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Abstract
In situations where expert committees face significant uncertainty while assessing the likelihood of
events, it is crucial to appropriately represent and aggregate their probabilistic opinions. In this work, we
adopt the epistemological concept of imprecise probabilities to capture an expert’s belief and employ the
Condorcet Jury Theorem (CJT) for aggregating these beliefs through voting. To suit our requirements, we
utilize a generalized version of the CJT and integrate imprecise probabilistic beliefs using a framework
based on supervaluationism, a philosophical theory that addresses vagueness. Drawing inspiration from
the field of expert elicitation research, we provide an interpretation of the alternatives in the voting
process: Experts express their preferences by voting for probability intervals, referred to as bins. In this
setting, each bin corresponds to a subinterval of the unit interval such that exactly one bin contains
the objective probability for the event under evaluation to occur. Finally, we establish a bound on the
maximum number of alternatives allowed in an election, which directly corresponds to the achievable
precision in the aggregation process.
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1. Introduction

Consider the following four events. There will occur major changes in (i) the Atlantic meridional
overturning circulation; (ii) the Greenland ice sheet; (iii) the West Antarctic ice sheet; (iv) the
Amazon rainforest and El Nino/Southern Oscillation [1]. What is the probability that at least
one of these events will trigger when we face an increase of global mean temperature relative
to year 2000 of 2-4 degree Celsius [1]?

Assessing such probabilities is not only crucial for climate policy but also common across var-
ious disciplines when determining the likelihood of events under severe uncertainty. Answering
questions like the one above often requires aggregating and evaluating the probabilistic beliefs
of multiple experts. This latter process is the focal point of a discipline referred to as expert
elicitation. On a theoretical level, when evaluating events characterized by severe uncertainty,
two fundamental questions must be addressed:

(1) How can we appropriately represent the probabilistic beliefs of experts?

(2) What constitutes a reasonable method for aggregation?
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In this work, we tackle the first question by modeling experts’ beliefs using imprecise proba-
bilities. To address the second question, we demonstrate how imprecise probabilistic beliefs
can be aggregated through voting, leveraging the Condorcet Jury Theorem (CJT). To accomplish
this, we initially introduce the original version of the CJT, followed by the generalized variant
that is central to our aggregation scenario. Subsequently, we present the imprecise model of
belief and illustrate how it can be applied to voting by embedding it into a specific theory of
vagueness known as supervaluationism. Next, we incorporate imprecise beliefs into the CJT
framework, establishing a direct relationship between the number of alternatives experts can
vote on and the precision achievable in the aggregation process. Finally, we provide an upper
bound on the maximal permissible precision, which depends on the size and competence of the
expert committee.

2. The Condorcet Jury Theorem

The CJT is a theoretical cornerstone from voting theory. In a voting setting, a set of agents
may vote on a (possibly restricted) set of alternatives. A fundamental assumption of the CJT
is that exactly one of those assumptions is correct in that it represents an underlying ground
truth. The CJT then provides probabilistic guarantees for the capacity of the agents to identify
the presumed ground truth through voting. In order to derive these probabilistic guarantees, a
few central assumptions are made about the voting setting. In its original variant, it states that
for a group of independent, equally competent agents with a better-than-chance probability to
identify the true of two alternatives, majority voting best tracks this true state.

Theorem 1 (Marquis de Condorcet 1785). For odd-numbered homogenous groups of independent
and reliable agents in a dichotomic voting setting, the probability that majority voting identifies
the correct alternative

(1) increases monotonically with the number of agents and (non-asymptotic part)

(2) converges to 1 as the number of agents goes to infinity (asymptotic part).

Given the inherent limitations and unrealistic assumptions associated with real-world appli-
cations of the Condorcet Jury Theorem (CJT), significant research has been devoted to finding
generalizations that relax these assumptions while still preserving the core principles. While the
asymptotic part of the theorem has been subject to generalizations, it has been demonstrated
that the non-asymptotic part fails for small numbers of agents when the assumption of equal
voter competence is weakened [3]. Furthermore, this failure persists even for arbitrarily large
numbers of voters [4]. The specific generalization of the CJT that we consider for aggregating
probabilistic opinions is proposed by Karge and Rudolph 2022. This generalization relaxes many
of the aforementioned assumptions. It assumes that the agents in the election are independent
but allows for heterogeneous competence levels, including the possibility of totally incompetent
voters. Moreover, this generalization permits any finite number of alternatives under approval
voting [4].

Our Contribution. In this work, we address a sometimes overlooked, implicit assumption
underlying the CJT. Namely, that the agents are assumed to hold binary beliefs where an agent



either believes in a proposition and, presumably, votes for it, or does not. However, developing
a jury theorem that can aggregate non-binary beliefs, such as probabilistic opinions, remains
an open problem [5]. We aim to take a step towards addressing this limitation by incorporating
imprecise probabilistic beliefs into the results of Karge and Rudolph 2022.

After providing an intuitive introduction to the CJT and the central generalization in our
context, we proceed to present the formal framework of the Karge and Rudolph 2022 general-
ization in more technical detail. We first elaborate on the approval voting setting, followed by
an exposition of the formal probabilistic framework.

