \in \operatorname{models}(D \wedge \Sigma)} \ \mathbf{Q}(J)_{\downarrow}$$

iff
$$\forall J \in \mathsf{models}(D \land \Sigma), J \vDash \exists Y (\varphi(t,Y))$$

iff
$$D \wedge \Sigma \vDash \exists Y (\varphi(t,Y))$$

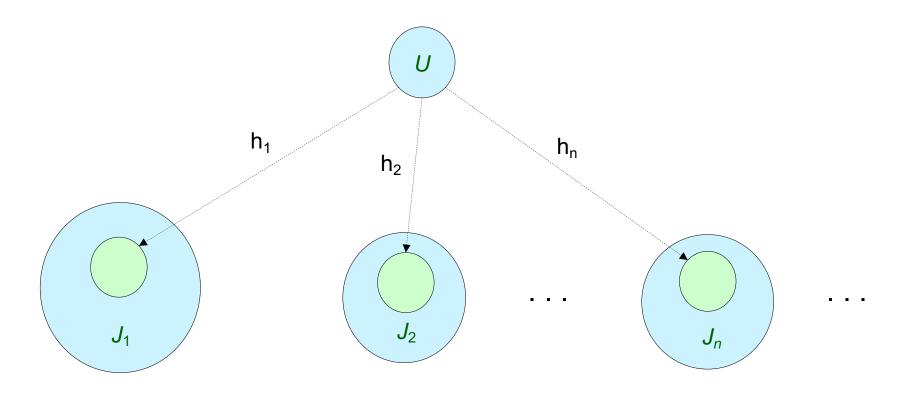
Boolean CQ (BCQ) – no free variables

BCQ-Answering: Our Main Decision Problem



decide whether $D \wedge \Sigma \models Q$

Universal Models (a.k.a. Canonical Models)



An instance *U* is a universal model of $D \wedge \Sigma$ if the following holds:

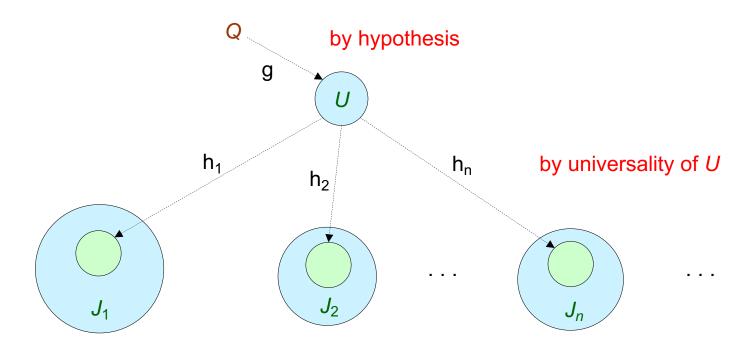
- 1. U is a model of $D \wedge \Sigma$
- 2. $\forall J \in \mathsf{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $\mathsf{h}_J(U) \subseteq J$

Query Answering via Universal Models

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

Proof: (\Rightarrow) Trivial since, for every $J \in \text{models}(D \land \Sigma)$, $J \models Q$

 (\Leftarrow) By exploiting the universality of U

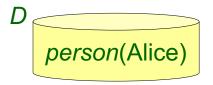


 $\forall J \in \mathsf{models}(D \land \Sigma), \exists h_J \mathsf{such that } h_J(\mathsf{g}(\mathsf{Q})) \subseteq J \quad \Rightarrow \quad \forall J \in \mathsf{models}(D \land \Sigma), J \models \mathsf{Q}$

- Fundamental algorithmic tool used in databases
- It has been applied to a wide range of problems:
 - Checking containment of queries under constraints
 - Computing data exchange solutions
 - Computing certain answers in data integration settings
 - 0 ...

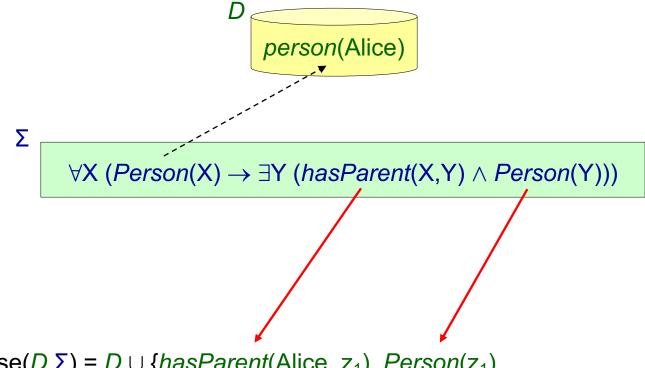
... what's the reason for the ubiquity of the chase in databases?

