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Vertex Cover

Vertex Cover

Input: An undirected graph G = (V, E) and a natural number k

Problem: Does G contain k vertices that touch all edges (vertex cover)?

• A solution is a subset V ′ ⊆ V of size k.

• Brute-force search:
(
n
k

)
possible solutions to check, where n = |V |.

• For fixed k, (
n
k

)
=

n!
k!(n − k)!

=
n(n − 1) · · · (n − k + 1)

k!
= Θ(nk).

• For k = n/2, this is exponential in n:(
n
k

)
=

(
n

n/2

)
≥

2n

n + 1
.
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Kernelization
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Simplify by Preprocessing

Idea: Simplify the problem by making G smaller.

• What vertices are useless in a vertex cover?

– Remove isolated vertices from G.

• What vertices must be in every vertex cover of size k?

– Include a vertex with degree > k into a vertex cover, remove it from G, and
decrement k.

• Apply these reduction rules until 1 ≤ degree(v) ≤ k for every v ∈ V.
• How many edges can be covered by k vertices in the resulting graph?

– At most k2. So, reject if |E| > k2.

• If this graph has a vertex cover S ⊆ V of size k, how many vertices can V contain?

– |V \ S| ≤ k|S| = k2 ⇒ |V | ≤ k2 + k. So, reject if |V | > k2 + k.

• We have obtained a kernel with O(k2) vertices and O(k2) edges.

• Brute-force search needs to consider only
(
k2 + k

k

)
= 2O(k log k) possible solutions.
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Bounded Search Trees

Sergei Obiedkov; 2 Feb 2026 Complexity Theory slide 5 of 25



Edge-Based Recursion

For G = (V, E) and u ∈ V:

Vu = V \ {u} Eu = E ∩ V2
u Gu = (Vu, Eu).

For any (u, v) ∈ E, graph G has a vertex cover of size k if and only if there is a
vertex cover of size k − 1 for graph Gu or graph Gv.

Proof:

⇒ Let S be a vertex cover of G and |S| = k. Then u ∈ S or v ∈ S. Assume u ∈ S. There
are no edges incident to u in Eu ⊆ E. Hence, S \ {u} is a vertex cover of Gu.

⇐ Let Su be a vertex cover of Gu and |Su| = k − 1. Then, for every edge (u′, v′) ∈ E:
– (u′, v′) ∈ Eu ⇒ u′ ∈ Su or v′ ∈ Su

– (u′, v′) < Eu ⇒ u ∈ {u′, v′}

Hence, Su ∪ {u} is a vertex cover of G.
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Edge-Based Recursion

Branching Algorithm

Input: G = (V, E), k ∈ N.

Output: A vertex cover of graph G of size ≤ k if exists.

• If E = ∅, return ∅.

• If k = 0, report that there is no cover of size ≤ k.

• Select an edge (u, v) ∈ E.

• Recursively find a cover S of size ≤ k − 1 for Gu.

If found, return S ∪ {u}.

• Recursively find a cover S of size ≤ k − 1 for Gv.

If found, return S ∪ {v}.

• Report that there is no cover of size ≤ k.

• The execution of the algorithm follows a complete binary tree of height k

• Running time: O(2k |E|), or O(2kk2) if we have already applied kernelization
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Bounded Search Trees

• Let µ be a function associating an instance of an optimization problem with an
integer indicating how hard the instance is.

• Let I be an instance of such a problem.
• In a branching step, generate instances I1, . . . , Iℓ such that

1. For all i, a feasible solution S of Ii corresponds to a feasible solution hi(S) of I;
2. For some i and some feasible solution S of Ii, a solution hi(S) is optimal for I;
3. The number ℓ > 1 is small, e.g., bounded by a function of µ(I) alone;
4. For all i, we have µ(Ii) ≤ µ(I) − c for some constant c > 0.

• We obtain a bounded search tree whose branching is controlled by condition 3 and
depth is controlled by condition 4.
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Edge-Based Recursion

Branching Algorithm

Input: G = (V, E), k ∈ N.

Output: A vertex cover of graph G of size ≤ k if exists.

• If E = ∅, return ∅.

