
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

21. Vorlesung: Endliche Interpretationen und Datenbanken

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 3. Juli 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Rückblick: Kompaktheit

Die Existenz von vollständigen und korrekten logischen Schließverfahren wie Resolution
ist eng verwandt mit einer grundsätzlichen Eigenschaft der Prädikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Eine unendliche Menge T prädikatenlogischer Sätze ist genau dann erfüllbar, wenn
jede endliche Teilmenge von T erfüllbar ist.

Beweis: Wir zeigen: T ist genau dann unerfüllbar, wenn es eine endliche Teilmenge
von T gibt, die unerfüllbar ist.

Laut Resolutionssatz (Vollständigkeit) kann die Unerfüllbarkeit von T nach endlich
vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei können nur endlich viele Klauseln aus der Klauselform von T verwendet worden
sein.

Laut Resolutionssatz (Korrektheit) folgt die Existenz einer unerfüllbaren endlichen
Teilmenge von T . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 2 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rückblick: Kompaktheit

Die Existenz von vollständigen und korrekten logischen Schließverfahren wie Resolution
ist eng verwandt mit einer grundsätzlichen Eigenschaft der Prädikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Eine unendliche Menge T prädikatenlogischer Sätze ist genau dann erfüllbar, wenn
jede endliche Teilmenge von T erfüllbar ist.

Beweis: Wir zeigen: T ist genau dann unerfüllbar, wenn es eine endliche Teilmenge
von T gibt, die unerfüllbar ist.

Laut Resolutionssatz (Vollständigkeit) kann die Unerfüllbarkeit von T nach endlich
vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei können nur endlich viele Klauseln aus der Klauselform von T verwendet worden
sein.

Laut Resolutionssatz (Korrektheit) folgt die Existenz einer unerfüllbaren endlichen
Teilmenge von T . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 2 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik
Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt genau dann den
transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation
I = ⟨∆I, ·I⟩ und für alle δ1, δ2 ∈ ∆I gilt:

I, {x 7→ δ1, y 7→ δ2} |= F gdw. ⟨δ1, δ2⟩ ∈
(
rI
)+

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer bi-
nären Relation ausdrückt.

Beweis: Angenommen, es gäbe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfüllbar:{
F{x 7→ a, y 7→ b}, ¬r(a, b), ¬∃x1.(r(a, x1) ∧ r(x1, b)),

¬∃x1, x2.(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b)), . . .
}

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde
also dem Kompaktheitssatz widersprechen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 3 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik
Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt genau dann den
transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation
I = ⟨∆I, ·I⟩ und für alle δ1, δ2 ∈ ∆I gilt:

I, {x 7→ δ1, y 7→ δ2} |= F gdw. ⟨δ1, δ2⟩ ∈
(
rI
)+

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer bi-
nären Relation ausdrückt.

Beweis: Angenommen, es gäbe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfüllbar:{
F{x 7→ a, y 7→ b}, ¬r(a, b), ¬∃x1.(r(a, x1) ∧ r(x1, b)),

¬∃x1, x2.(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b)), . . .
}

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde
also dem Kompaktheitssatz widersprechen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 3 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik
Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt genau dann den
transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation
I = ⟨∆I, ·I⟩ und für alle δ1, δ2 ∈ ∆I gilt:

I, {x 7→ δ1, y 7→ δ2} |= F gdw. ⟨δ1, δ2⟩ ∈
(
rI
)+

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer bi-
nären Relation ausdrückt.

Beweis: Angenommen, es gäbe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfüllbar:{
F{x 7→ a, y 7→ b}, ¬r(a, b), ¬∃x1.(r(a, x1) ∧ r(x1, b)),

¬∃x1, x2.(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b)), . . .
}

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde
also dem Kompaktheitssatz widersprechen. □
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 3 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endliche Interpretationen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 4 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Löwenheim und Skolem

Eine Interpretation I = ⟨∆I, ·I⟩ heißt genau dann endlich (abzählbar), wenn ihre Do-
mäne ∆I endlich (abzählbar) ist.

Satz (Löwenheim1 und Skolem):
Jede erfüllbare prädikatenlogische Formel hat ein abzählbares Modell.

Beweis:
• Jede Formel F kann in erfüllbarkeitsäquivalente Skolemform F′ überführt werden.
• Ist F′ erfüllbar, so hat F′ ein Herbrand-Modell. (VL 19)
• Jede Herbrand-Interpretation hat immer eine abzählbare Domäne (das

Herbrand-Universum).
• Man kann aus den Beweisen der Erfüllbarkeitsäquivalenz erkennen:

Jedes Modell von F′ ist auch ein Modell für F. □

1 Leopold Löwenheim2 (1878–1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tätig.

2 „Note: One of the best predictors of success in mathematical logic is having an umlaut in your name.“ –
S. Aaronson, Quantum Computing since Democritus. Cambridge, 2013.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 5 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Löwenheim und Skolem

Eine Interpretation I = ⟨∆I, ·I⟩ heißt genau dann endlich (abzählbar), wenn ihre Do-
mäne ∆I endlich (abzählbar) ist.

Satz (Löwenheim1 und Skolem):
Jede erfüllbare prädikatenlogische Formel hat ein abzählbares Modell.