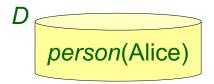
it constructs universal models

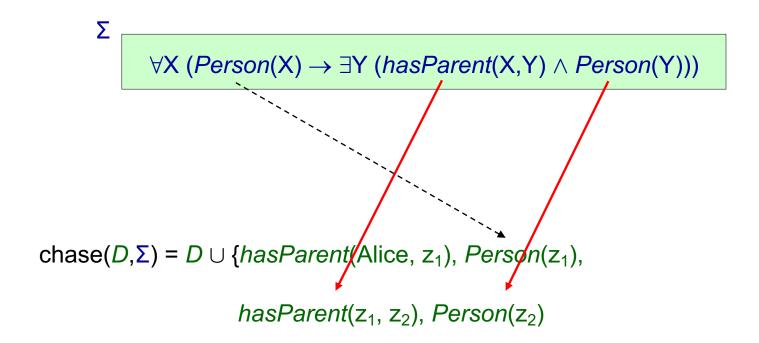


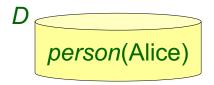
$$\forall X \ (Person(X) \rightarrow \exists Y \ (hasParent(X,Y) \land Person(Y)))$$

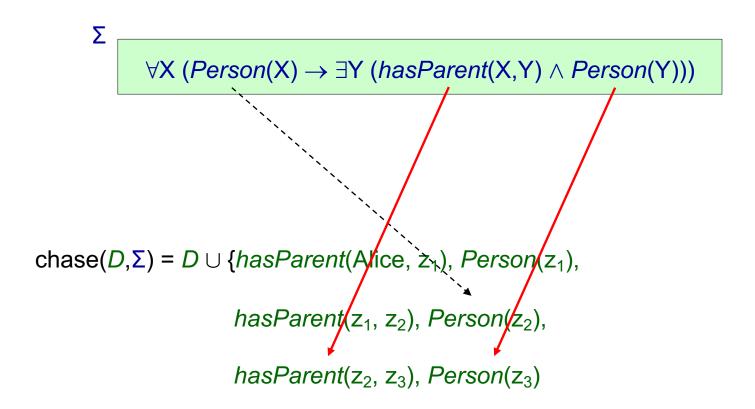
chase(
$$D$$
, Σ) = D ∪











$$\forall X \ (Person(X) \rightarrow \exists Y \ (hasParent(X,Y) \land Person(Y)))$$

chase(D,Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), \}$ $hasParent(z_1, z_2), Person(z_2),$ $hasParent(z_2, z_3), Person(z_3), \dots$

infinite instance

The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no g $\supseteq h_{|X}$ such that $g(\psi(X,Z)) \subseteq J$

$$J = \{R(a), P(a,b)\}$$

$$J = \{R(a), P(b,a)\}$$

$$S = \{X \to a, Y \to b\}$$

$$V = \{X \to a\}$$

$$V = \{X$$

X

$$J = \{R(a), P(b,a)\}$$

$$h = \{X \rightarrow a\}$$

$$\forall X (R(X) \rightarrow \exists Y P(X,Y))$$

The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no g $\supseteq h_{|X}$ such that $g(\psi(X,Z)) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(X,Z))\}$, where $g \supseteq h_{|X}$ and g(Z) are "fresh" nulls not in J
- The result of applying σ to J is J_+ , denoted $J(\sigma,h)J_+$ single chase step

The Chase Procedure: Formal Definition

A finite chase of D w.r.t. Σ is a finite sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

where no rule from Σ is applicable in J_n .

Then, chase(D,Σ) is defined as the instance J_n

all applicable rules will eventually be applied

An infinite chase of D w.r.t. Σ is a fair finite sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n \dots$$

and chase(D,Σ) is defined as the instance $\cup_{k>0} J_k$ (with $J_0=D$)

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of $D\wedge\Sigma$

the result of the chase after k applications of the chase step

Proof:

- By construction, chase(D,Σ) \in models($D\wedge\Sigma$)
- It remains to show that chase (D, Σ) can be homomorphically embedded into every other model of $D \wedge \Sigma$
- Fix an arbitrary instance $J \in \text{models}(D \wedge \Sigma)$. We need to show that there exists h such that $h(chase(D,\Sigma)) \subseteq J$
- By induction on the number of applications of the chase step, we show that for every $k \geq 0$, there exists h_k such that h_k (chase $[k](D,\Sigma)$) $\subseteq J$, and h_k is compatible with h_{k-1}
- Clearly, $\bigcup_{k\geq 0}$ h_k is a well-defined homomorphism that maps chase (D,Σ) to J
- The claim follows with $h = \bigcup_{k>0} h_k$

Chase: Uniqueness Property

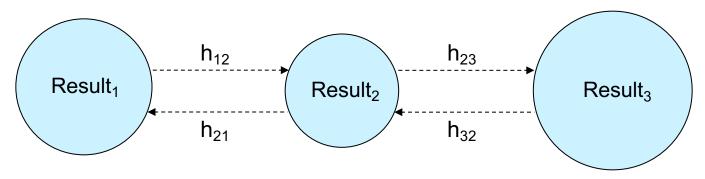
The result of the chase is not unique - depends on the order of rule application

$$D = \{P(a)\} \qquad \sigma_1 = \forall X \ (P(X) \to \exists Y \ R(Y)) \qquad \sigma_2 = \forall X \ (P(X) \to R(X))$$

$$Result_1 = \{P(a), \ R(z), \ R(a)\} \qquad \sigma_1 \ then \ \sigma_2$$

$$Result_2 = \{P(a), \ R(a)\} \qquad \sigma_2 \ then \ \sigma_1$$

But, it is unique up to homomorphic equivalence



Thus, it is unique for query answering purposes

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$ Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

