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Ruckblick: Kompaktheit

Die Existenz von vollstédndigen und korrekten logischen SchlieBverfahren wie Resolution
ist eng verwandt mit einer grundsétzlichen Eigenschaft der Pradikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Eine unendliche Menge 7 préadikatenlogischer Satze ist genau dann erflillbar, wenn
jede endliche Teilmenge von 7 erflllbar ist.
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Ruckblick: Kompaktheit

Die Existenz von vollstédndigen und korrekten logischen SchlieBverfahren wie Resolution
ist eng verwandt mit einer grundsétzlichen Eigenschaft der Pradikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Eine unendliche Menge 7 préadikatenlogischer Satze ist genau dann erflillbar, wenn
jede endliche Teilmenge von 7~ erflllbar ist.

Beweis: Wir zeigen: 7 ist genau dann unerfillbar, wenn es eine endliche Teilmenge
von 7~ gibt, die unerfillbar ist.

Laut Resolutionssatz (Vollstandigkeit) kann die Unerfillbarkeit von 7~ nach endlich
vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei kdnnen nur endlich viele Klauseln aus der Klauselform von 7~ verwendet worden
sein.

Laut Resolutionssatz (Korrektheit) folgt die Existenz einer unerfillbaren endlichen
Teilmenge von 7. O
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt genau dann den
transitiven Abschluss einer bindren Relation r aus, wenn in jeder Interpretation
T =/(A?, Ty und fiir alle 6,8, € A? gilt:

I,{x|—>61,y|—>62}|=F gdW (51,52)6(7'[)+
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt genau dann den
transitiven Abschluss einer bindren Relation r aus, wenn in jeder Interpretation
T =/(A?, Ty und fiir alle 6,8, € A? gilt:

Iixm o,y 0l EF gaw. @160 € ()

Satz: Es gibt keine pradikatenlogische Formel, die den transitiven Abschluss einer bi-
naren Relation ausdruckt.
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt genau dann den
transitiven Abschluss einer bindren Relation r aus, wenn in jeder Interpretation
I = (AT, Ty und fiir alle 6;,8, € AT gilt:

Iixm o,y 0l EF gaw. @160 € ()

Satz: Es gibt keine pradikatenlogische Formel, die den transitiven Abschluss einer bi-
naren Relation ausdruckt.

Beweis: Angenommen, es gabe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfillbar:
{ F{x'_) a,y = b}7 _'r(aa b)a —|Elx1.(r(a,x1)/\r(x1,b)),
_‘3x17x2'(r(a7x1)/\r(x17x2)Ar(XZab))u }

Aber jede endliche Teilmenge der Theorie ist erfiillbar. Die Existenz der Formel F wiirde

also dem Kompaktheitssatz widersprechen. O
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Endliche Interpretationen
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Léowenheim und Skolem

Eine Interpretation 7 = (A’ -7y heiBt genau dann endlich (abz&hlbar), wenn ihre Do-
mane A’ endlich (abz&hlbar) ist.

Satz (Léwenheim! und Skolem):
Jede erflllbare pradikatenlogische Formel hat ein abzahlbares Modell.

! Leopold Léwenheim? (1878-1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tatig.
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Léowenheim und Skolem

Eine Interpretation 7 = (A’ -7y heiBt genau dann endlich (abz&hlbar), wenn ihre Do-
mane A’ endlich (abz&hlbar) ist.

Satz (Léwenheim! und Skolem):
Jede erflllbare pradikatenlogische Formel hat ein abzahlbares Modell.

! Leopold Léwenheim? (1878-1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tatig.

2 Note: One of the best predictors of success in mathematical logic is having an umlaut in your name.” —

S. Aaronson, Quantum Computing since Democritus. Cambridge, 2013.
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Léowenheim und Skolem

Eine Interpretation 7 = (A’ -7y heiBt genau dann endlich (abz&hlbar), wenn ihre Do-
mane A’ endlich (abz&hlbar) ist.

