
DATABASE THEORY

Lecture 13: Datalog Expressivity and Containment

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 2 June 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2025)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Datalog
A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

There are three equivalent ways of defining Datalog semantics:
• Proof-theoretic: What can be proven deductively?
• Operational: What can be computed bottom up?
• Model-theoretic: What is true in the least model?

Datalog is more complex than FO query answering:
• ExpTime-complete for query and combined complexity
• P-complete for data complexity

Next question: Is Datalog also more expressive than FO query answering?
Markus Krötzsch, 2 June 2025 Database Theory slide 2 of 27

Expressivity

Markus Krötzsch, 2 June 2025 Database Theory slide 3 of 27

The Big Picture

Where does Datalog fit in this picture?

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Markus Krötzsch, 2 June 2025 Database Theory slide 4 of 27

Expressivity of Datalog

Datalog is P-complete for data complexity:

• Entailments can be computed in polynomial time with respect to the size of the
input database I

• There is a Datalog program P, such that all problems that can be solved in
polynomial time can be reduced to the question whether P entails some fact over a
database I that can be computed in logarithmic space.

{ So Datalog can solve all polynomial problems?

No, it can’t. Many problems in P that cannot be solved in Datalog:

• Parity: Is the number of elements in the database even?

• Connectivity: Is the input database a connected graph?

• Is the input database a chain (or linear order)?

• . . .

Markus Krötzsch, 2 June 2025 Database Theory slide 5 of 27

Datalog Expressivity and Homomorphisms

How can we know that something is not expressible in Datalog?

A useful property: Datalog is “closed under homomorphisms”

Theorem 13.1: Consider a Datalog program P, an atom A, and databases I and
J . If P entails A over I, and there is a homomorphism µ from I to J , then µ(P)
entails µ(A) over J .

(By µ(P) and µ(A) we mean the program/atom obtained by replacing constants in P and
A, respectively, by their µ-images.)

Proof (sketch):

• Closure under homomorphism holds for conjunctive queries

• Single rule applications are like conjunctive queries

• We can show the claim for all T i
P,I by induction on i □

Markus Krötzsch, 2 June 2025 Database Theory slide 6 of 27

Limits of Datalog Expressiveness

Closure under homomorphism shows many limits of Datalog

Special case: there is a homomorphism from I to J if I ⊂ J
{ Datalog entailments always remain true when adding more facts

• Parity cannot be expressed

• Connectivity cannot be expressed

• It cannot be checked if the input database is a chain

• Many FO queries with negation cannot be expressed (e.g., ¬p(a))
• . . .

However this criterion is not sufficient!
Datalog cannot even express all polynomial time query mappings that are closed under
homomorphism

Markus Krötzsch, 2 June 2025 Database Theory slide 7 of 27

Capturing PTime in Datalog

How could we extend Datalog to capture all query mappings in P?
{ semipositive Datalog on an ordered domain

Definition 13.2: Semipositive Datalog, denoted Datalog⊥, extends Datalog by al-
lowing negated EDB atoms in rule bodies.
Datalog (semipositive or not) with a successor ordering assumes that there are
special EDB predicates succ (binary), first and last (unary) that characterise an
(arbitrary) total order on the active domain.

Semipositive Datalog with a total order corresponds to standard Datalog on an extended
version of the given database:

• For each ground fact r(c1, . . . , cn) with I ̸|= r(c1, . . . , cn), add a new fact r̄(c1, . . . , cn)
to I, using a new EDB predicate r̄

• Replace all uses of ¬r(t1, . . . , tn) in P by r̄(t1, . . . , tn)
• Define extensions for the EDB predicates succ, first and last to characterise some

(arbitrary) total order on the active domain.

Markus Krötzsch, 2 June 2025 Database Theory slide 8 of 27

A PTime Capturing Result

Theorem 13.3: A Boolean query mapping defines a language in P if and only if it
can be described bya a query in semipositive Datalog with a successor ordering.

aWhere “described by” means that there is a program that decides the BCQ for every
database and every choice of successor ordering.

Example 13.4: We can express Connectivity for binary graphs as follows:

Reachable(x, x)←

Reachable(x, y)← Reachable(y, x)

Reachable(x, z)← Reachable(x, y) ∧ edge(y, z)

Connected(x)← first(x)

Connected(y)← Connected(x) ∧ succ(x, y) ∧ Reachable(x, y)

Accept()← last(x) ∧ Connected(x)

Markus Krötzsch, 2 June 2025 Database Theory slide 9 of 27

Datalog Expressivity: Summary

The PTime capturing result is a powerful and exhaustive characterisation for
semipositive Datalog with a successor ordering

Situation much less clear for other variants of Datalog (as of 2025):
• What exactly can we express in Datalog without EDB negation and/or successor

ordering?
– Does a weaker language suffice to capture PTime? { No!
– When omitting negation, do we get query mappings closed under homomorphism?