Beweis:
• Jede Formel F kann in erfüllbarkeitsäquivalente Skolemform F′ überführt werden.
• Ist F′ erfüllbar, so hat F′ ein Herbrand-Modell. (VL 19)
• Jede Herbrand-Interpretation hat immer eine abzählbare Domäne (das

Herbrand-Universum).
• Man kann aus den Beweisen der Erfüllbarkeitsäquivalenz erkennen:

Jedes Modell von F′ ist auch ein Modell für F. □

1 Leopold Löwenheim2 (1878–1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tätig.
2 „Note: One of the best predictors of success in mathematical logic is having an umlaut in your name.“ –
S. Aaronson, Quantum Computing since Democritus. Cambridge, 2013.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 5 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Löwenheim und Skolem

Eine Interpretation I = ⟨∆I, ·I⟩ heißt genau dann endlich (abzählbar), wenn ihre Do-
mäne ∆I endlich (abzählbar) ist.

Satz (Löwenheim1 und Skolem):
Jede erfüllbare prädikatenlogische Formel hat ein abzählbares Modell.

Beweis:
• Jede Formel F kann in erfüllbarkeitsäquivalente Skolemform F′ überführt werden.
• Ist F′ erfüllbar, so hat F′ ein Herbrand-Modell. (VL 19)
• Jede Herbrand-Interpretation hat immer eine abzählbare Domäne (das

Herbrand-Universum).
• Man kann aus den Beweisen der Erfüllbarkeitsäquivalenz erkennen:

Jedes Modell von F′ ist auch ein Modell für F. □

1 Leopold Löwenheim2 (1878–1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tätig.
2 „Note: One of the best predictors of success in mathematical logic is having an umlaut in your name.“ –
S. Aaronson, Quantum Computing since Democritus. Cambridge, 2013.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 5 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Historische Anmerkungen

• Der eben gezeigte „Satz von Löwenheim und Skolem“ ist eigentlich der nach unten
gerichtete Satz von Löwenheim und Skolem (engl. Downward Löwenheim-Skolem
Theorem).

• Der nach oben gerichtete Satz von Löwenheim und Skolem (engl. Upward
Löwenheim-Skolem Theorem) besagt, dass jede erfüllbare Formel auch Modelle
beliebig großer Kardinalität besitzt.

• Der Legende nach war Skolem die Verwendung seines Namens in diesem Kontext
unangenehm:

„I follow custom in calling Corollary 6.1.4 the upward Löwenheim-Skolem theo-
rem. But in fact Skolem didn’t even believe it, because he didn’t believe in the
existence of uncountable sets.“
– W. Hodges, Model Theory, Cambridge 1993

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 6 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Historische Anmerkungen

• Der eben gezeigte „Satz von Löwenheim und Skolem“ ist eigentlich der nach unten
gerichtete Satz von Löwenheim und Skolem (engl. Downward Löwenheim-Skolem
Theorem).

• Der nach oben gerichtete Satz von Löwenheim und Skolem (engl. Upward
Löwenheim-Skolem Theorem) besagt, dass jede erfüllbare Formel auch Modelle
beliebig großer Kardinalität besitzt.

• Der Legende nach war Skolem die Verwendung seines Namens in diesem Kontext
unangenehm:

„I follow custom in calling Corollary 6.1.4 the upward Löwenheim-Skolem theo-
rem. But in fact Skolem didn’t even believe it, because he didn’t believe in the
existence of uncountable sets.“
– W. Hodges, Model Theory, Cambridge 1993

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 6 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlichkeit von Modellen

Löwenheim/Skolem: Jede erfüllbare Formel hat ein abzählbar großes Modell.

Kann man dies noch verstärken? Hat jede erfüllbare Formel vielleicht sogar ein
endliches Modell?

Nein. Prädikatenlogik kann unendliche Modelle erzwingen:

Beispiel:
∀x.(Mensch(x)→ ∃y.(hatMutter(x, y) ∧Mensch(y)))

∀x, y.(hatMutter(x, y)→ hatVorfahr(x, y))

∀x, y, z.((hatVorfahr(x, y) ∧ hatVorfahr(y, z))→ hatVorfahr(x, z))

∀x.¬hatVorfahr(x, x)

Diese Theorie ist erfüllbar, aber hat nur unendliche Modelle. (Kontrollfrage: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 7 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlichkeit von Modellen

Löwenheim/Skolem: Jede erfüllbare Formel hat ein abzählbar großes Modell.

Kann man dies noch verstärken? Hat jede erfüllbare Formel vielleicht sogar ein
endliches Modell?

Nein. Prädikatenlogik kann unendliche Modelle erzwingen:

Beispiel:
∀x.(Mensch(x)→ ∃y.(hatMutter(x, y) ∧Mensch(y)))

∀x, y.(hatMutter(x, y)→ hatVorfahr(x, y))

∀x, y, z.((hatVorfahr(x, y) ∧ hatVorfahr(y, z))→ hatVorfahr(x, z))

∀x.¬hatVorfahr(x, x)

Diese Theorie ist erfüllbar, aber hat nur unendliche Modelle. (Kontrollfrage: Warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 7 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik über endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis überhaupt wünschenswert?
Geht es auch endlich?

Prädikatenlogik mit endlichen Interpretationen verwendet die gleiche Syntax und Se-
mantik wie Prädikatenlogik allgemein, aber mit der zusätzlichen Bedingung, dass die
Domäne von Interpretationen endlich sein muss.