Satz (Léwenheim! und Skolem):
Jede erflllbare pradikatenlogische Formel hat ein abzahlbares Modell.

Beweis:

® Jede Formel F kann in erflllbarkeitsdquivalente Skolemform F’ Uberflihrt werden.
Ist F” erflllbar, so hat F” ein Herbrand-Modell. (VL 19)
Jede Herbrand-Interpretation hat immer eine abzahlbare Doméane (das
Herbrand-Universum).
* Man kann aus den Beweisen der Erfiillbarkeitsaquivalenz erkennen:

Jedes Modell von F” ist auch ein Modell fiir F. O

! Leopold Léwenheim? (1878-1957): deutscher Logiker; 1915 erster Beweis des obigen Satzes; 1916 Soldat im
1. Weltkrieg; 1934 von den Nazis zwangspensioniert und als Privatlehrer tatig.

2 Note: One of the best predictors of success in mathematical logic is having an umlaut in your name.” —

S. Aaronson, Quantum Computing since Democritus. Cambridge, 2013.
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Historische Anmerkungen

® Der eben gezeigte ,Satz von Léwenheim und Skolem* ist eigentlich der nach unten
gerichtete Satz von Léwenheim und Skolem (engl. Downward Léwenheim-Skolem
Theorem).

® Der nach oben gerichtete Satz von Léwenheim und Skolem (engl. Upward
Léwenheim-Skolem Theorem) besagt, dass jede erfillbare Formel auch Modelle
beliebig groBer Kardinalitat besitzt.
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Historische Anmerkungen

® Der eben gezeigte ,Satz von Léwenheim und Skolem* ist eigentlich der nach unten
gerichtete Satz von Léwenheim und Skolem (engl. Downward Léwenheim-Skolem
Theorem).

® Der nach oben gerichtete Satz von Léwenheim und Skolem (engl. Upward
Léwenheim-Skolem Theorem) besagt, dass jede erfillbare Formel auch Modelle
beliebig groBer Kardinalitat besitzt.

® Der Legende nach war Skolem die Verwendung seines Namens in diesem Kontext
unangenehm:

.| follow custom in calling Corollary 6.1.4 the upward Léwenheim-Skolem theo-
rem. But in fact Skolem didn’t even believe it, because he didn’t believe in the
existence of uncountable sets.”

— W. Hodges, Model Theory, Cambridge 1993
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Endlichkeit von Modellen

Léwenheim/Skolem: Jede erfillbare Formel hat ein abz&hlbar groBes Modell.

Kann man dies noch verstarken? Hat jede erfillbare Formel vielleicht sogar ein
endliches Modell?
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Endlichkeit von Modellen

Léwenheim/Skolem: Jede erfillbare Formel hat ein abz&hlbar groBes Modell.

Kann man dies noch verstarken? Hat jede erflllbare Formel vielleicht sogar ein
endliches Modell?

Nein. Pradikatenlogik kann unendliche Modelle erzwingen:

Beispiel:
Vx.(Mensch(x) — dy.(hatMutter(x, y) A Mensch(y)))
Vx, y.(hatMutter(x, y) — hatVorfahr(x, y))
Vx, y, z.((hatVorfahr(x, y) A hatVorfahr(y, z)) — hatVorfahr(x, z))
Vx.—hatVorfahr(x, x)

Diese Theorie ist erfiilloar, aber hat nur unendliche Modelle.  (Kontrollfrage: Warum?)
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Logik Uber endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis Gberhaupt wiinschenswert?
Geht es auch endlich?
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Logik Uber endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis Gberhaupt wiinschenswert?
Geht es auch endlich?

Pradikatenlogik mit endlichen Interpretationen verwendet die gleiche Syntax und Se-
mantik wie Pradikatenlogik allgemein, aber mit der zusétzlichen Bedingung, dass die
Domaéne von Interpretationen endlich sein muss.
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Logik Uber endlichen Interpretationen

Sind unendliche Interpretationen in der Praxis Gberhaupt wiinschenswert?
Geht es auch endlich?

