

EXERCISE 1

Logic

Steffen Hölldobler, Emmanuelle Dietz Saldanha

European Master's Program in Computational Logic — winter semester 2017/2018

Problem 1.1

In definition 3.5 of the course the set $\mathcal{L}(\mathcal{R})$ of strings over a given propositional alphabet $\Sigma_{\mathcal{R}}$ (with \mathcal{R} a set of propositional variables) was defined as the smallest set of strings over $\Sigma_{\mathcal{R}}$ which satisfies certain closure properties, to which we will refer in the following as conditions 1–3. However, the proof of existence of this set $\mathcal{L}(\mathcal{R})$ was just sketched.

Prove *in full detail* the existence of the set $\mathcal{L}(\mathcal{R})$. Proceed stepwise as follows:

1. Show at first that for every propositional alphabet $\Sigma_{\mathcal{R}}$ exists a set \mathcal{Z} of strings, which fulfills conditions 1–3.
2. We define $\mathcal{F} := \{N \mid N \text{ is a set and fulfills conditions 1–3}\}$.
Show that $\bigcap \mathcal{F}$ is a set of strings over $\Sigma_{\mathcal{R}}$.
3. Show that $\bigcap \mathcal{F} := \{H \mid H \in N \text{ for all } N \in \mathcal{F}\}$ fulfills conditions 1–3 as well.
4. Prove the following more general lemma:

For a set \mathcal{N} of sets holds:

If $\bigcap \mathcal{N} \in \mathcal{N}$, then $\bigcap \mathcal{N}$ is the smallest element of \mathcal{N} w.r.t. the \subseteq relation.

5. Show by means of the lemmata (1)–(4) given above that the set $\mathcal{L}(\mathcal{R})$ exists.

Problem 1.2

Motivated by definition 3.5 of propositional formulae we make the following definitions:

A sequence $[z_1, \dots, z_n]$ of strings z_j over a propositional alphabet $\Sigma_{\mathcal{R}}$ is called a *construction* of length n of the string $F \in \Sigma_{\mathcal{R}}^*$ iff

1. $z_n = F$
2. for all z_j ($j \in \{1, \dots, n\}$) one of the following alternatives holds:
 - (a) $z_j \in \mathcal{R}$
 - (b) it exists a $k < j$ such that $z_j = \neg z_k$
 - (c) there exist $k, l < j$ such that $z_j = (z_k \circ z_l)$.

Solve the following problems concerning the concept of a construction just defined.

1. Find constructions of the following formulae.

- (a) $\neg\neg p$
- (b) $(p \rightarrow q)$
- (c) $\neg(p \wedge p)$

2. Are the following sequences of strings correct constructions ?

- (a) $[p_1]$
- (b) $[(p_4 \vee p_2)]$
- (c) $[p_4, p_2, (p_2 \vee p_4)]$
- (d) $[p_2, (p_4 \vee p_2)]$
- (e) $[\neg p_2, p_2]$
- (f) $[p_2, p_5, \neg p_2]$
- (g) $[p_2, \neg p_2, p_2]$

Problem 1.3 (9 points)

We denote by $\mathcal{K}_n(\mathcal{R})$ the set of all strings over $\Sigma_{\mathcal{R}}$ for which exists a construction of length n according to the definitions given in problem 1.2 above, and we define $\mathcal{K}(\mathcal{R}) := \bigcup_{n=1}^{\infty} \mathcal{K}_n(\mathcal{R})$ as the set of all strings over $\Sigma_{\mathcal{R}}$ for which exists a construction of any length.

Show that the equation $\mathcal{L}(\mathcal{R}) = \mathcal{K}(\mathcal{R})$ holds.