No!1 (but they are closed under bijective homomorphisms)

• How about query mappings in PTime that are closed under homomorphism?
– Does plain Datalog capture these? { No!2

– Does Datalog with successor ordering capture these? { No!3

1Counterexample on previous slide
2[A. Dawar, S. Kreutzer, ICALP 2008]
3[S. Rudolph, M. Thomazo, IJCAI 2016]: “We are somewhat baffled by this result: in order to

express queries which satisfy the strongest notion of monotonicity, one cannot dispense with
negation, the epitome of non-monotonicity.”
Markus Krötzsch, 2 June 2025 Database Theory slide 10 of 27

The Big Picture

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Datalog Queries
Data compl.: PTime, Comb./Query compl.: ExpTime

= semipositive Datalog with a successor ordering

Note: languages that capture the same query mappings must have the same data complexity, but
may differ in combined or in query complexity
Markus Krötzsch, 2 June 2025 Database Theory slide 11 of 27

Datalog Containment

Markus Krötzsch, 2 June 2025 Database Theory slide 12 of 27

Datalog Implementation and Optimisation

How can Datalog query answering be implemented?
How can Datalog queries be optimised?

Recall: static query optimisation

• Query equivalence

• Query emptiness

• Query containment

{ all undecidable for FO queries, but decidable for (U)CQs

Markus Krötzsch, 2 June 2025 Database Theory slide 13 of 27

Learning from CQ Containment?

How did we manage to decide the question Q1
?
⊑ Q2 for conjunctive queries Q1 and Q2?

Key ideas were:

• We want to know if all situations where Q1 matches are also matched by Q2.

• We can simply view Q1 as a database IQ1 : the most general database that Q1 can
match to

• Containment Q1
?
⊑ Q2 holds if Q2 matches the database IQ1 .

{ decidable in NP

A CQ Q[x1, . . . , xn] can be expressed as a Datalog query with a single rule
Ans(x1, . . . , xn)← Q
{ Could we apply a similar technique to Datalog?

Markus Krötzsch, 2 June 2025 Database Theory slide 14 of 27

Checking Rule Entailment

The containment decision procedure for CQs suggests a procedure for single Datalog
rules:

• Consider a Datalog program P and a rule H ← B1 ∧ . . . ∧ Bn.
• Define a database IB1∧...∧Bn as for CQs:

– For every variable x in H ← B1 ∧ . . . ∧ Bn,
we introduce a fresh constant cx, not used anywhere yet

– We define Hc to be the same as H but with each variable x replaced by cx;
similarly we define Bc

i for each 1 ≤ i ≤ n
– The database IB1∧...∧Bn contains exactly the facts Bc

i (1 ≤ i ≤ n)
• Now check if Hc ∈ T∞P (IB1∧...∧Bn):

– If no, then there is a database on which H ← B1 ∧ . . . ∧ Bn

produces an entailment that P does not produce.
– If yes, then P |= H ← B1 ∧ . . . ∧ Bn

Markus Krötzsch, 2 June 2025 Database Theory slide 15 of 27

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbreviate as I)
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz)} ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).
Markus Krötzsch, 2 June 2025 Database Theory slide 16 of 27

Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?

{ No! In fact, Datalog containment is undecidable. What’s wrong?

Markus Krötzsch, 2 June 2025 Database Theory slide 17 of 27

Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries ⟨A, P1⟩ and ⟨B, P2⟩:

• Clearly, ⟨A, P1⟩ and ⟨B, P2⟩ are equivalent (and mutually contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names matter in first-order
implications

Markus Krötzsch, 2 June 2025 Database Theory slide 18 of 27

Datalog as Second-Order Logic
Datalog is a fragment of second-order logic:
IDB predicates are like variables that can take any set of tuples as value!

Example 13.5: The previous query ⟨A, P1⟩ can be expressed by the formula

∀A.