Pradikatenlogik mit endlichen Interpretationen verwendet die gleiche Syntax und Se-
mantik wie Pradikatenlogik allgemein, aber mit der zusatzlichen Bedingung, dass die
Domaéne von Interpretationen endlich sein muss.

Anmerkung: Wir nutzen auch den Begriff Pradikatenlogik mit endlichen Modellen, da
die Endlichkeit jeder Interpretation die Endlichkeit jedes Modells impliziert.
Monotonie (Riickblick): Weniger Modelle fiihren zu mehr Konsequenzen.

Beispiel: Vx.(Mensch(x) — dy.(hatVorfahr(x, y) A Mensch(y)))

Vx,y, z.((hatVorfahr(x, y) A hatVorfahr(y, z)) — hatVorfahr(x, z))
Diese Theorie ist in der Pradikatenlogik mit endlichen Interpretationen erfillbar, aber
jedes endliche Modell muss einen hatVorfahr-Zyklus enthalten.
Daher folgt aus der Theorie dx.hatVorfahr(x, x), obwohl dies in der allgemeinen Pradi-
katenlogik keine Konsequenz ware.
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ErfUllbarkeit wird semi-entscheidbar

Die Bezeichnung der Elemente einer Interpretationsdoméne ist irrelevant — flr die
Wahrheit von Satzen kommt es nur darauf an, wie Konstanten und Pradikatensymbole
interpretiert werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 9 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

ErfUllbarkeit wird semi-entscheidbar

Die Bezeichnung der Elemente einer Interpretationsdoméne ist irrelevant — flr die
Wahrheit von Satzen kommt es nur darauf an, wie Konstanten und Pradikatensymbole
interpretiert werden.

ErfUllbarkeitstest

Gegeben: Ein Satz F.
® Betrachte systematisch alle endlichen Interpretationen der Symbole in F
(z.B. geordnet nach aufsteigender GréBe der Doméne).
® Prife fur jede Interpretation 7, ob 1 E F gilt:

— Falls ja, dann gib aus ,erfillbar®;
— falls nein, dann fahre mit der nachsten Interpretation fort.

Es ist leicht zu sehen, dass dieser Algorithmus die Erfillbarkeit in endlichen
Interpretationen semi-entscheidet.
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Endlich = einfach?
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Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)
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Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollstandiges Beweissystem fir Pradikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gébe ein solches System.
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Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollstandiges Beweissystem fir Pradikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gébe ein solches System.

® Dann ware logische Konsequenz und speziell auch Unerfullbarkeit
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 10 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollstandiges Beweissystem fir Pradikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gébe ein solches System.

® Dann ware logische Konsequenz und speziell auch Unerfullbarkeit
semi-entscheidbar.

® Wir wissen, dass Erflllbarkeit ebenfalls semi-entscheidbar ist.
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Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollstandiges Beweissystem fir Pradikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gébe ein solches System.

® Dann ware logische Konsequenz und speziell auch Unerfullbarkeit
semi-entscheidbar.

* Wir wissen, dass Erfullbarkeit ebenfalls semi-entscheidbar ist.
® Zusammen ergabe sich also ein Entscheidungsverfahren flr logisches SchlieBen.
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Endlich = einfach?

Trotzdem bleibt logisches SchlieBen schwer:

Satz von Trakhtenbrot: Logisches SchlieBen (Erflllbarkeit, Allgemeingultigkeit, logi-
sche Konsequenz) in der Pradikatenlogik mit endlichen Modellen ist unentscheidbar.

(Ohne Beweis; mehr dazu in der Vorlesung Database Theory.)

Korollar: Es gibt kein korrektes und vollstandiges Beweissystem fir Pradikatenlogik
mit endlichen Modellen.

Beweis: Angenommen, es gébe ein solches System.

® Dann ware logische Konsequenz und speziell auch Unerfullbarkeit
semi-entscheidbar.