Approval Voting. In the approval voting setting, we assume a finite set 𝒲 = {𝜔1, . . . , 𝜔𝑚}
of 𝑚 items referred to as alternatives as well as a finite set 𝒜 = {𝑎1, . . . , 𝑎𝑛} of 𝑛 agents. Note
that among the 𝑚 alternatives there is exactly one alternative that we consider to be correct.
This correct alternative is denoted by 𝜔*.

Given𝒜 and𝒲 , a single election based on approval voting is given by the relation 𝑉 ⊆ 𝒜×𝒲
where (𝑎𝑖, 𝜔𝑗) ∈ 𝑉 means that agent 𝑎𝑖 approves choice 𝜔𝑗 . Moreover, the score #𝑉 𝜔 of some
alternative 𝜔 ∈ 𝒲 is defined as the overall number of votes that 𝜔 receives, i.e.,

#𝑉 𝜔 = |{𝑎𝑖 ∈ 𝒜𝑛 | (𝑎𝑖, 𝜔) ∈ 𝑉 }|.

Finally, an alternative 𝜔 ∈ 𝒲 wins the approval vote 𝑉 if it receives strictly higher scores
(that is: strictly more votes) than any other alternative, that is,

#𝑉 𝜔 > max
𝜔′∈𝒲∖{𝜔}

#𝑉 𝜔′.

Probabilistic Framework. As usual, the described scenario is modeled as a random process.
This process generates 𝜔* as well as 𝑉 and is governed by a joint probability distribution P
over the Bernoulli (i.e., {0, 1}-valued) random variables 𝑋𝜔1

* , ..., 𝑋𝜔𝑚
* as well as 𝑋𝜔1

𝑖 , ..., 𝑋𝜔𝑚
𝑖

for all agents 1, ..., 𝑖, ..., 𝑛 such that the values taken by these random variables represent the
outcome of a voting event as follows: 𝑋𝜔𝑗

* is 1 if 𝜔𝑗 is the actual world state (i.e., 𝜔𝑗 = 𝜔*), and
0 otherwise, whereas 𝑋𝜔𝑗

𝑖 is 1 if the 𝑖th agent voted for the 𝑗th world state (i.e., (𝑎𝑖, 𝜔𝑗) ∈ 𝑉 )
and 0 otherwise.

In a next step, we state the fundamental assumptions necessary for the generalization of the
CJT considered here. In the presentation of these assumptions, we let [𝜔* = 𝜔𝑗 ] denote the
expression 𝑋

𝜔𝑗
* =1 ∧

⋀︀
𝜔∈𝒲∖{𝜔𝑗}𝑋

𝜔
* =0. The first assumption that needs to be imposed is that

the agents do not influence each other in their decision whether or not to approve some choice.

Definition 1. A joint distribution satisfies agent approval independence if, conditioned on the
actual world state, the decision to approve any given 𝜔𝑗 is made independently across all agents,
i.e., for any 𝜔, 𝜔𝑗 ∈ 𝒲 and any sequence 𝑣1, ..., 𝑣𝑛 of values from {0, 1} the following holds:

P
(︁ 𝑛⋀︁
𝑖=1

𝑋
𝜔𝑗

𝑖 = 𝑣𝑖 | [𝜔*=𝜔]
)︁
=

𝑛∏︁
𝑖=1

P
(︁
𝑋

𝜔𝑗

𝑖 = 𝑣𝑖 | [𝜔*=𝜔]
)︁
.

The second central assumption that we need to impose is that the agents are on average more
likely to identify the correct alternative than any competing one.



Definition 2. A joint probability distribution satisfies Δ𝑝-group reliability for some Δ𝑝 > 0, if
the probability to approve the true world state, averaged across all agents, is at least by Δ𝑝 higher
than the averaged probability for approving any other state, i.e., for every 𝜔, 𝜔′ ∈ 𝒲 with 𝜔 ̸= 𝜔′

the following holds:

1
𝑛

𝑛∑︁
𝑖=1

P
(︁
𝑋𝜔

𝑖 =1 | [𝜔*=𝜔]
)︁
≥ Δ𝑝 + 1

𝑛

𝑛∑︁
𝑖=1

P
(︁
𝑋𝜔′

𝑖 =1 | [𝜔*=𝜔]
)︁
.

For simplicity, we refer to a voting setting satisfying those two assumptions as I&R (for
independent and reliable). As final definition for the probabilistic setting, we characterize the
chance for the correct alternative to be identified through approval voting.

Definition 3. Given a family 𝒫 of joint probability distributions for 𝑛 agents and a set 𝒲 of 𝑚
choices, the approval vote worst-case success probability 𝑃wcs

𝑚,𝑛 is defined by

min
P∈𝒫
𝜔∈𝒲

P
(︁ ⋀︁

𝜔†∈𝒲∖{𝜔}

∑︀𝑛
𝑘=1𝑋

𝜔
𝑘 >

∑︀𝑛
𝑘=1𝑋

𝜔†
𝑘 | [𝜔* = 𝜔]

)︁
.

With that, we can more formally restate the generalization of the CJT that is central to this
work:

Theorem 2 (Generalized CJT). In any I&R setting with fixed 𝑚 ≥ 2 and Δ𝑝 > 0 holds
𝑃wcs
𝑚,𝑛 −−−→

𝑛→∞
1 [4].