Anmerkung: Wir nutzen auch den Begriff Prädikatenlogik mit endlichen Modellen, da
die Endlichkeit jeder Interpretation die Endlichkeit jedes Modells impliziert.
Monotonie (Rückblick): Weniger Modelle führen zu mehr Konsequenzen.

Beispiel:
∀x.(Mensch(x)→ ∃y.(hatVorfahr(x, y) ∧Mensch(y)))

∀x, y, z.((hatVorfahr(x, y) ∧ hatVorfahr(y, z))→ hatVorfahr(x, z))

Diese Theorie ist in der Prädikatenlogik mit endlichen Interpretationen erfüllbar, aber
jedes endliche Modell muss einen hatVorfahr-Zyklus enthalten.
Daher folgt aus der Theorie ∃x.hatVorfahr(x, x), obwohl dies in der allgemeinen Prädi-
katenlogik keine Konsequenz wäre.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 8 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik über endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis überhaupt wünschenswert?
Geht es auch endlich?

Prädikatenlogik mit endlichen Interpretationen verwendet die gleiche Syntax und Se-
mantik wie Prädikatenlogik allgemein, aber mit der zusätzlichen Bedingung, dass die
Domäne von Interpretationen endlich sein muss.

Anmerkung: Wir nutzen auch den Begriff Prädikatenlogik mit endlichen Modellen, da
die Endlichkeit jeder Interpretation die Endlichkeit jedes Modells impliziert.
Monotonie (Rückblick): Weniger Modelle führen zu mehr Konsequenzen.

Beispiel:
∀x.(Mensch(x)→ ∃y.(hatVorfahr(x, y) ∧Mensch(y)))

∀x, y, z.((hatVorfahr(x, y) ∧ hatVorfahr(y, z))→ hatVorfahr(x, z))

Diese Theorie ist in der Prädikatenlogik mit endlichen Interpretationen erfüllbar, aber
jedes endliche Modell muss einen hatVorfahr-Zyklus enthalten.
Daher folgt aus der Theorie ∃x.hatVorfahr(x, x), obwohl dies in der allgemeinen Prädi-
katenlogik keine Konsequenz wäre.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 8 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik über endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis überhaupt wünschenswert?
Geht es auch endlich?

Prädikatenlogik mit endlichen Interpretationen verwendet die gleiche Syntax und Se-
mantik wie Prädikatenlogik allgemein, aber mit der zusätzlichen Bedingung, dass die
Domäne von Interpretationen endlich sein muss.

Anmerkung: Wir nutzen auch den Begriff Prädikatenlogik mit endlichen Modellen, da
die Endlichkeit jeder Interpretation die Endlichkeit jedes Modells impliziert.
Monotonie (Rückblick): Weniger Modelle führen zu mehr Konsequenzen.

Beispiel:
∀x.(Mensch(x)→ ∃y.(hatVorfahr(x, y) ∧Mensch(y)))

∀x, y, z.((hatVorfahr(x, y) ∧ hatVorfahr(y, z))→ hatVorfahr(x, z))

Diese Theorie ist in der Prädikatenlogik mit endlichen Interpretationen erfüllbar, aber
jedes endliche Modell muss einen hatVorfahr-Zyklus enthalten.
Daher folgt aus der Theorie ∃x.hatVorfahr(x, x), obwohl dies in der allgemeinen Prädi-
katenlogik keine Konsequenz wäre.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 8 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erfüllbarkeit wird semi-entscheidbar

Die Bezeichnung der Elemente einer Interpretationsdomäne ist irrelevant – für die
Wahrheit von Sätzen kommt es nur darauf an, wie Konstanten und Prädikatensymbole
interpretiert werden.

Erfüllbarkeitstest

Gegeben: Ein Satz F.

• Betrachte systematisch alle endlichen Interpretationen der Symbole in F
(z.B. geordnet nach aufsteigender Größe der Domäne).

• Prüfe für jede Interpretation I, ob I |= F gilt:
– Falls ja, dann gib aus „erfüllbar“;
– falls nein, dann fahre mit der nächsten Interpretation fort.

Es ist leicht zu sehen, dass dieser Algorithmus die Erfüllbarkeit in endlichen
Interpretationen semi-entscheidet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 9 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erfüllbarkeit wird semi-entscheidbar

Die Bezeichnung der Elemente einer Interpretationsdomäne ist irrelevant – für die
Wahrheit von Sätzen kommt es nur darauf an, wie Konstanten und Prädikatensymbole
interpretiert werden.

Erfüllbarkeitstest

Gegeben: Ein Satz F.

• Betrachte systematisch alle endlichen Interpretationen der Symbole in F
(z.B. geordnet nach aufsteigender Größe der Domäne).

• Prüfe für jede Interpretation I, ob I |= F gilt:
– Falls ja, dann gib aus „erfüllbar“;
– falls nein, dann fahre mit der nächsten Interpretation fort.

Es ist leicht zu sehen, dass dieser Algorithmus die Erfüllbarkeit in endlichen
Interpretationen semi-entscheidet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 9 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches Schließen schwer:

Satz von Trakhtenbrot: Logisches Schließen (Erfüllbarkeit, Allgemeingültigkeit, logi-
sche Konsequenz) in der Prädikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollständiges Beweissystem für Prädikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gäbe ein solches System.

• Dann wäre logische Konsequenz und speziell auch Unerfüllbarkeit
semi-entscheidbar.