• If k = 0, report that there is no cover of size ≤ k.

• Select an edge (u, v) ∈ E.

• Recursively find a cover S of size ≤ k − 1 for Gu.

If found, return S ∪ {u}.

• Recursively find a cover S of size ≤ k − 1 for Gv.

If found, return S ∪ {v}.

• Report that there is no cover of size ≤ k.

• Running time: O(2k |E|), or O(2kk2) if we have already applied kernelization

Can we use simpler subproblems?
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Edge-Based vs Vertex-Based Recursion

For G = (V, E) and u ∈ V:

Vu = V \ {u} Eu = E ∩ V2
u Gu = (Vu, Eu).

For any (u, v) ∈ E, graph G has a vertex cover of size k if and only if there is a
vertex cover of size k − 1 for graph Gu or graph Gv.

For G = (V, E) and U ⊆ V:

VU = V \ U EU = E ∩ V2
U GU = (VU, EU).

For any u ∈ V, graph G has a vertex cover of size k if and only if there is a vertex
cover of size k − 1 for graph Gu or a vertex cover of size k − |N(u)| in graph GN(u),
where N(u) = {v ∈ V | (u, v) ∈ E}.
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Vertex-Based Recursion

Branching Algorithm

Input: G = (V, E), k ∈ N.

Output: A vertex cover of graph G of size ≤ k if exists.

• u := arg maxv∈V degree(v)
• If degree(u) < 2, solve in linear time.

• If k ≤ 0, report that there is no cover of size ≤ k.

• Recursively find a cover S of size ≤ k − 1 for Gu.

If found, return S ∪ {u}.

• Recursively find a cover S of size ≤ k − |N(u)| for GN(u).

If found, return S ∪ N(u).
• Report that there is no cover of size ≤ k.

• Running time: the number of nodes in the tree × O(|E|)
• How many nodes are there in this tree?
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Vertex-Based Recursion

• Running time: the number of nodes in the tree × O(|E|)

• Such a tree with ℓ leaves contains ≤ 2ℓ − 1 nodes.

• The number of leaves in a tree obtained with the parameter k is at most

T(k) =

T(k − 1) + T(k − 2) if k > 1;

2 otherwise.

• To have T(k) ≤ cλk for some constants c > 0 and λ > 1, it suffices that, for k > 1,

T(k) = T(k − 1) + T(k − 2) ≤ cλk−1 + cλk−2 ≤ cλk.

• This holds when λ + 1 ≤ λ2.

• The smallest λ satisfying this is
1 +
√

5
2

< 1.6181.

• This works if we set c = 2; then, T(0) = 2 = 2 · 1.61810 and T(1) = 2 ≤ 2 · 1.61811.

• Runtime: O(1.6181k |E|), or O(1.6181kk2) if we have already applied kernelization.
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Vertex-Based Recursion

Branching Algorithm

Input: G = (V, E), k ∈ N.

Output: A vertex cover of graph G of size ≤ k if exists.

• u := arg maxv∈V degree(v)
• If degree(u) < 2, solve in linear time.

• If k ≤ 0, report that there is no cover of size ≤ k.

• Recursively find a cover S of size ≤ k − 1 for Gu.

If found, return S ∪ {u}.

• Recursively find a cover S of size ≤ k − |N(u)| for GN(u).

If found, return S ∪ N(u).
• Report that there is no cover of size ≤ k.

Can we use simpler subproblems?
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• u := arg maxv∈V degree(v)
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If found, return S ∪ {u}.

• Recursively find a cover S of size ≤ k − |N(u)| for GN(u).

If found, return S ∪ N(u).
• Report that there is no cover of size ≤ k.

• T(k) = T(k − 1) + T(k − 3)
• Runtime: O(1.4656k |E|), or O(1.4656kk2) if we have already applied kernelization.
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Kernels and Fixed-Parameter Tractability
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Kernel

Definition 29.1: A parameterized problem is a language L ⊆ Σ∗×N for some finite
alphabet Σ. For (x, k) ∈ Σ∗ × N, the number k is the parameter.