In words, for any independent and reliable setting with at least two alternatives and a positive
Δ𝑝-value the worst-case probability for the correct alternative to be identified converges to 1 as
the number of agents goes to infinity.

Beyond the convergence behavior in the infinite, it is possible to derive concrete guarantees
in the finite. Exploiting Hoeffding’s inequality [6] as well as the Chebyshev-Cantelli inequality
[7, 8], two ways were established in Karge and Rudolph 2022 to bound the number 𝑛 of agents
needed to guarantee a success probability 𝑃min when choosing among 𝑚 options. We take the
minimum of both.

Theorem 3. In a Δ𝑝-group reliable setting with 𝑚 choices, the worst case approval vote success
probability is at least 𝑃min whenever the number of agents is equal or higher than

min
(︁

2
Δ𝑝2

ln𝑄, 1 +
(︀

1
Δ𝑝2

− 1
)︀
𝑄
)︁
, (1)

where 𝑄 = 2 𝑚−1
1−𝑃min

is the twofold ratio between the number of incorrect alternatives and the
admissible error probability.

This bound on the required number of agents will play a crucial role in a later part of this
paper, where it will be utilized to estimate the maximal permissible precision when aggregating
probabilistic opinions through voting.

In essence, the CJT is a mathematical theorem that provides asymptotic guarantees for
effectively identifying an underlying truth through voting. The theorem has been generalized
to accommodate more realistic assumptions and enable practical estimates of the number of
agents required to track the truth. In the subsequent sections, we establish the groundwork
for the generalization that facilitates the aggregation of probabilistic beliefs by introducing a
formal model for representing those beliefs.



3. Imprecise Probabilities and Voting

In this section, we first introduce the imprecise probability model of an agent’s belief that will
be used in our setting. Second, we illustrate how imprecise probabilistic beliefs can be used
in decision-making. For this latter objective, we embed the underlying belief model into a
philosophical account for vagueness that is referred to as supervaluationism. The presentation
of both frameworks builds upon and extends the one in Karge 2023.

3.1. Probabilistic Beliefs

When it comes to representing probabilistic beliefs, the classical approach is to use a single
probability function to capture an agent’s confidence in various propositions. This function
assigns a real number between 0 and 1 to each proposition, reflecting the agent’s degree of
belief in that proposition. This approach can be defined as follows:

Definition 4 (Probability Function). A probability functionP is a functionP : 2Ω → R, satisfying
the probability axioms [10].

Here, Ω represents a set of possible worlds or states of affairs, and propositions are subsets
of Ω. However, when evaluating propositions with severe uncertainty, such as the example of
proposition A, which will serve as our running example, it becomes implausible to represent
belief states with a single probability function [11].

Example 1 (Proposition A). Global sea level will rise at least 1,5 meters until the year 2100 above
the level of 2000.

The question arises: What precise probability should the agent assign to proposition A? The
traditional approach of representing an agent’s belief with a single probability function requires
a specific value to be given [12]. However, for propositions characterized by severe uncertainty,
using a single probability function seems highly implausible [11]. An alternative approach is to
define degrees of belief based on imprecise probabilities:

Definition 5 (Imprecise Probabilities). Imprecise probabilities are sets of probability functions
[13].

We refer to a specific set of probability functions as the agent’s representor, denoted by 𝒫 [13].
To represent the range of values assigned by the representor to a proposition more compactly,
we introduce the concept of an imprecise degree of belief :

Definition 6 (Imprecise Degree of Belief). An agent’s imprecise degree of belief in a proposition
𝐻 is represented by a function, 𝒫(𝐻), with 𝒫(𝐻) = {P(𝐻) : P ∈ 𝒫} [14].

When experts evaluate statements such as proposition A, imprecise probabilities aim at
reflecting the unspecific nature of the evidence that experts typically receive. Intuitively, this is
achieved by considering all values that are not excluded by the evidence [15]. Following this
line of reasoning, an additional assumption is often made when modeling an agent’s imprecise
degree of belief. More formally, it is assumed that the set of probability functions in the agent’s
representor is convex:



Definition 7. A set 𝐶 is convex if, for all 𝑥, 𝑦 ∈ 𝐶 and all 𝑡 ∈ [0, 1] it holds that the point
[(1− 𝑡)𝑥+ 𝑡𝑦] ∈ 𝐶 [16].

Convexity implies that for any two points in a set, the line segment connecting them is also
within the set. Under this assumption, an agent’s imprecise degree of belief can be represented
as intervals [16] where the agent’s belief is spread over all values not excluded by the evidence
she may have. This leads to the following representation of imprecise degrees of belief illustrated
at the example of proposition A:

Example 2. Assume, the agent’s representor consists of three probability functions that assign
event A values from the set {0.4, 0.6, 0.8}. By convexity, we may represent the agent’s imprecise
degree of belief with 𝒫(𝐴) = [0.6, 0.8]. Thus, our agent is 60− 80% confident that event A will
occur, i.e., that proposition A is true.