• Wir wissen, dass Erfüllbarkeit ebenfalls semi-entscheidbar ist.

• Zusammen ergäbe sich also ein Entscheidungsverfahren für logisches Schließen.

• Widerspruch zum Satz von Trakhtenbrot. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endliche Interpretationen in der Praxis

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 11 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wozu endliche Interpretationen?

In gewisser Weise ist Schließen mit endlichen Interpretationen also schwerer als mit
unendlichen, weil man statt logischer Konsequenz nunmehr nur Nicht-Konsequenz
semi-entscheiden kann.

Trotzdem sind endliche Interpretationen in der Informatik praktisch relevant:

Eine endliche Interpretation I ist (im Wesentlichen) das gleiche wie eine relationale
Datenbankinstanz.

Intuition:

• Prädikatensymbole p bezeichnen Tabellen.

• Relationen pI entsprechen den in der Datenbank gespeicherten Tabelleninhalten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 12 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Benannte Parameter

Relationale Datenbanken verwenden Namen für die Parameter (Spalten) in Relationen,
anstatt sie mittels Reihenfolge zu adressieren:

linien:

Linie Typ

85 Bus

3 Tram

F1 Fähre

.

haltestellen:

SID Name Rollstuhl

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

verbindung:

Von Zu Linie

57 42 85

17 789 3

.

Die einfache Arität der Prädikatenlogik wird durch ein
Schema mit Namen (und oft auch Datentypen) ersetzt:
• linien[Linie:string, Typ:string]
• haltestellen[SID:int, Halt:string, Rollstuhl:bool]
• verbindung[Von:int, Zu:int, Linie:string]

Mögliche Anfrage (SQL): SELECT verbindung.Von, verbindung.Zu, linien.Typ
FROM linien JOIN verbindung ON linien.Linie=verbindung.Linie
WHERE ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 13 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Benannte Parameter

Relationale Datenbanken verwenden Namen für die Parameter (Spalten) in Relationen,
anstatt sie mittels Reihenfolge zu adressieren:

linien:

Linie Typ

85 Bus

3 Tram

F1 Fähre

.

haltestellen:

SID Name Rollstuhl

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

verbindung:

Von Zu Linie

57 42 85

17 789 3

.

Die einfache Arität der Prädikatenlogik wird durch ein
Schema mit Namen (und oft auch Datentypen) ersetzt:
• linien[Linie:string, Typ:string]
• haltestellen[SID:int, Halt:string, Rollstuhl:bool]
• verbindung[Von:int, Zu:int, Linie:string]

Mögliche Anfrage (SQL): SELECT verbindung.Von, verbindung.Zu, linien.Typ
FROM linien JOIN verbindung ON linien.Linie=verbindung.Linie
WHERE ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 13 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Formeln = Anfragen

Benannt oder nicht – sofern die Parameter eine definierte Reihenfolge haben, können
wir sie mit prädikatenlogischen Atomen addressieren.

Beispiel: Die Formel

Q = ∃zLinie.(verbindung(xVon, xZu, zLinie) ∧ linien(zLinie, xTyp))

hat drei freie Variablen.
Für eine gegebene Datenbankinstanz (endliche Interpretation) I bedeutet

I, {xVon 7→ δ1, xZu 7→ δ2, xTyp 7→ δ3} |= Q

dass es in der Datenbank eine Verbindung von δ1 nach δ2 vom Typ δ3 gibt.

Das Beispiel illustriert:

Formeln (evtl. mit freien Variablen) =̂ Datenbankanfragen

Erfüllende Zuweisungen =̂ Anfrage-Ergebnisse

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 14 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Formeln = Anfragen

Benannt oder nicht – sofern die Parameter eine definierte Reihenfolge haben, können
wir sie mit prädikatenlogischen Atomen addressieren.

Beispiel: Die Formel

Q = ∃zLinie.(verbindung(xVon, xZu, zLinie) ∧ linien(zLinie, xTyp))

hat drei freie Variablen.
Für eine gegebene Datenbankinstanz (endliche Interpretation) I bedeutet

I, {xVon 7→ δ1, xZu 7→ δ2, xTyp 7→ δ3} |= Q

dass es in der Datenbank eine Verbindung von δ1 nach δ2 vom Typ δ3 gibt.

Das Beispiel illustriert:

Formeln (evtl. mit freien Variablen) =̂ Datenbankanfragen

Erfüllende Zuweisungen =̂ Anfrage-Ergebnisse
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 14 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik und Datenbanken

Relationale Datenbankinstanzen =̂ Endliche Interpretationen

• Tabellen(namen) entsprechen Prädikatensymbolen

• Kleinere syntaktische Unterschiede (benannte vs. geordnete Parameter)

Relationale Datenbankanfragen =̂ Prädikatenlogische Formeln

• Zuweisungen Z zu freien Variablen modellieren mögliche Anfrageergebnisse

• I,Z |= Q bedeutet: Z ist Ergebnis der Anfrage Q auf Datenbankinstanz I

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 15 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik ≈ SQL
Was ist eine Datenbank-Anfrage?
• Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.
• Semantik: Jede Anfrage Q definiert eine Anfragefunktion fQ, die

für jede Datenbankinstanz I eine Ergebnisrelation fQ(I) liefert.

