
UEL: Unification Solver for the
Description Logic EL — System Description

Franz Baader, Julian Mendez, and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,mendez,morawska}@tcs.inf.tu-dresden.de

Abstract UEL is a system that computes unifiers for unification prob-
lems formulated in the description logic EL. EL is a description logic
with restricted expressivity, but which is still expressive enough for the
formal representation of biomedical ontologies, such as the large medical
ontology SNOMED CT. We propose to use UEL as a tool to detect redun-
dancies in such ontologies by computing unifiers of two formal concepts
suspected of expressing the same concept of the application domain. UEL
can be used as a plug-in of the popular ontology editor Protégé, or as a
standalone unification application.

1 Motivation

The description logic (DL) EL, which offers the concept constructors conjunction
(u), existential restriction (∃r.C), and the top concept (>), has recently drawn
considerable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL [1,8,2]. On the other hand,
though quite inexpressive, EL can be used to define biomedical ontologies, such
as the large medical ontology SNOMED CT.1

Unification in DLs has been proposed in [6] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe head injury as

Patient u ∃finding.(Head injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe injury u ∃finding site.Head). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Head injury and Severe injury as variables, and
substituting the first one by Injury u ∃finding site.Head and the second one by
Injury u ∃severity.Severe. In this case, we say that the descriptions are unifiable,

1 see http://www.ihtsdo.org/snomed-ct/



Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

Table 1. Syntax and semantics of EL.

and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head injury as Injuryu∃finding site.Head
and Severe injury as Injury u ∃severity.Severe, then the two concept descriptions
(1) and (2) are equivalent w.r.t. these definitions. Of course, this example was
constructed such that the unifier actually provides sensible definitions for the
concept names used as variables. In general, the existence of a unifier only says
that there is a structural similarity between the two concepts. The developer that
uses unification as a tool for finding redundancies in an ontology or between two
different ontologies needs to inspect the unifier(s) to see whether the definitions
it suggests really make sense.

In [3] it was shown that unification in EL is an NP-complete problem. Basi-
cally, this problem is in NP since every solvable unification problem has a “local”
unifier, i.e., one built from parts of the unification problem. The NP algorithm
introduced in [3] is a brutal “guess and then test” algorithm, which guesses a
local substitution and then checks whether it is a unifier. In [5], a more practi-
cal EL-unification algorithm was introduced, which tries to transform the given
unification problems into a solved form, and makes nondeterministic decisions
only if triggered by the problem. While having the potential of becoming quite
efficient, this algorithm still requires a high amount of additional optimization
work before it can be used in practice. Our system UEL2 is based on a third kind
of algorithm, which encodes the unification problem into a set of propositional
clauses [4], and then solves it using an existing highly optimized SAT solver.

2 EL and unification in EL

In order to explain what UEL actually computes, we need to recall the relevant
definitions and results for EL and unification in EL (see [7,1,5] for details).

Starting with a finite set NC of concept names and a finite set NR of role
names, EL-concept descriptions are built from concept names using the con-
structors conjunction (C u D), existential restriction (∃r.C for every r ∈ NR),
and top (>). On the semantic side, concept descriptions are interpreted as sets.

2 Version 1.0.0 of this system, as described in this paper, is available for download at
http://sourceforge.net/projects/uel/files/uel/1.0.0/.



To be more precise, an interpretation I = (∆I , ·I) consists of a non-empty do-
main ∆I and an interpretation function ·I that maps concept names to subsets
of ∆I and role names to binary relations over ∆I . This function is extended to
concept descriptions as shown in the semantics column of Table 1.

A concept definition is of the form A ≡ C for a concept name A and a
concept description C. A TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a definition in
T . The TBox T is called acyclic if there are no cyclic dependencies between its
concept definitions. Given a TBox T , we call a concept name A a defined concept
if it occurs as the left-side of a concept definition A ≡ C in T . All other concept
names are called primitive concepts. An interpretation is a model of a TBox T
if AI = CI holds for all definitions A ≡ C in T .