To summarize, we model an agent’s probabilistic beliefs using imprecise probabilities, where
the agent assigns an imprecise degree of belief (a sub-interval of the unit interval) to each
proposition, reflecting their confidence. Unlike precise probabilistic beliefs, this imprecise
model allows for a more natural representation of scenarios involving severe uncertainty. After
formalizing the model of an agent’s beliefs based on imprecise probabilities, we incorporate
imprecise probabilistic beliefs into supervaluationism, which provides a convenient framework
for handling various decision-making scenarios, including voting, based on this belief model.

3.2. Supervaluationism

Consider a vague predicate such as tall. Vague predicates can be made more precise by intro-
ducing cutoff points. For example, one person may consider being tall to mean a height of at
least 180cm, while another person may set the cutoff at 185cm. Each cutoff point represents
a precisification of the predicate [17]. When evaluating the truth value of a proposition that
contains a vague predicate, supervaluationism requires complete agreement among the precisi-
fications regarding its truth value [18]. In supervaluationism, complete agreement refers to a
proposition being either determinately true or determinately false.

In standard supervaluationism, a proposition is deemed determinately true if it is true accord-
ing to all admissible precisifications. Conversely, a proposition is considered determinately false
if it is false according to all admissible precisifications. Additionally, supervaluationism allows
for propositions to have no semantic value, meaning that if a proposition is true according to
some, but not all, admissible precisifications, it is considered indeterminate whether it is true
[12].

In an extension of supervaluationism, referred to as modified supervaluationism (MSV), the
notion of propositions being determinately true is replaced by propositions being predominantly
true:

Definition 8 (Predominantly True). A proposition is predominantly true if it is true according to
a relative majority of admissible precisifications [19].

Both in the standard and modified supervaluationistic frameworks, imprecise probabilities
can be effectively captured by appropriately defining admissible precisifications [12]. Working



on convex sets for the imprecise degree of belief, we define admissible precisifications to be the
probability values in the imprecise degree of belief reported by the agent.

To establish a coherent model of belief, the combination of supervaluationism and imprecise
probabilities must provide a sound concept for comparing the confidence an agent has in
different propositions.

Definition 9 (Predominant Confidence). Given two propositions, A and B, an agent is considered
to be predominantly more confident in proposition A than in proposition B if a greater proportion
of elements within the agent’s imprecise degree of belief satisfy the condition 𝑃𝑟(𝐴) > 𝑃𝑟(𝐵).

This definition allows us to compare the relative confidence an agent has in different propo-
sitions based on their respective probability values within the agent’s imprecise degree of
belief.

Observe that determining whether an agent is predominantly more confident in a proposition
than in another involves measuring a potentially uncountable number of probability values,
which are the precisifications derived from the agent’s imprecise degree of belief. In order to
achieve this, we note that in our setting, admissible precisifications are confined to the unit
interval [0, 1]. The standard way to measure the length of an interval is to apply the Lebesque
Measure. For any closed, [𝑎, 𝑏], open, (𝑎, 𝑏), or half open, (𝑎, 𝑏] or [𝑎, 𝑏), interval it holds that
its Lebesque measure is of length 𝑙 = 𝑏− 𝑎. Applying the Lebesque measure to MSV, we can
determine the proportion of elements in favor of a proposition by measuring the length of the
corresponding interval.

Example 3. Consider proposition A and its complement B, i.e. global sea level will not rise at
least 1,5 meters until the year 2100 above the level of 2000. Suppose we have 𝒫(𝐻) = [0.4, 1] as
our agent’s imprecise degree of belief. For those elements represented by (0.5, 1] it holds true that
𝑃𝑟(𝐴) > 𝑃𝑟(𝐵). For those represented by [0.4, 0.5) we have 𝑃𝑟(𝐵) > 𝑃𝑟(𝐴). Taking their
Lebesque measure, we receive 𝑙(𝐴) = 0.5 as well as 𝑙(𝐵) = 0.1. Thus, the agent is predominantly
more confident in proposition A.

With the MSV interpretation of imprecise probabilities, our next objective is to incorporate this
model into voting scenarios. Having defined the voting setting and established how imprecise
probabilities can be integrated into modified supervaluationism, we now informally describe
how agents vote based on their imprecise beliefs.

Definition 10. Given a set of alternatives 𝒲 = {𝜔1, . . . , 𝜔𝑚} and set of agents 𝒜 =
{𝑎1, . . . , 𝑎𝑛}, agent 𝑎𝑖 approves alternative 𝜔𝑗 if the agent is predominantly more confident
in that alternative than in its competitors.

However, to provide a more formal definition, we need to specify what constitutes an alter-
native in our setting. This will be addressed in the next section, where we incorporate voting
based on imprecise beliefs into the CJT framework.

4. Embedding

Upon establishing an agent’s imprecise beliefs and presenting an approach to voting based
on those beliefs through modified supervaluationism, as well as delineating the CJT and its



underlying voting setting with its probabilistic assumptions, we now integrate these concepts
to incorporate imprecise probabilistic beliefs into the CJT voting setting.

4.1. The Alternatives

To recap our main goal, we aim to determine the likelihood of a statement, such as proposition A,
in our framework. We have a finite set of agents, each holding an imprecise probabilistic belief
in that proposition. These beliefs will be aggregated through voting, where each agent votes for
the alternative they are predominantly confident in. In the final step, the alternative that receives
the most votes wins the election and represents the aggregated probabilistic assessment of the
event, such as proposition A. Following this general aggregation procedure, each alternative
represents a probabilistic assessment of the event by itself.