Beispiel: Für eine prädikatenlogische Formel Q mit freien Variablen x1, . . . , xn ist fQ
diejenige Funktion, die eine Interpretation I wie folgt auf die Ergebnisrelation fQ(I)
abbildet:

I 7→ {⟨δ1, . . . , δn⟩ | I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q }

Mit solch einer allgemeinen Definition kann man sehr unterschiedliche Anfragesprachen
(über ihre Anfragefunktionen) miteinander vergleichen.

Satz: Die Menge der durch prädikatenlogische Formeln Q darstellbaren Anfrage-
funktionen fQ ist genau die Menge der Anfragefunktionen, die durch einfache SQL-
Anfragen darstellbar sind.

„Einfache SQL-Anfragen“: Relationale Algebra, der Kern von SQL; SELECT, JOIN, UNION, MINUS, aber keine komplexeren Features wie WITH
RECURSIVE etc. Außerdem keine Datentypen, da wir diese in der Prädikatenlogik nicht eingeführt haben.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 16 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik ≈ SQL
Was ist eine Datenbank-Anfrage?
• Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.
• Semantik: Jede Anfrage Q definiert eine Anfragefunktion fQ, die

für jede Datenbankinstanz I eine Ergebnisrelation fQ(I) liefert.

Beispiel: Für eine prädikatenlogische Formel Q mit freien Variablen x1, . . . , xn ist fQ
diejenige Funktion, die eine Interpretation I wie folgt auf die Ergebnisrelation fQ(I)
abbildet:

I 7→ {⟨δ1, . . . , δn⟩ | I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q }

Mit solch einer allgemeinen Definition kann man sehr unterschiedliche Anfragesprachen
(über ihre Anfragefunktionen) miteinander vergleichen.

Satz: Die Menge der durch prädikatenlogische Formeln Q darstellbaren Anfrage-
funktionen fQ ist genau die Menge der Anfragefunktionen, die durch einfache SQL-
Anfragen darstellbar sind.

„Einfache SQL-Anfragen“: Relationale Algebra, der Kern von SQL; SELECT, JOIN, UNION, MINUS, aber keine komplexeren Features wie WITH
RECURSIVE etc. Außerdem keine Datentypen, da wir diese in der Prädikatenlogik nicht eingeführt haben.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 16 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik ≈ SQL
Was ist eine Datenbank-Anfrage?
• Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.
• Semantik: Jede Anfrage Q definiert eine Anfragefunktion fQ, die

für jede Datenbankinstanz I eine Ergebnisrelation fQ(I) liefert.

Beispiel: Für eine prädikatenlogische Formel Q mit freien Variablen x1, . . . , xn ist fQ
diejenige Funktion, die eine Interpretation I wie folgt auf die Ergebnisrelation fQ(I)
abbildet:

I 7→ {⟨δ1, . . . , δn⟩ | I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q }

Mit solch einer allgemeinen Definition kann man sehr unterschiedliche Anfragesprachen
(über ihre Anfragefunktionen) miteinander vergleichen.

Satz: Die Menge der durch prädikatenlogische Formeln Q darstellbaren Anfrage-
funktionen fQ ist genau die Menge der Anfragefunktionen, die durch einfache SQL-
Anfragen darstellbar sind.

„Einfache SQL-Anfragen“: Relationale Algebra, der Kern von SQL; SELECT, JOIN, UNION, MINUS, aber keine komplexeren Features wie WITH
RECURSIVE etc. Außerdem keine Datentypen, da wir diese in der Prädikatenlogik nicht eingeführt haben.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 16 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Relationale Algebren

Datenbankanfragen werden oft in relationaler Algebra dargestellt, bei der man
Relationen mit Operationen zu einem Anfrageergebnis kombiniert.

Beispiel: Die Anfrage

Q = ∃zLinie.(verbindung(xVon, xZu, zLinie) ∧ linien(zLinie, xTyp))

entspricht einer (natürlichen) Join-Operation (∧) mit anschließender Projektion (∃):

πVon,Zu,Typ(verbindung ▷◁ linien)

Anmerkung: SQL hat noch einen leicht anderen Stil. Variablen stehen dort für ganze
Tabellenzeilen und man verwendet Notation der Form „linien.Typ“, um auf deren
Einträge zuzugreifen („Tuple-Relational Calculus“).
{ Das ändert an der Ausdrucksstärke nichts.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 17 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Anfragebeantwortung als Model Checking

Erkenntnis: Die wesentliche Berechnungsaufgabe bei der Beantwortung von
Datenbankabfragen ist das folgende Entscheidungsproblem:

Das Auswertungsproblem (Model Checking) der Prädikatenlogik lautet wie folgt:

Gegeben:

• Eine Formel Q mit freien Variablen x1, . . . , xn;

• eine endliche Interpretation I;

• Elemente δ1, . . . , δn ∈ ∆I.

Frage: Gilt I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q?

Naive Methode der Anfragebeantwortung:

• Betrachte alle
(
∆I
)n

möglichen Ergebnisse;

• entscheide jeweils das Auswertungsproblem.

Praktisch relevante Frage:

Wie schwer ist das Auswertungsproblem?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 18 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Anfragebeantwortung als Model Checking

Erkenntnis: Die wesentliche Berechnungsaufgabe bei der Beantwortung von
Datenbankabfragen ist das folgende Entscheidungsproblem:

Das Auswertungsproblem (Model Checking) der Prädikatenlogik lautet wie folgt:

Gegeben:

• Eine Formel Q mit freien Variablen x1, . . . , xn;

• eine endliche Interpretation I;

• Elemente δ1, . . . , δn ∈ ∆I.