Subsumption asks whether a given concept description C is a subconcept
of another concept description D: C is subsumed by D w.r.t. T (C vT D) if
every model of T satisfies CI ⊆ DI . We say that C is equivalent to D w.r.t. T
(C ≡T D) if C vT D and D vT C. For the empty TBox, we write C v D and
C ≡ D instead of C v∅ D and C ≡∅ D, and simply talk about subsumption and
equivalence (without saying “w.r.t. ∅”).

In order to define unification, we partition the set NC of concept names into
a set Nv of concept variables (which may be replaced by substitutions) and
a set Nc of concept constants (which must not be replaced by substitutions).
Intuitively, Nv are the concept names that have possibly been given another
name or been specified in more detail in another concept description describing
the same notion. A substitution σ maps every variable to a concept descrip-
tion. It can be extended to concept descriptions in the usual way. Unification in
EL was first considered w.r.t. the empty TBox [3]. In this setting, an EL-uni-
fication problem is a finite set Γ = {C1 ≡? D1, . . . , Cn ≡? Dn} of equations.
A substitution σ is a unifier of Γ if σ solves all the equations in Γ , i.e., if
σ(C1) ≡ σ(D1), . . . , σ(Cn) ≡ σ(Dn). We say that Γ is solvable if it has a unifier.

As mentioned before, the main reason for solvability of unification in EL to be
in NP is that any solvable unification problem has a local unifier. Basically, any
unification problem Γ determines a polynomial number of so-called non-variable
atoms, which are concept constants or existential restrictions of the form ∃r.A
for a role name r and a concept constant or variable A. An assignment S maps
every concept variable X to a subset SX of the set Atnv of non-variable atoms
of Γ . Such an assignment induces the following relation >S on Nv: >S is the
transitive closure of {(X,Y ) ∈ Nv×Nv | Y occurs in an element of SX}. We call
the assignment S acyclic if >S is irreflexive (and thus a strict partial order). Any
acyclic assignment S induces a unique substitution σS , which can be defined by
induction along >S :

– IfX is a minimal element ofNv w.r.t.>S , then we define σS(X) :=
d
D∈SX

D.
– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we

define σS(X) :=
d
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . In [3] it is shown that any solvable unification



problem has a local unifier. Consequently, one can enumerate (or guess, in a
nondeterministic machine) all acyclic assignments and then check whether any
of them induces a substitution that is a unifier. Using this brute-force approach,
in general many local substitutions will be generated that only in the subsequent
check turn out not to be unifiers.

In contrast, the SAT reduction introduced in [4] ensures that only assign-
ments that induce unifiers are generated. The set of propositional clauses C(Γ )
generated by the reduction contains two kinds of propositional letters: [A 6v B]
for A,B ∈ Atnv and [X > Y ] for concept variables X,Y . Intuitively, setting
[A 6v B] = 1 means that the local substitution σS induced by the corresponding
assignment S satisfies σS(A) 6v σS(B), and setting [X > Y ] = 1 means that
X >S Y . The clauses in C(Γ ) are such that Γ has a unifier iff C(Γ ) is sat-
isfiable. In particular, any propositional valuation τ satisfying C(Γ ) defines an
assignment Sτ with SτX := {A | τ([X 6v A]) = 0, A ∈ Atnv}, which induces a
local unifier of Γ . Conversely, any local unifier of Γ can be obtained in this way.
Thus, by generating all propositional valuations satisfying C(Γ ) we can generate
all local unifiers of Γ .

In [5], unification w.r.t. an acyclic TBox T was introduced. In this setting,
the concept variables are a subset of the primitive concepts of T , and substi-
tutions are applied both to the concept descriptions in the unification problem
and to the right-hand sides of the definitions in T . To deal with such unification
problems, one does not need to develop a new algorithm. In fact, by viewing the
defined concepts of T as variables, one can turn T into a unification problem,
which one simply adds to the given unification problem Γ . As shown in [5], there
is a 1–1-correspondence between the unifiers of Γ w.r.t. T and the unifiers of
this extended unification problem.

3 Things not mentioned in the theoretical papers

When implementing UEL, we had to deal with several issues that are abstracted
away in the theoretical papers describing unification algorithms for EL.

Primitive definitions In addition to concept definitions, as introduced above,
biomedical ontologies often contain so-called primitive definitions A v C where
A is a concept name and C is a concept description. Models I of A v C need
to satisfy AI ⊆ CI . Thus, primitive definitions formulate necessary conditions
for concept membership, but these conditions are not sufficient. SNOMED CT
contains about 350,000 primitive definitions and only 40,000 concept definitions.