* Wir wissen, dass Erfullbarkeit ebenfalls semi-entscheidbar ist.
® Zusammen ergabe sich also ein Entscheidungsverfahren flr logisches SchlieBen.

® Widerspruch zum Satz von Trakhtenbrot. ]
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Endliche Interpretationen in der Praxis

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 11 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wozu endliche Interpretationen?

In gewisser Weise ist SchlieBen mit endlichen Interpretationen also schwerer als mit
unendlichen, weil man statt logischer Konsequenz nunmehr nur Nicht-Konsequenz
semi-entscheiden kann.

Trotzdem sind endliche Interpretationen in der Informatik praktisch relevant:

Eine endliche Interpretation 7 ist (im Wesentlichen) das gleiche wie eine relationale
Datenbankinstanz.

Intuition:
® Pradikatensymbole p bezeichnen Tabellen.
* Relationen p’ entsprechen den in der Datenbank gespeicherten Tabelleninhalten.
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Benannte Parameter

Relationale Datenbanken verwenden Namen fur die Parameter (Spalten) in Relationen,
anstatt sie mittels Reihenfolge zu adressieren:

linien:
Linie | Typ
85 Bus
3 Tram
F1 Fahre
verbindung:
Von | Zu Linie
57 42 85
17 789 | 3

Sebastian Rudolph, TU Dresden

haltestellen:
SID | Name Rollstuhl
17 Hauptbahnhof true
42 Helmholtzstr. true
57 Stadtgutstr. true
123 | Gustav-Freytag-Str. | false

Die einfache Aritat der Pradikatenlogik wird durch ein

Schema mit Namen (und oft auch Datentypen) ersetzt:

® linien[Linie:string, Typ:string]
® haltestellen[SID:int, Halt:string, Rollstuhl:bool]
® verbindung[Von:int, Zu:int, Linie:string]

Theoretische Informatik und Logik, VL 21

Folie 13 von 30
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Benannte Parameter

Relationale Datenbanken verwenden Namen fur die Parameter (Spalten) in Relationen,
anstatt sie mittels Reihenfolge zu adressieren:

linien: haltestellen:
Linie | Typ SID | Name Rollstuhl
85 Bus 17 Hauptbahnhof true
3 Tram 42 Helmholtzstr. true
F1 Fahre 57 Stadtgutstr. true
123 | Gustav-Freytag-Str. | false

verbindung: Die einfache Aritat der Pradikatenlogik wird durch ein
Von | Zu Linie Schema mit Namen (und oft auch Datentypen) ersetzt:
57 42 85 ® linien[Linie:string, Typ:string]
17 789 | 3 ® haltestellen[SID:int, Halt:string, Rollstuhl:bool]
® verbindung[Von:int, Zu:int, Linie:string]

Mégliche Anfrage (SQL): SELECT verbindung.Von, verbindung.Zu, linien.Typ
FROM linien JOIN verbindung ON linien.Linie=verbindung.Linie
WHERE ...
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Formeln = Anfragen

Benannt oder nicht — sofern die Parameter eine definierte Reihenfolge haben, kénnen

wir sie mit préadikatenlogischen Atomen addressieren.

Beispiel: Die Formel

Q = Jziinie-(verbindung(xvon, Xzu, ZLinie) A liNi€N(zLinie, X1yp))

hat drei freie Variablen.
Far eine gegebene Datenbankinstanz (endliche Interpretation) 7 bedeutet

I, {xvyon +> 01, Xzy > 62, X1yp > 03} E O

dass es in der Datenbank eine Verbindung von §; nach ¢, vom Typ o5 gibt.
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Formeln = Anfragen

Benannt oder nicht — sofern die Parameter eine definierte Reihenfolge haben, kénnen

wir sie mit préadikatenlogischen Atomen addressieren.

Beispiel: Die Formel

Q = Jziinie-(verbindung(xvon, Xzu, ZLinie) A liNi€N(zLinie, X1yp))

hat drei freie Variablen.
Far eine gegebene Datenbankinstanz (endliche Interpretation) 7 bedeutet

I, {xvyon +> 01, Xzy > 62, X1yp > 03} E O

dass es in der Datenbank eine Verbindung von §; nach ¢, vom Typ o5 gibt.