Frage: Gilt I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q?

Naive Methode der Anfragebeantwortung:

• Betrachte alle
(
∆I
)n

möglichen Ergebnisse;

• entscheide jeweils das Auswertungsproblem.

Praktisch relevante Frage:

Wie schwer ist das Auswertungsproblem?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 18 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein Algorithmus für das Auswertungsproblem

Wir nehmen an, dass die Formel F nur ¬, ∧ und ∃ enthält. (Durch Umformung möglich.)

function eval(F,I,Z) {
01 switch(F) {
02 case p(c1, . . . , cn) : return ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI;
03 case ¬G : return not eval(G,I,Z);
04 case G1 ∧ G2 : return eval(G1,I,Z) and eval(G2,I,Z);
05 case ∃x.G :
06 for c ∈ ∆I {
07 if eval(G{x 7→ c},I,Z) then return true; }
08 return false; }

}

Anmerkung: Wenn Konstanten c in der Anfrage vorkommen, dann nimmt man in der
Regel an, dass cI = c ist.
Anmerkung 2: In der Praxis stimmt das nicht ganz. Insbesondere bei Verwendung von Datentypen haben
DB-Systeme normalerweise eingebaute Interpretationsfunktionen. Zum Beispiel würden die Konstanten "42"
und "+42" die selbe Ganzzahl bezeichnen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 19 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Auswertungsproblem

Das Auswertungsproblem (Model Checking) der Prädikatenlogik lautet wie folgt:

Gegeben:
• Eine Formel Q mit freien Variablen x1, . . . , xn;
• eine endliche Interpretation I;
• Elemente δ1, . . . , δn ∈ ∆I.

Frage: Gilt I, {x1 7→ δ1, . . . , xn 7→ δn} |= Q?

Quiz: Wir betrachten die untenstehenden Instanzen des Auswertungsproblems. . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 20 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?

{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?
{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?

{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?
{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?
{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?
{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexität

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Maximale Rekursionstiefe?
{ beschränkt durch Zahl der Teilformeln: ≤ m

• Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
{ |∆I| ≤ n pro rekursivem Aufruf
{ insgesamt ≤ nm Iterationen

• Rekursive Aufrufe in anderen Fällen?
{ 1 oder 2

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in linearer Zeit bezüglich n.

Gesamtlaufzeit in max(n, 2)m · n ≤ (n + 2)m+1:

• Komplexität des Algorithmus: in ExpTime

• Komplexität bezüglich der Größe der Datenbank (m konstant): in P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 21 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Speicherkomplexität

Wir erhalten eine bessere Komplexitätsabschätzung, wenn wir den Speicherbedarf
betrachten:

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Speichere pro (rekursivem) Aufruf einen Zeiger auf eine Teilformel von F: log m

• Speichere für jede Variable in F (maximal m) die aktuelle Zuweisung (als Zeiger):
m · log n

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in logarithmischem Speicher bezüglich n.

Speicher in m log m + m log n + log n = m log m + (m + 1) log n

• Komplexität des Algorithmus: in PSpace

• Komplexität bezüglich der Größe der Datenbank (m konstant): in LogSpace

Zur Erinnerung: PSpace ⊆ ExpTime und LogSpace ⊆ P, d.h. die obigen Schranken sind besser.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 22 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Speicherkomplexität

Wir erhalten eine bessere Komplexitätsabschätzung, wenn wir den Speicherbedarf
betrachten:

Sei |F| = m die Größe von F und |I| = n die Gesamtgröße der Datenbank.

• Speichere pro (rekursivem) Aufruf einen Zeiger auf eine Teilformel von F: log m

• Speichere für jede Variable in F (maximal m) die aktuelle Zuweisung (als Zeiger):
m · log n

• ⟨cI,Z1 , . . . , cI,Zn ⟩ ∈ pI ist entscheidbar in logarithmischem Speicher bezüglich n.

Speicher in m log m + m log n + log n = m log m + (m + 1) log n

• Komplexität des Algorithmus: in PSpace

• Komplexität bezüglich der Größe der Datenbank (m konstant): in LogSpace

Zur Erinnerung: PSpace ⊆ ExpTime und LogSpace ⊆ P, d.h. die obigen Schranken sind besser.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 22 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität des Auswertungsproblems

Satz: Das Auswertungsproblem der Prädikatenlogik ist PSpace-vollständig.

Beweis: Durch Reduktion vom Auswertungsproblem quantifizierter Boolescher Formeln
(TrueQBF).

Sei Q1p1. Q2p2. · · · Qnpn.F[p1, . . . , pn] eine QBF (mit Qi ∈ {∀,∃}).
• Wir nutzen die Datenbankinstanz I mit ∆I = {0, 1}; außerdem

• ein einstelliges Prädikat true mit trueI = {1} (eine Tabelle mit einer Spalte: true(1)).
• Aus der gegebenen QBF erstellen wir die folgende prädikatenlogische Formel

ohne freie Variablen:

Q1x1. Q2x2. · · · Qnxn.F[p1/true(x1), . . . , pn/true(xn)]

wobei F[p1/true(x1), . . . , pn/true(xn)] die Formel ist, die aus F entsteht, wenn man
jedes aussagenlogische Atom pi durch das prädikatenlogische Atom true(xi) ersetzt.