As discussed earlier a central assumption underlying the CJT is that one of the given alter-
natives is correct. What exactly does that mean in our setting where we aim at aggregating
probabilistic opinions? A first idea is: an alternative represents a precise probability for an
event to occur assuming an event has an underlying, objective probability. Then, given a set of
alternatives where each represents a single probabilistic value, and given the imprecise degrees
of beliefs of the agents, these agents vote for one or multiple of the single, precise values based
on their beliefs.

However, in real-world applications, agents typically vote for a limited and finite set of
alternatives. This introduces a problem with respect to an agent’s degree of belief, as proba-
bilities can be arbitrarily precise. If we were to model alternatives as representations of single
probabilistic values, the assumption that the correct probability for the event is among the set
of alternatives chosen for an election would appear highly unrealistic. To address this issue, we
model the alternatives themselves as imprecise probabilities, where each alternative represents
an interval of probability values within which the correct probability for an event lies.

The formal modeling of alternatives is detailed in the next subsection and is drawing inspira-
tion from the field of expert elicitation research.

Expert Elicitation. In typical expert elicitation frameworks, an expert’s belief in a proposition
is represented as a precise, subjective probability that characterizes their belief. However, recent
advancements have incorporated imprecise probabilities in the form of intervals of subjective
probabilities into the analysis of an expert’s competence [1]. This approach aims to exclude
precise probabilities that are incompatible with the expert’s belief, aligning with the concept of
distributing an agent’s belief over all probabilities not excluded by the evidence, as discussed
earlier.

One method for eliciting an agent’s imprecise probabilistic beliefs is known as the Linear
Programming Imprecise Probabilities Model (LPIPM). Given some unknown real-valued contin-
uous random variable 𝑋 , applying LPIPM, aims at eliciting an expert’s prior distribution of 𝑋
[20]. For this purpose, the expert is asked to internally evaluate and then announce minimum
and maximum values for 𝑋 that she considers plausible. These values define an interval of
the form [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] within which the expert believes the true value of the variable 𝑋 lies,
with the understanding that the expert assigns a probability of zero to the true value of 𝑋 lying
outside this interval [20].



In the original LPIPM approach, the interval [𝑋min, 𝑋max] is further divided into subintervals.
The expert then evaluates these subintervals through pairwise comparisons, aiming to obtain a
more precise estimate of the agent’s imprecise degree of belief by eliminating subintervals that
the expert deems less likely compared to others. This iterative process allows for a refinement of
the expert’s belief, resulting in a more nuanced understanding of their imprecise probabilities.

In our setting, we adopt the idea of partitioning an interval into subintervals, but we apply it
to the level of alternatives that experts can vote for in an election. More precisely, in an election
where experts have to evaluate the likelihood of an event such as proposition A, we regard as
simplest set of alternatives the (theoretically excluded, but conceptually noteworthy) case where
we have 𝑚 = 1 with 𝜔1 = [0, 1]. In this case, the only alternative experts can vote for is the
entire unit interval. To generate scenarios with more alternatives, we partition the unit interval
into 2𝑘 subintervals of equal Lebesgue measure, denoted as [𝑋𝑗−1, 𝑋𝑗), where 𝑗 = 1, 2, ..., 2𝑘.
The value of 𝑘 depends on the desired precision [20]. For example, if a small group of agents is
highly reliable in their estimates, a moderate precision of 10% may be adequate, achieved by
setting 𝑘 = 5 (yielding 2𝑘 = 10) and providing 10 subintervals of equal Lebesgue measure.

The division of the unit interval into subintervals is reminiscent of a common practice in the
evaluation of probabilistic forecasts known as the binned probability ensemble (BPE) technique.
In BPE, a set of forecasts is used to divide the real line into several bins, assuming that the true
forecast probability falls within one of the bins [21]. In our case, we apply a similar concept to
the unit interval, considering each subinterval as an alternative to vote on, referred to as a bin.

Voting for Bins. To define the alternatives in the approval vote as bins, representing subin-
tervals of the unit interval as probability values, we proceed to formally outline how agents
vote based on their imprecise degrees of belief and MSV.

In the original MSV framework, the notion of predominant confidence determined the propo-
sition in which an agent was most confident among multiple propositions, considering their
imprecise degrees of belief in each proposition.

However, in our voting setting, we focus on an agent’s imprecise degree of belief for a single
proposition. The agent’s confidence must then be evaluated with respect to multiple bins by
comparing them to her imprecise degree of belief. These bins, in turn, represent probabilistic
assessments for the same proposition as the imprecise degree of belief. As the imprecise degree
of belief provides an estimate of the likelihood of a proposition being true but not for another
probabilistic estimate for the same proposition, we extend the concept of predominant confidence
to this scenario. Intuitively, we model predominant confidence in probabilistic estimates for the
same proposition as the imprecise degree of belief as the largest agreement between a bin and
the imprecise degree of belief. Since both the bin and the belief are probability intervals, we
quantify agreement as the largest Lebesgue measure between the intersection of the degree of
belief and each bin.