Das Beispiel illustriert:
Formeln (evtl. mit freien Variablen) = Datenbankanfragen

Erflllende Zuweisungen = Anfrage-Ergebnisse
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Logik und Datenbanken

Relationale Datenbankinstanzen = Endliche Interpretationen
® Tabellen(namen) entsprechen Pradikatensymbolen
® Kleinere syntaktische Unterschiede (benannte vs. geordnete Parameter)
Relationale Datenbankanfragen = Pradikatenlogische Formeln
® Zuweisungen Z zu freien Variablen modellieren mogliche Anfrageergebnisse
e J,Z E O bedeutet: Z ist Ergebnis der Anfrage Q auf Datenbankinstanz 7

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 15 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Pradikatenlogik ~ SQL

Was ist eine Datenbank-Anfrage?
® Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.

® Semantik: Jede Anfrage Q definiert eine Anfragefunktion fy, die
far jede Datenbankinstanz 7 eine Ergebnisrelation f,(7) liefert.
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Pradikatenlogik ~ SQL

Was ist eine Datenbank-Anfrage?
® Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.

® Semantik: Jede Anfrage Q definiert eine Anfragefunktion fy, die
far jede Datenbankinstanz 7 eine Ergebnisrelation f,(7) liefert.

Beispiel: Flr eine préadikatenlogische Formel O mit freien Variablen xi, ..., x, ist fo
diejenige Funktion, die eine Interpretation 7 wie folgt auf die Ergebnisrelation fo(7)
abbildet:

L= {(01,..,00) [ L, {x1 = 61,....%: = 6} E O}
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Pradikatenlogik ~ SQL

Was ist eine Datenbank-Anfrage?
® Syntax: Eine Anfrage Q ist ein Wort aus einer Anfragesprache.

® Semantik: Jede Anfrage Q definiert eine Anfragefunktion fy, die
far jede Datenbankinstanz 7 eine Ergebnisrelation f,(7) liefert.

Beispiel: Flr eine préadikatenlogische Formel O mit freien Variablen xi, ..., x, ist fo
diejenige Funktion, die eine Interpretation 7 wie folgt auf die Ergebnisrelation fo(7)
abbildet:

L= {(01,..,00) [ L, {x1 = 61,....%: = 6} E O}

Mit solch einer allgemeinen Definition kann man sehr unterschiedliche Anfragesprachen
(Ober ihre Anfragefunktionen) miteinander vergleichen.

Satz: Die Menge der durch pradikatenlogische Formeln Q darstellbaren Anfrage-
funktionen fj ist genau die Menge der Anfragefunktionen, die durch einfache SQL-
Anfragen darstellbar sind.

,Einfache SQL-Anfragen*: Relationale Algebra, der Kern von SQL; SELECT, JOIN, UNION, MINUS, aber keine komplexeren Features wie WITH
RECURSIVE etc. AuBerdem keine Datentypen, da wir diese in der Pradikatenlogik nicht eingefiihrt haben.
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Relationale Algebren

Datenbankanfragen werden oft in relationaler Algebra dargestellt, bei der man
Relationen mit Operationen zu einem Anfrageergebnis kombiniert.

Beispiel: Die Anfrage
0 = Jziinie-(verbindung(xvon, Xzu, ZLinie) A liNi€N(zLinie, X1yp))
entspricht einer (nattrrlichen) Join-Operation (A) mit anschlieBender Projektion (3):

Tvon,zu,Typ(Verbindung » linien)

Anmerkung: SQL hat noch einen leicht anderen Stil. Variablen stehen dort fiir ganze
Tabellenzeilen und man verwendet Notation der Form ,linien.Typ®, um auf deren
Eintrdge zuzugreifen (, Tuple-Relational Calculus®).