Die Korrektheit dieser Reduktion ist leicht zu zeigen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 23 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität des Auswertungsproblems

Satz: Das Auswertungsproblem der Prädikatenlogik ist PSpace-vollständig.

Beweis: Durch Reduktion vom Auswertungsproblem quantifizierter Boolescher Formeln
(TrueQBF).

Sei Q1p1. Q2p2. · · · Qnpn.F[p1, . . . , pn] eine QBF (mit Qi ∈ {∀,∃}).

• Wir nutzen die Datenbankinstanz I mit ∆I = {0, 1}; außerdem

• ein einstelliges Prädikat true mit trueI = {1} (eine Tabelle mit einer Spalte: true(1)).
• Aus der gegebenen QBF erstellen wir die folgende prädikatenlogische Formel

ohne freie Variablen:

Q1x1. Q2x2. · · · Qnxn.F[p1/true(x1), . . . , pn/true(xn)]

wobei F[p1/true(x1), . . . , pn/true(xn)] die Formel ist, die aus F entsteht, wenn man
jedes aussagenlogische Atom pi durch das prädikatenlogische Atom true(xi) ersetzt.

Die Korrektheit dieser Reduktion ist leicht zu zeigen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 23 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität des Auswertungsproblems

Satz: Das Auswertungsproblem der Prädikatenlogik ist PSpace-vollständig.

Beweis: Durch Reduktion vom Auswertungsproblem quantifizierter Boolescher Formeln
(TrueQBF).

Sei Q1p1. Q2p2. · · · Qnpn.F[p1, . . . , pn] eine QBF (mit Qi ∈ {∀,∃}).
• Wir nutzen die Datenbankinstanz I mit ∆I = {0, 1}; außerdem

• ein einstelliges Prädikat true mit trueI = {1} (eine Tabelle mit einer Spalte: true(1)).
• Aus der gegebenen QBF erstellen wir die folgende prädikatenlogische Formel

ohne freie Variablen:

Q1x1. Q2x2. · · · Qnxn.F[p1/true(x1), . . . , pn/true(xn)]

wobei F[p1/true(x1), . . . , pn/true(xn)] die Formel ist, die aus F entsteht, wenn man
jedes aussagenlogische Atom pi durch das prädikatenlogische Atom true(xi) ersetzt.

Die Korrektheit dieser Reduktion ist leicht zu zeigen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 23 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wie schwer sind Datenbankabfragen?

Korollar: Die Beantwortung von SQL-Anfragen ist PSpace-schwer, sogar wenn die
Datenbank nur eine einzige Tabelle mit einer einzigen Zeile enthält.

Die Komplexität steckt vor allem in der Struktur der Anfrage.

Ist die Anfrage fest vorgegeben oder in ihrer Größe beschränkt, dann wird das
praktische Verhalten oft von der Datenbankgröße dominiert: Bezüglich dieser Größe ist
das Problem aber in LogSpace.

Man kann sogar noch niedrigere Komplexitätsschranken bezüglich der Datenbankgröße
angeben (siehe Vorlesung Database Theory).

{ SQL-Anfragebeantwortung ist praktisch implementierbar, aber nur solange die
Anfragen nicht zu komplex werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 24 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 25 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Reprise: Formeln als Anfragen
linien:

Linie Typ

85 Bus

3 Tram

F1 Fähre

.

haltestellen:

SID Name Rollstuhl

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

verbindung:

Von Zu Linie

57 42 85

17 789 3

.

Die einfache Arität der Prädikatenlogik wird durch ein
Schema mit Namen (und oft auch Datentypen) ersetzt:
• linien[Linie:string, Typ:string]
• haltestellen[SID:int, Halt:string, Rollstuhl:bool]
• verbindung[Von:int, Zu:int, Linie:string]

Relationale Algebra: Parameter (Spalten) durch Namen adressiert
Prädikatenlogik: Parameter durch Reihenfolge adressiert

Die Anfrage ∃zLinie.(verbindung(xVon, xZu, zLinie) ∧ linien(zLinie, xTyp)) entspricht einer
(natürlichen) Join-Operation (∧) mit anschließender Projektion (∃):
πVon,Zu,Typ(verbindung ▷◁ linien).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 26 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”

Q0[x0] = (x0 ≈ 42)

“Haltestellen direkt neben Helmholtzstr.:”

Q1[x1] = ∃x0, zLinie.(verbindung(x0, x1, zLinie) ∧ Q0[x0])

“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”

Q2[x2] = ∃x1, zLinie.(verbindung(x1, x2, zLinie) ∧ Q1[x1])

Und so weiter . . .

“Haltestellen, die von Helmholtzstr. aus mit einem Kurzstreckentticket erreichbar sind:”

Q0[x] ∨ Q1[x] ∨ Q2[x] ∨ Q3[x] ∨ Q4[x]

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 27 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”

Q0[x0] = (x0 ≈ 42)

“Haltestellen direkt neben Helmholtzstr.:”

Q1[x1] = ∃x0, zLinie.(verbindung(x0, x1, zLinie) ∧ Q0[x0])

“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”

Q2[x2] = ∃x1, zLinie.(verbindung(x1, x2, zLinie) ∧ Q1[x1])

Und so weiter . . .