Definition 11 (Predominant Confidence - Bins). Let A be a proposition, 𝒫(𝐴) = [𝑎, 𝑏] be an
agent’s imprecise degree of belief in A, and let [𝑋𝑗−1, 𝑋𝑗), 𝑗 = 1, 2, ..., 2𝑘 be 2𝑘 bins defined on
the unit interval reflecting probability values for A to occur. Given two bins 𝐵1 and 𝐵2, we say that
an agent is predominantly more confident in 𝐵1 if the intersection of 𝒫(𝐴) and 𝐵1 is of greater
Lebesque measure than the one of 𝒫(𝐴) and 𝐵2. That is, 𝑙(𝒫(𝐴) ∩𝐵1) ≥ 𝑙(𝒫(𝐴) ∩𝐵2).



Consider the following example:

Example 4. Suppose there are only two bins for proposition A with𝐵1 = [0, 0.5) and𝐵2 = [0.5, 1]
and let 𝒫(𝐴) = [0.3, 0.9]. We then have 𝒫(𝐴)∩𝐵1 = [0.3, 0.5) and 𝒫(𝐴)∩𝐵2 = [0.5, 0.9]. This
results in 𝑙(𝒫(𝐴) ∩𝐵1) = 0.2 as well as 𝑙(𝒫(𝐴) ∩𝐵2) = 0.4. Thus, the agent is predominantly
more confident in the second bin.

Finally, we can define how agents vote based on their imprecise degrees of belief:

Definition 12. Let 𝑚 = 𝜔1, ..., 𝜔𝑚 be a set of alternatives where each 𝜔𝑖 represents a bin of the
form [𝑋𝑗−1, 𝑋𝑗). Moreover, let 𝑎1, ..., 𝑎𝑛 be a set of agents and let 𝑉 represent a single election. We
say that an agent 𝑎𝑖 votes for an alternative 𝜔𝑗 if she is predominantly confident in that alternative.
That is, if (𝑙(𝒫(𝐴) ∩ 𝜔𝑗) ≥ 𝑙(𝒫(𝐴) ∩ 𝜔𝑘)) for all 𝑗 ̸= 𝑘 then (𝑎𝑖, 𝜔𝑗) ∈ 𝑉 .

Note that, if the agent is predominantly confident in multiple alternatives (i.e., their intersec-
tions are of equal Lebesque measure), she votes for all of them. In particular, if an agent reports
the whole unit interval as her imprecise degree of belief, she votes for all alternatives in the
approval vote.

4.2. The Probabilistic Assumptions

Having formally defined how agents vote based on their imprecise degree of belief as well
as having specified what constitutes an alternative in our setting, we can now combine the
imprecise model of belief with the CJT.

To recap, we revisit the previously described joint probability distribution: 𝑋𝜔1
* , ..., 𝑋𝜔𝑚

* as
well as 𝑋𝜔1

𝑖 , ..., 𝑋𝜔𝑚
𝑖 for all agents 1, ..., 𝑖, ..., 𝑛. While the distribution remains the same, our

interpretation of how the random variables take their values changes. Recall that 𝜔1, ..., 𝜔𝑚

represent subintervals of the unit interval and let 𝑝𝜔* be the true objective probability of an
event to occur such that 𝑝𝜔* ∈ 𝜔𝑗 for exactly one 𝑗. The values taken by these random variables
represent the outcome of a voting event as follows: 𝑋𝜔𝑗

* is 1 if 𝜔𝑗 is the bin containing the
actual world state (i.e., 𝑝𝜔* ∈ 𝜔𝑗) and 0 otherwise, whereas 𝑋𝜔𝑗

𝑖 is 1 if the 𝑖th agent voted for
the 𝑗th bin (i.e., (𝑙(𝒫(𝐴) ∩ 𝜔𝑗) ≥ 𝑙(𝒫(𝐴) ∩ 𝜔𝑘)) for all 𝑗 ̸= 𝑘) and 0 otherwise.

With this interpretation of the random variables in the joint probability distribution, as given
by Definition 12, we can directly utilize the probabilistic assumptions we mentioned earlier:
agent approval independence and Δ𝑝-group reliability. Let’s provide an intuitive rephrasing of
these notions in the language of our setting. First, agent approval independence translates to the
idea that for any bin and any agent, the fact that one agent, 𝑎𝑖, is predominantly more confident
in a particular bin, 𝐵𝑗 , than in all other bins, does not influence whether a different agent, 𝑎𝑘 , is
also predominantly more confident in 𝐵𝑗 . In other words, the confidence of one agent in a bin
does not affect the confidence of another agent in the same bin. Second, according to Δ𝑝-group
reliability, on average, the agents are by the value of Δ𝑝 more likely to be predominantly more
confident in a particular bin than in any other bin. This notion captures the idea that the
agents exhibit a certain level of consistency in their confidence assessments, favoring the bin
containing the correct probability value over others by a small margin of Δ𝑝.



Reasons for Approval Voting. The interpretation of the voting setting and probabilistic
framework outlined above highlights why approval voting is a suitable choice.