Corollary: $D \wedge \Sigma \models Q$ iff chase $(D,\Sigma) \models Q$

- We can tame the first dimension of infinity by exploiting the chase procedure
- But, what about the second dimension of infinity? the chase may be infinite

Rest of the Lectrure

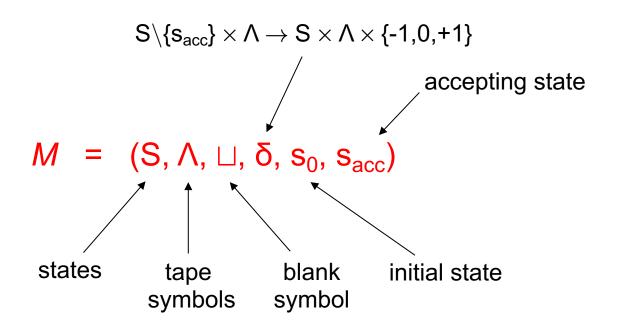
- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

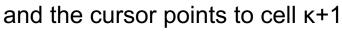
Deterministic Turing Machine (DTM)



$$\delta(s_1, \alpha) = (s_2, \beta, +1)$$

IF at some time instant τ the machine is in sate s₁, the cursor points to cell κ, and this cell contains α

THEN at instant $\tau+1$ the machine is in state s_2 , cell κ contains β ,



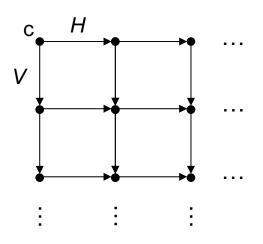
Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM *M* with an empty tape

using a database D, a set Σ of existential rules, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff *M* accepts

Build an Infinite Grid



k-th horizontal line represents thek-th configuration of the machine

$$D = \{Start(c)\}$$

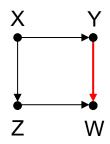
fixes the origin of the grid

$$\forall X (Start(X) \rightarrow Node(X) \land Initial(X))$$

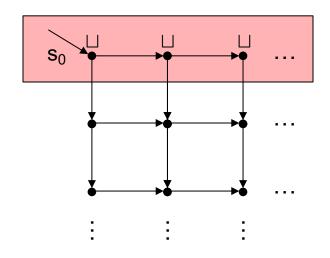
$$\forall X \ (Node(X) \rightarrow \exists Y \ (H(X,Y) \land Node(Y)))$$

$$\forall X \ (Node(X) \rightarrow \exists Y \ (V(X,Y) \land Node(Y)))$$

$$\forall X \forall Y \forall Z \forall W (H(X,Y) H(Z,W) V(X,Z) \rightarrow V(Y,W))$$



Initialization Rules

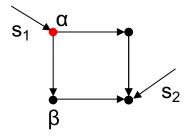


$$\forall X \forall Y \ (Initial(X) \land H(X,Y) \rightarrow Initial(Y))$$

$$\forall X \; (\textit{Start}(X) \rightarrow \textit{Cursor}[s_0](X))$$

$$\forall X (Initial(X) \rightarrow Symbol[\sqcup](X))$$

Transition Rules

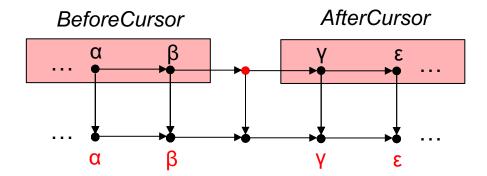


$$\delta(s_1,\alpha) = (s_2,\beta,+1)$$

 $\forall X \forall Y \forall Z \ (Cursor[s_1](X) \land Symbol[\alpha](X) \land V(X,Y) \land H(Y,Z) \rightarrow$

 $Cursor[s_2](Z) \wedge Symbol[\beta](Y) \wedge Mark(X))$

Inertia Rules



$$\forall X \forall Y \ (Mark(X) \land H(X,Y) \rightarrow AfterCursor(Y))$$

$$\forall X \forall Y \ (AfterCursor(X) \land H(X,Y) \rightarrow AfterCursor(Y))$$

$$\forall X \forall Y \ (AfterCursor(X) \land Symbol[\alpha](X) \land V(X,Y) \rightarrow Symbol[\alpha](Y))$$

...we have similar rules for the cells before the cursor

Accepting Rule

Once we reach the accepting state we accept

$$\forall X (Cursor[s_{acc}](X) \rightarrow Accept(X))$$

 $D \wedge \Sigma \models \exists X \ Accept(X)$ iff the DTM M accepts

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