By using a trick first introduced by Nebel [9], primitive definitions A v C
can be turned into concept definitions A ≡ C u A UNDEF , where A UNDEF
is a new concept name that stands for the undefined part of the definition of A.
In the resulting acyclic TBox, these new concept names are primitive concepts,
and thus can be declared to be variables. In this case, a unifier σ suggests how to
complete the definition of A by providing the concept description σ(A UNDEF ).



Unifiers as acyclic TBoxes Given an acyclic assignment S computed by the
SAT reduction, our system UEL actually does not produce the corresponding
local unifier σS as output, but rather the acyclic TBox TS := {X ≡

d
D∈SX

D |
X ∈ Nv}. This TBox solves the input unification problem Γ w.r.t. T in the sense
that C ≡T ∪TS

D holds for all equations C ≡? D in Γ . This is actually what
the developer that employs unification wants to know: how must the concept
variables be defined such that the concept descriptions in the equations become
equivalent? Another advantage of this representation of the output is that the
size of S and thus of TS is polynomial in the size of the input Γ and T , while
the size of the concept descriptions σS(X) may be exponential in this size. In
the following, we will also call the TBoxes TS unifiers.

Internal variables The unification algorithms for EL actually assume that
the unification problem is first transformed into a so-called flat form. This form
can easily be generated by introducing auxiliary variables. These new variables
have system-generated names, which do not make sense to the user. Thus, they
should not show up in the output acyclic TBox TS . By replacing such auxiliary
defined concepts in TS by their definitions as long as auxiliary names occur, we
can transform TS into an acyclic TBox that satisfies this requirement, actually
without causing an exponential blow-up of the size of the TBox.

Reachable sub-TBox As mentioned above, acyclic TBoxes are treated by
viewing them as part of the unification problem. For very large TBoxes like
SNOMED CT, adding the whole TBox to the unification problem is neither vi-
able nor necessary. In fact, it is sufficient to add the reachable part of the TBox,
i.e., the definitions onto which the concept descriptions in the unification problem
depend. This reachable part is usually rather small, even for very large TBoxes.

Enumeration of all local unifiers Depending on how many concept names
are turned into variables, a unification problem can have many local unifiers.
If the SAT solver has provided a satisfying propositional valuation, we can add
a clause to the SAT problem that prevents the re-computation of this unifier,
and call the SAT solver with this new SAT instance. While computing a single
unifier is usually quite fast, computing all of them can take much longer. Thus,
we enable the user to compute and then inspect one unifier at a time. If this
unifier makes sense, i.e., suggests reasonable definitions for the variables, then
the user can stop. Otherwise, by pressing a button, the computation of the next
local unifier can be initiated. For this to work well, it is important that “good”
unifiers are computed first. For the moment, we have interpreted “good” as
meaning small, i.e., we want to compute those unifiers first that are generated
by acyclic assignments for which the sets SX are small. It has turned out that
the SAT reduction sketched above actually leads to computing unifiers in the
opposite order, at least if we use a SAT solver that tries to minimize the number
of propositional letters that are set to 1. In fact, setting a letter of the form
[X 6v A] for X ∈ Nv and A ∈ Atnv to 0 rather than 1 adds A to SX . This
problem can be overcome by using propositional letters [A v B] with the obvious
meaning, and basically replacing [A 6v B] in the SAT reduction by ¬[A v B].



4 The system UEL and how to use it

UEL was implemented in Java 1.6 and is compatible with Java 1.7. It uses
the OWL API 3.2.43 to read ontologies. It has a visual interface that can be
used as a Protégé 4.1 plug-in, or as a standalone application. The unification
problem generated by the user through this interface is translated into a propo-
sitional formula in conjunctive normal form using the DIMACS CNF format,4

which is the most popular format used by SAT solvers. As SAT solver, we cur-
rently use SAT4J,5 which is implemented in Java. This configuration is, however,
parametrized and can be easy changed to any SAT solver that accepts DIMACS
CNF input and returns the computed satisfying propositional valuation.