~> Das &ndert an der Ausdrucksstéarke nichts.
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Anfragebeantwortung als Model Checking

Erkenntnis: Die wesentliche Berechnungsaufgabe bei der Beantwortung von
Datenbankabfragen ist das folgende Entscheidungsproblem:

Das Auswertungsproblem (Model Checking) der Pradikatenlogik lautet wie folgt:

Gegeben:
® Eine Formel Q mit freien Variablen xi, ..., x,;
® cine endliche Interpretation 7;
® Elemente 61,...,0, € AL

Frage: Gilt 7, {x; = 61,...,x, = 6,} E Q7

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21 Folie 18 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Anfragebeantwortung als Model Checking

Erkenntnis: Die wesentliche Berechnungsaufgabe bei der Beantwortung von
Datenbankabfragen ist das folgende Entscheidungsproblem:

Das Auswertungsproblem (Model Checking) der Pradikatenlogik lautet wie folgt:

Gegeben:
® Eine Formel Q mit freien Variablen xi, ..., x,;
® eine endliche Interpretation 7;
® Elemente 61,...,0, € AL

Frage: Gilt 7, {x; = 61,...,x, = 6,} E Q7

Naive Methode der Anfragebeantwortung:
® Betrachte alle (Af)n moglichen Ergebnisse;
® entscheide jeweils das Auswertungsproblem.
Praktisch relevante Frage:
Wie schwer ist das Auswertungsproblem?
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Ein Algorithmus flr das Auswertungsproblem
Wir nehmen an, dass die Formel F nur =, A und 3 enthalt. (Durch Umformung méglich.)

function eval(F,7,2) {
01 switch(F) {

02 case p(cy,...,c,) . return (c‘lr’z7 bty epl;

03 case =G : return not eval(G, I, 2);

04 case G| A G, : return eval(Gy,7,2Z) and eval(G,, 1, 2);
05 case dx.G :

06 for c e AT {

07 if eval(G{x — c}, 7, Z) then return true;}

08 return false; }

Anmerkung: Wenn Konstanten c¢ in der Anfrage vorkommen, dann nimmt man in der
Regel an, dass ¢ = cist.

Anmerkung 2: In der Praxis stimmt das nicht ganz. Insbesondere bei Verwendung von Datentypen haben
DB-Systeme normalerweise eingebaute Interpretationsfunktionen. Zum Beispiel wirden die Konstanten "42"
und "+42" die selbe Ganzzahl bezeichnen.
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Quiz: Auswertungsproblem

Das Auswertungsproblem (Model Checking) der Pradikatenlogik lautet wie folgt:
Gegeben:

® Eine Formel Q mit freien Variablen xi,...,xy;

® eine endliche Interpretation 7;

® Elemente 61,...,6, € AL
Frage: Gilt 7,{x; — 61,...,x, > 6y} E O?

Quiz: Wir betrachten die untenstehenden Instanzen des Auswertungsproblems. . ..
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Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.

® Maximale Rekursionstiefe?
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Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.

® Maximale Rekursionstiefe?
~> beschréankt durch Zahl der Teilformeln: < m

® Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
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Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.
® Maximale Rekursionstiefe?
~> beschréankt durch Zahl der Teilformeln: < m

® Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
~> |AT| < n pro rekursivem Aufruf
~» insgesamt < n™ lterationen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21

Folie 21 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.

* Maximale Rekursionstiefe?
~> beschrankt durch Zahl der Teilformeln: < m

® Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
~> |AT| < n pro rekursivem Aufruf
~» insgesamt < n™ lterationen

e Rekursive Aufrufe in anderen Fallen?
~> 1 oder 2

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 21

Folie 21 von 30


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.
® Maximale Rekursionstiefe?
~> beschréankt durch Zahl der Teilformeln: < m

® Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
~> |AT| < n pro rekursivem Aufruf
~» insgesamt < n™ lterationen

e Rekursive Aufrufe in anderen Fallen?
~> 1 oder 2

° (c{’z, e, cf’z) e p! ist entscheidbar in linearer Zeit beziglich n.
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Zeitkomplexitat