 ∀x, y.A(x, y) ← parent(x, y) ∧

∀x, y, z.A(x, z) ← parent(x, y) ∧ A(y, z)

→ A(v, w)

• This is a formula with two free variables v and w.
{ query with two result variables

• Intuitive semantics: “⟨c, d⟩ is a query result if A(c, d) holds
for all possible values of A that satisfy the rules”
{ Datalog semantics in other words

We can express any Datalog query like this, with one second-order variable per IDB
predicate.
Markus Krötzsch, 2 June 2025 Database Theory slide 19 of 27

First-Order vs. Second-Order Logic

A Datalog program looks like a set of first-order implications,
but it has a second-order semantics

We have already seen that Datalog can express things that are impossible to express in
FO queries – that’s why we introduced it!1

Consequences for query optimisation:

• Entailment between sets of first-order implications is decidable (shown above)

• Containment between Datalog queries is not decidable (shown next)

1Possible confusion when comparing of FO and Datalog: entailments of first-order implications agree with
answers of Datalog queries, so it seems we can break the FO locality restrictions; but query answering is
model checking not entailment; FO model checking is much weaker than second-order model checking
Markus Krötzsch, 2 June 2025 Database Theory slide 20 of 27

Undecidability of Datalog Query Containment

A classical undecidable problem:

Post Correspondence Problem:

• Input: two lists of words α1, . . . ,αn and β1, . . . , βn

• Output: “yes” if there is a sequence of indices i1, i2, i3, . . . , im such that
αi1αi2αi3 · · ·αim = βi1βi2βi3 · · · βim .

{ we will reduce PCP to Datalog containment

We need to define Datalog programs that work on databases that encode words:

• We represent words by chains of binary predicates

• Binary EDB predicates represent letters

• For each letter σ, we use a binary EDB predicate letter[σ]
• We assume that the words αi have the form ai

1 · · · a
i
|αi |

, and that the words βi have
the form bi

1 · · · b
i
|βi |

Markus Krötzsch, 2 June 2025 Database Theory slide 21 of 27

Solving PCP with Datalog Containment

A program P1 to recognise potential PCP solutions.

Rules to recognise words αi and βi for every i ∈ {1, . . . , n}:

Ai(x0, x|αi |)← letter[ai
1](x0, x1) ∧ . . . ∧ letter[ai

|αi |
](x|αi |−1, x|αi |)

Bi(x0, x|βi |)← letter[bi
1](x0, x1) ∧ . . . ∧ letter[bi

|βi |
](x|βi |−1, x|βi |)

Rules to check for synchronised chains (for all i ∈ {1, . . . , n}):

PCP(x, y1, y2)← Ai(x, y1) ∧ Bi(x, y2)

PCP(x, z1, z2)← PCP(x, y1, y2) ∧ Ai(y1, z1) ∧ Bi(y2, z2)

Accept()← PCP(x, z, z)

Markus Krötzsch, 2 June 2025 Database Theory slide 22 of 27

Solving PCP with Datalog Containment (2)

Example: α1 = aa, β1 = a, α2 = b, β2 = aab

Example for an intended database and least model (selected parts):

letter[a]letter[a] letter[a] letter[a] letter[b]
1 2 3 4 5 6

A1

A2

A1

B1B1

B2

Additional IDB facts that are derived (among others):

PCP(1, 3, 2) PCP(1, 5, 3) PCP(1, 6, 6) Accept()

Markus Krötzsch, 2 June 2025 Database Theory slide 23 of 27

Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()

Markus Krötzsch, 2 June 2025 Database Theory slide 24 of 27

Solving PCP with Datalog Containment (4)
Solution: specify a program P2 that recognises all unwanted cases

P2 consists of the following rules (for all letters σ,σ′):

EP(x, x)←

EP(y1, y2)← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ](x2, y2)

Accept()← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ′](x2, y2) σ , σ′

NEP(x1, y2)← EP(x1, x2) ∧ letter[σ](x2, y2)

NEP(x1, y2)← NEP(x1, x2) ∧ letter[σ](x2, y2)

Accept()← NEP(x, x)

Intuition:
• EP defines equal paths (forwards, from one starting point)
• NEP defines paths of different length (from one starting point to the same end

point)

{ P2 accepts all databases with distinct parallel paths
Markus Krötzsch, 2 June 2025 Database Theory slide 25 of 27

Solving PCP with Datalog Containment (5)

What does it mean if ⟨Accept, P1⟩ is contained in ⟨Accept, P2⟩?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem 13.6: Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is easy to decide in polynomial time)

Markus Krötzsch, 2 June 2025 Database Theory slide 26 of 27

Summary and Outlook

Datalog cannot express all query mappings in P . . .

. . . but semipositive Datalog with a successor ordering can

First-order rule entailment is decidable . . .

. . . but Datalog containment is not.

Next question:

• How can we implement Datalog in practice?

Markus Krötzsch, 2 June 2025 Database Theory slide 27 of 27