“Haltestellen, die von Helmholtzstr. aus mit einem Kurzstreckentticket erreichbar sind:”

Q0[x] ∨ Q1[x] ∨ Q2[x] ∨ Q3[x] ∨ Q4[x]

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 27 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”

Q0[x0] = (x0 ≈ 42)

“Haltestellen direkt neben Helmholtzstr.:”

Q1[x1] = ∃x0, zLinie.(verbindung(x0, x1, zLinie) ∧ Q0[x0])

“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”

Q2[x2] = ∃x1, zLinie.(verbindung(x1, x2, zLinie) ∧ Q1[x1])

Und so weiter . . .

“Haltestellen, die von Helmholtzstr. aus mit einem Kurzstreckentticket erreichbar sind:”

Q0[x] ∨ Q1[x] ∨ Q2[x] ∨ Q3[x] ∨ Q4[x]

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 27 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”

Q0[x0] = (x0 ≈ 42)

“Haltestellen direkt neben Helmholtzstr.:”

Q1[x1] = ∃x0, zLinie.(verbindung(x0, x1, zLinie) ∧ Q0[x0])

“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”

Q2[x2] = ∃x1, zLinie.(verbindung(x1, x2, zLinie) ∧ Q1[x1])

Und so weiter . . .

“Haltestellen, die von Helmholtzstr. aus mit einem Kurzstreckentticket erreichbar sind:”

Q0[x] ∨ Q1[x] ∨ Q2[x] ∨ Q3[x] ∨ Q4[x]

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 27 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?

Es stellt sich heraus, dass das unmöglich ist.

Intuition: Prädikatenlogik kann nur “lokale” Eigenschaften überprüfen.

Das lässt sich mathematisch ausdrücken:

Vage Behauptung (frei nach Gaifmans Locality Theorem): Für jeden Satz F gibt es
eine Zahl d, so dass für beliebige Interpretationen I und J gilt:

• Wenn man nur zusammenhängende endliche Teile von I und J betrachtet, die
höchstens Pfade der Länge d enthalten („Durchmesser ≤ d“),

• und wenn sich I und J bezüglich dieser d-Umgebungen nicht unterscheiden,

• dann kann auch F die Interpretationen nicht unterscheiden: I |= F gdw. J |= F.

Der Durchmesser d, der angibt wie weit F höchstens „schauen“ kann, hängt exponentiell von der
Schachtelungstiefe der Quantoren ab.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 28 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?

Es stellt sich heraus, dass das unmöglich ist.

Intuition: Prädikatenlogik kann nur “lokale” Eigenschaften überprüfen.

Das lässt sich mathematisch ausdrücken:

Vage Behauptung (frei nach Gaifmans Locality Theorem): Für jeden Satz F gibt es
eine Zahl d, so dass für beliebige Interpretationen I und J gilt:

• Wenn man nur zusammenhängende endliche Teile von I und J betrachtet, die
höchstens Pfade der Länge d enthalten („Durchmesser ≤ d“),

• und wenn sich I und J bezüglich dieser d-Umgebungen nicht unterscheiden,

• dann kann auch F die Interpretationen nicht unterscheiden: I |= F gdw. J |= F.

Der Durchmesser d, der angibt wie weit F höchstens „schauen“ kann, hängt exponentiell von der
Schachtelungstiefe der Quantoren ab.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 28 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Grenzen der Prädikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?

Es stellt sich heraus, dass das unmöglich ist.

Intuition: Prädikatenlogik kann nur “lokale” Eigenschaften überprüfen.

Das lässt sich mathematisch ausdrücken:

Vage Behauptung (frei nach Gaifmans Locality Theorem): Für jeden Satz F gibt es
eine Zahl d, so dass für beliebige Interpretationen I und J gilt:

• Wenn man nur zusammenhängende endliche Teile von I und J betrachtet, die
höchstens Pfade der Länge d enthalten („Durchmesser ≤ d“),

• und wenn sich I und J bezüglich dieser d-Umgebungen nicht unterscheiden,

• dann kann auch F die Interpretationen nicht unterscheiden: I |= F gdw. J |= F.

Der Durchmesser d, der angibt wie weit F höchstens „schauen“ kann, hängt exponentiell von der
Schachtelungstiefe der Quantoren ab.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 28 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Nichtlokale Eigenschaften wie z.B. die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdrücken?

Idee: Um beliebig weit zu „schauen“, muss man Rekursion einführen.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 29 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Nichtlokale Eigenschaften wie z.B. die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdrücken?

Idee: Um beliebig weit zu „schauen“, muss man Rekursion einführen.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 29 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick
Beschränkt man Prädikatenlogik auf endliche Interpretationen, so gibt es kein
vollständiges und korrektes Verfahren zum logischen Schließen – dafür wird
Erfüllbarkeit semi-entscheidbar.

Das Auswertungsproblem auf endlichen Interpretationen entspricht der
Anfragebeantwortung in Datenbanken.
(Komplexität: PSpace-vollständig, aber sub-polynomiell bezüglich der Datenbankgröße.)

Prädikatenlogik hat Grenzen:
• bei der Modellierung (logisches Schließen), z.B. transitiver Abschluss;
• bei logischen Abfragen (Model Checking), z.B. Erreichbarkeit.

Was erwartet uns als nächstes?

• Datalog und Logik höherer Ordnung

• Gödel

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 30 von 30

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