Let’s consider a simpler voting rule like majority voting, as in the original CJT. In majority
voting, the number of alternatives is limited to two, and agents can vote for only one of them.
This voting rule is already unsuitable for our purposes due to its first restriction. Since each
alternative corresponds to a bin, which is a subinterval of equal Lebesgue measure on the
unit interval, using majority voting would result in a coarse-grained probabilistic aggregation
method that only considers two bins, namely [0, 0.5) and [0.5, 1].

Now, let’s explore a setting that allows for any finite number of alternatives, but with the
restriction that agents can only vote for one alternative, known as plurality voting. Recall that an
agent votes for an alternative if the Lebesgue measure of the intersection between that bin and
the agent’s imprecise degree of belief is the largest. Suppose we aim for reasonable high precision,
such as 5%, which translates to 20 bins: 𝐵𝑖𝑛1 = [0, 0.05), 𝐵𝑖𝑛2 = [0.05, 0.1), ..., 𝐵𝑖𝑛20 =
[0.95, 1]. Let’s assume that the correct probability value falls within 𝐵𝑖𝑛2, meaning 𝑝𝜔* ∈
[0.05, 0.1). If we restrict the voting setting to allow agents to vote for only one bin while
simultaneously requiring a reasonably high Δ𝑝 value, we inadvertently impose a limitation on
the agents’ imprecise degree of belief. In order for an agent to vote for the correct alternative
in the plurality setting (i.e., 𝐵𝑖𝑛2 in this case), their imprecise degree of belief must have less
overlap with the other bins compared to 𝐵𝑖𝑛2, ensuring that the Lebesgue measure of their
intersection is not exceeded by the other bins. This restriction might exclude agents who abstain
from making any judgment and report the whole unit interval as their imprecise degree of belief
because they would be predominantly confident in all bins. To avoid this artificial restriction,
we allow agents to vote for any subset of the finite set of alternatives, which aligns with the
concept of approval voting.

Additionally, the embedding presented here offers a small advantage in addressing a con-
ceptual counterargument sometimes raised against the CJT framework. Critics argue that it
is unrealistic to assume that the correct alternative is always among the options provided to
the agents [22]. However, in our setting, this assumption is naturally satisfied. The correct
probability for an event to occur must be an element of the unit interval, which is covered by
the partitions into bins. Therefore, the embedding ensures that the correct alternative is always
within the set of alternatives considered by the agents.

Having embedded imprecise probabilistic beliefs into the CJT framework, we may moreover
invoke the aforementioned estimate on the number of agents required to guarantee a prescribed
minimal success probability for the correct alternative to win. Furthermore, given the established
correspondence between the number of subintervals of the unit interval and the number of
alternatives in the approval vote, which, in turn, reflects the desired precision, we subsequently
illustrate how to derive an estimate on the maximal permitted precision.

4.3. Estimating the maximal permitted precision.

In typical scenarios involving the combination of probabilistic expert opinions, the number
of voters on the expert board is often known beforehand. Examples of such studies include
Kriegler et al. 2009, who investigated the beliefs of 42 climate scientists, and Recchia et al.
2021, who analyzed the forecasting capacities of 140 experts, including epidemiologists and



statisticians, regarding COVID-19 outbreaks in the UK. Since the size of expert committees
in real-world applications is often fixed, it is not only important to estimate the minimum
number of agents necessary to ensure a prescribed minimal success probability, as previously
discussed [4], but also to determine the maximal precision that can be allowed. Given a specific
Δ𝑝-value and a known target minimal success probability, we can derive an upper bound on
the maximal permitted precision using Theorem 3. To accomplish this, we consider that (i) each
subinterval of equal Lebesgue measure corresponds to a unique alternative denoted by 𝑚 in the
voting process, and (ii) in Theorem 3, we take the minimum of two separate bounds. Therefore,
to estimate the maximal allowed precision, we first solve each bound for 𝑚 individually. As
mentioned earlier, we refer to the first bound as the Hoeffding bound, and to the second as the
Chebychev-Cantelli bound, named after the inequalities from which they were derived.

The Hoeffding bound is given by

1− (𝑚− 1)2𝑒−
1
2𝑛Δ𝑝2 ≥ 𝑝min

(𝑚− 1) ≤ (1−𝑝min)

(2𝑒
−
1
2𝑛Δ𝑝2

)

Note that (2𝑒−
1
2
𝑛Δ𝑝2 ) is non-zero for all possible values.

𝑚 ≤ (1−𝑝min)

(2𝑒
−
1
2𝑛Δ𝑝2

)

+ 1.

The Chebychev-Cantelli bound is given by

1− 2(𝑚−1)(1−Δ𝑝2)
1+(𝑛−1)Δ𝑝2

≥ 𝑝min

2(𝑚− 1)(1−Δ𝑝2) ≤ (1− 𝑝min)(1 + (𝑛− 1)Δ𝑝2)

Note that we need to exclude Δ𝑝 = 1 for ensuring

that 2(1−Δ𝑝2) is non-zero.

𝑚 ≤ (1−𝑝min)(1+(𝑛−1)Δ𝑝2)
2(1−Δ𝑝2)

+ 1.