After opening UEL’s visual interface, the first step is to open one or two
ontologies. The second option enables unification of concepts defined in differ-
ent ontologies. The user can then choose two concepts to be unified.6 This is
done by choosing two concept names that occur on the left-hand sides of con-
cept definitions or primitive definitions. UEL then computes the subontologies
reachable from these concept names, and turns the primitive definitions in these
subontologies into concept definitions.

After choosing the concepts to be unified, pressing the button opens
a dialog window in which the user is presented with the primitive concepts
contained in these subontologies (including the ones with ending UNDEF ).
The user can then decide which of these primitive concepts should be viewed as
variables in the unification problem

Once the user has chosen the variables, UEL computes the unification prob-
lem defined this way, and transforms it into a clause set in DIMACS CNF format.
It also opens a dialog window with control buttons. By pressing the button ,
the user triggers the computation of the first unifier (or later, of the next one).
Each computed unifier is shown (as an acyclic TBox) in the dialog window. The
button can be used to go back to the previously computed unifier. The button

can be used to trigger the computation of all (remaining) unifiers, and the
button allows to jump back to the first unifier. Unifiers already computed
are stored, and thus need not be recomputed during navigation. Each unifier
(i.e., the acyclic TBox representing it) can be saved using the RDF/OWL or the
KRSS format by pressing the button . The format for saving is determined
by the file ending typed by the user (.krss or .owl).

The user can use the button to retrieve internal details about the compu-
tation process. These details include the unification problem created internally
by UEL, the number of all concept variables (user chosen and internal variables),
the number of propositional letters, and the number of propositional clauses that
are checked for satisfiability by the SAT solver.

3 http://owlapi.sourceforge.net
4 http://www.satcompetition.org/2004/format-solvers2004.html
5 http://www.sat4j.org
6 Note that a finite set of equations {C1 ≡? D1, . . . , Cn ≡? Dn} can always be encoded

into the single equation {∃r1.C1 u . . . u ∃rn.Cn ≡? ∃r1.D1 u · · · u ∃rn.Dn}, where
r1, . . . , rn are pairwise distinct role names.



5 An example

We consider a modified version of our example in the first section, where the
TBox gives (1) as definition for the concept name Patient with severe head injury
and (2) as definition for the concept name Patient with severe injury at head. In
addition, the TBox contains two primitive definitions, saying that Head injury
and Severe injury are subconcepts of Injury. We load this TBox into UEL and
choose Patient with severe head injury and Patient with severe injury at head as
the concepts to be unified. The system then offers us the primitive concepts
Patient, Severe, Head as well as Head injury UNDEF, Severe injury UNDEF as pos-
sible variables, of which we choose only the latter two.

The SAT translation generates a SAT problem consisting of 3976 clauses and
containing 320 different propositional letters. The first unifier computed by UEL
is the substitution

{Head injury UNDEF 7→ ∃finding site.Head,

Severe injury UNDEF 7→ ∃severity.Severe}.

This unifier thus completes the primitive definitions of the concepts Head injury
and Severe injury to concept definitions Head injury ≡ Injury u finding site.Head
and Severe injury ≡ Injury u ∃severity.Severe.

However, the unification problem has 127 additional local unifiers. Some of
them are similar to the first one, but contain “redundant” conjuncts. Others do
not make much sense in the application (e.g., ones where Patient occurs in the
images of the variables). Computing all 128 local unifiers at once (after pressing
the button ) takes less than 1 second.

References

1. Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

2. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Proc. IJCAI’05, 2005.

3. Franz Baader and Barbara Morawska. Unification in the description logic EL. In
Proc. RTA’09, Springer LNCS 5595, 2009.

4. Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In Proc.
(LPAR-17), Springer LNCS 6397, 2010.

5. Franz Baader and Barbara Morawska. Unification in the description logic EL. Log-
ical Methods in Computer Science, 6(3), 2010.

6. Franz Baader and Paliath Narendran. Unification of concept terms in description
logics. J. of Symbolic Computation, 31(3):277–305, 2001.

7. Franz Baader and Werner Nutt. Basic Description Logics. In The Description Logic
Handbook, Cambridge University Press, 2003.

8. Sebastian Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

9. Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems,
Springer LNCS 422, 1990.