Definition 29.2: A kernel for a parameterized problem L ⊆ Σ∗ × N is a function
K computable in polynomial time that maps an instance (x, k) to an equivalent in-
stance (x′, k′)

(x, k) ∈ L ⇐⇒ K(x, k) ∈ L

such that k′ ≤ k and |x′| ≤ s(k), where s is some computable function.

Vertex Cover has a kernel with at most k(k + 1) vertices and at most k2 edges.
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Kernel for Independent Set

Independent Set

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

We’ll use an additional parameter: the maximum degree d of a vertex.

Any graph with ≥ k(d + 1) vertices has an independent set of size k.

Accept if n ≥ k(d + 1); otherwise, solve by brute-force search.

• Kernel: a fixed yes-instance or the (small) graph itself

• Running time: O(n) for counting vertices + f (k, d) for brute-force search FPT
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The class FPT

Definition 29.3: A parameterized problem L ⊆ Σ∗ × N is fixed-parameter tractable
if there exist a constant c, a computable function f : N → N, and an algorithm that
correctly decides whether (x, k) ∈ L in time bounded by

f (k) · |(x, k)|c.

FPT is the class of all fixed-parameter tractable problems.

P ⊆ FPT

If a decidable problem L has a kernel, then L ∈ FPT.
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FPT and Kernels

Theorem 29.4: Every problem in FPT has a kernel.

Proof: Let L ∈ FPT, and let A be an algorithm for L with running time ≤ f (k) · |(x, k)|c.

Kernel for (x, k)
• Let A(x, k) run for time |(x, k)|c+1

• If it terminates and accepts, return some x ∈ L.

• If it terminates and rejects, return some x < L.

• Otherwise, return (x, k).

• The output instance is computed in polynomial time and is equivalent to (x, k).
• If the algorithm terminates, the size of the output is constant.
• If not:

|(x, k)|c+1 < f (k) · |(x, k)|c

|(x, k)| < f (k)
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• If the algorithm terminates, the size of the output is constant.
• If not:

|(x, k)|c+1 < f (k) · |(x, k)|c

|(x, k)| < f (k)
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Slice-wise Polynomial Problems
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The class XP
Definition 29.5: A parameterized problem L ⊆ Σ∗ × N is slice-wise polynomial if
there exist two computable functions f , g : N → N, and an algorithm that correctly
decides whether (x, k) ∈ L in time bounded by

f (k) · |(x, k)|g(k).

XP is the class of all slice-wise polynomial problems.

• Polynomial for each fixed k

• Degree depends on k

P ⊆ FPT ⊆ XP

Example 29.6:

• Clique: Given G, k, does G contain a clique of size k?

• Brute force: O(nk)⇒ in XP

• Believed not to be in FPT
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LP-Based Kernel for Vertex Cover
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Vertex Cover as an Integer Linear Program

Vertex Cover

Input: An undirected graph G = (V, E) and a natural number k

Problem: Does G contain k vertices that touch all edges (vertex cover)?

• Introduce a variable xv for every v ∈ V
• Minimize

∑
v∈V xv subject to

1. xu + xv ≥ 1 for every (u, v) ∈ E
2. 0 ≤ xv ≤ 1 for every v ∈ V
3. xv ∈ Z for every v ∈ V

• Can be solved in polynomial time
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Vertex Cover as a Linear Program

• Minimize
∑

v∈V xv subject to
1. xu + xv ≥ 1 for every (u, v) ∈ E
2. 0 ≤ xv ≤ 1 for every v ∈ V

• Consider a solution to this problem. Denote

V0 =

{
v ∈ V | xv <

1
2

}
V 1

2
=

{
v ∈ V | xv =

1
2

}
V1 =

{
v ∈ V | xv >

1
2

}

Theorem 29.7: G has a minimum vertex cover S such that V1 ⊆ S ⊆ V1 ∪ V 1
2
.

Proof: See blackboard.

Reduction rule: If
∑

v∈V xv > k, return a no-instance. Otherwise, include V1

in the vertex cover, remove V0 and V1 from G, and decrease k by |V1|.

This gives a kernel with ≤ 2k vertices.
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Outlook

What’s next?

• Summary and consultation

• Examinations
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