Observe that excluding Δ𝑝 = 1 for the Chebychev-Cantelli bound may come as a surprise,
especially considering that this bound performed extremely well in the original setting of Karge
and Rudolph 2022 where Δ𝑝 = 1. Specifically, when estimating the minimal number of agents
for any probability of success, it gave the intuitive result that only one agent is needed in the
approval vote. However, in our setting, we are providing an upper bound on the number of
alternatives. When Δ𝑝 = 1, we expect any precision to be allowed since every agent exclusively
votes for the correct bin. Thus, in this scenario, there is no finite upper bound as we permit an
arbitrary number of bins, which means the number of alternatives can be infinite. Interestingly,
when Δ𝑝 = 1 and we allow for an unlimited number of bins, we obtain a special case where
agents vote not for bins but for precise probability values.

Given this, both bounds provide an estimate for the maximum value of 𝑚. In contrast to
Theorem 3, we now take the maximum of both bounds to determine this maximum value.



Figure 1: Maximal number of permitted bins for Δ𝑝 = 0.99, 𝑛 = 10 (left) and Δ𝑝 = 0.3, 𝑛 = 100
(right).

Theorem 4. In a Δ𝑝-group reliable setting where Δ𝑝 ∈ (0, 1) with 𝑛 agents, the worst case
approval vote success probability is at least 𝑃min whenever the number of alternatives is equal or
lower than

𝑚𝑎𝑥( (1−𝑝min)

(2𝑒
−
1
2𝑛Δ𝑝2

)

+ 1, (1−𝑝min)(1+(𝑛−1)Δ𝑝2)
2(1−Δ𝑝2)

+ 1). (2)

The result obtained from the bounds yields the maximum number of alternatives that guar-
antee a prescribed minimal success probability 𝑃min for a specific number of agents and a given
average reliability assessment represented by Δ𝑝 (excluding Δ𝑝 = 1). This directly translates
into the maximal allowed precision in percentage, denoted by 𝐶 . We define 𝐶 as the proportion
of the unit interval covered by a subinterval, given by 𝐶 = 100

𝑚 . Therefore, the closer 𝐶 is to 100,
the more imprecise the result of the election will be, while a value closer to 0 indicates higher
precision. For example, when 𝑚 = 20, we have a precision of 𝐶 = 5%, and when 𝑚 = 2, we
have 𝐶 = 50%. It is important to note that when we mention that precision increases, it means
that the result of the aggregation procedure will be more precise, even though the precision
value in percentage decreases.

Furthermore, it is worth observing that neither of the two bounds dominates the other for
all values. This is illustrated in Figure 1, where we consider a fixed average group reliability
and number of agents and plot the maximum number of permitted bins against the prescribed
minimal success probability. Specifically, for a small number of agents but extremely high
Δ𝑝-values, the Cantelli bound provides a good estimate, while the Hoeffding bound performs
better for small and moderate Δ𝑝-values.

To gain a more nuanced understanding of the maximal allowed precision, we refer to Figure 2.
This graph illustrates the number of bins as a function of moderate to relatively high Δ𝑝-values
(0.2-0.5) and small to moderate-sized expert groups (10-100) for a fixed probability of success
of 𝑃min = 0.9. Several observations can be made from the graph: First, small expert groups
require relatively high average competence levels to achieve meaningful precision values for



Figure 2: Maximal number of permitted bins for 𝑃𝑚𝑖𝑛 = 0.9 and varying Δ and 𝑛 = 10 (left) as well
as a selection of data points (right).

aggregation. For instance, in order to achieve a precision below 10%, more than 100 agents
are needed for a moderate competence margin of Δ𝑝 = 0.3. Second, there is a range of values,
including 𝑛 = 50 and Δ𝑝 = 0.3, where the maximum permitted number of bins is less than
two. These values indicate that the average competence margin and number of agents are not
sufficient to realize the prescribed success probability. In such cases, we state that the calculated
precision is not available since the CJT requires at least two alternatives. Third, the permitted
precision grows extremely rapidly once the number of experts and their respective competencies
are sufficient to achieve the prescribed success probability. For instance, a group of 150 experts
with a competence margin of 0.4 is already sufficient to realize a precision of 0.01%. Increasing
the number of experts to 200 for the same Δ𝑝 value results in a precision of 0.0002%.

5. Summary and Future Work

In this work, we embedded imprecise probabilistic beliefs into a generalization of the Condorcet
Jury Theorem that allows for approval voting and heterogeneous competence levels. For this
purpose, we combined the epistemological account of imprecise degrees of belief as well as their
interpretation in the supervaluationinstic theory of vagueness with a voting setting where each
alternative represents an interval of probability assessments (a bin) for the same proposition as
the imprecise degree of belief. Furthermore, we established a direct correspondence between the
number of bins in the voting process and the maximal permitted precision during aggregation.
By solving existing bounds for the number of alternatives, we were able to provide an estimate
for the allowed precision in the aggregation procedure. Moving forward, it would be valuable
to compare the performance of voting-based aggregation of imprecise probabilistic beliefs with
traditional methods of probabilistic opinion pooling. The latter typically involves combining
expert opinions through weighted averaging of probabilities to approximate the objective
probability of an event. In contrast, our approach assumes the objective probability lies within
one of the bins, providing guarantees for hitting that specific bin with a certain probability.
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