Sei |[F| = m die GréBe von F und |I| = n die GesamtgréBe der Datenbank.
® Maximale Rekursionstiefe?
~> beschréankt durch Zahl der Teilformeln: < m

® Maximale Zahl der Iterationen (und rekursiven Aufrufe) in for-Schleife?
~> |AT| < n pro rekursivem Aufruf
~» insgesamt < n™ lterationen

e Rekursive Aufrufe in anderen Fallen?
~> 1 oder 2

° (c{’z, e, cf’z) e p’ ist entscheidbar in linearer Zeit beziiglich n.

Gesamtlaufzeit in max(n, 2)" - n < (n + 2)"*!:
e Komplexitét des Algorithmus: in ExpTime
® Komplexitét beziglich der GréBe der Datenbank (m konstant): in P
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Speicherkomplexitat

Wir erhalten eine bessere Komplexitatsabschatzung, wenn wir den Speicherbedarf
betrachten:

Sei |[F| = m die GréBe von F und |Z| = n die GesamtgréBe der Datenbank.
® Speichere pro (rekursivem) Aufruf einen Zeiger auf eine Teilformel von F: logm

® Speichere fir jede Variable in F (maximal m) die aktuelle Zuweisung (als Zeiger):
m-logn

° (c{’z, e cf’z) e p’ ist entscheidbar in logarithmischem Speicher beziiglich n.
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Speicherkomplexitat

Wir erhalten eine bessere Komplexitatsabschatzung, wenn wir den Speicherbedarf
betrachten:

Sei |[F| = m die GréBe von F und |Z| = n die GesamtgréBe der Datenbank.
® Speichere pro (rekursivem) Aufruf einen Zeiger auf eine Teilformel von F: logm

® Speichere fir jede Variable in F (maximal m) die aktuelle Zuweisung (als Zeiger):
m-logn

° (c{’z, e cf’z) e p’ ist entscheidbar in logarithmischem Speicher beziiglich n.

Speicher in mlogm + mlogn + logn = mlogm + (m + 1)logn
e Komplexitat des Algorithmus: in PSpace
® Komplexitat bezlglich der GréBe der Datenbank (m konstant): in LogSpace

Zur Erinnerung: PSpace C ExpTime und LogSpace < P, d.h. die obigen Schranken sind besser.
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Komplexitat des Auswertungsproblems

Satz: Das Auswertungsproblem der Pradikatenlogik ist PSpace-vollstandig.
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Komplexitat des Auswertungsproblems

Satz: Das Auswertungsproblem der Pradikatenlogik ist PSpace-vollstandig.

Beweis: Durch Reduktion vom Auswertungsproblem quantifizierter Boolescher Formeln
(TrueQBF).

Sei 01p1.02p2. s Onpn.F[pl, ceey Pnl eine QBF (mit O € {Vv, 3})
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Komplexitat des Auswertungsproblems

Satz: Das Auswertungsproblem der Pradikatenlogik ist PSpace-vollstandig.

Beweis: Durch Reduktion vom Auswertungsproblem quantifizierter Boolescher Formeln
(TrueQBF).
Sei O1p1.Oyps. -+ - Oupn-Flpi, - .., pu] €ine QBF (mit ©; € {V, 3}).

e Wir nutzen die Datenbankinstanz 7 mit A” = {0, 1}; auBerdem

* cin einstelliges Pradikat true mit true’ = {1} (eine Tabelle mit einer Spalte: true(1)).

* Aus der gegebenen QBF erstellen wir die folgende préadikatenlogische Formel
ohne freie Variablen:

01x1.02x7. - - Opx, . Flpy /true(xy), . ..., pn/true(x,)]

wobei F[p; /true(xy),. .., p,/true(x,)] die Formel ist, die aus F entsteht, wenn man
jedes aussagenlogische Atom p; durch das pradikatenlogische Atom true(x;) ersetzt.

Die Korrektheit dieser Reduktion ist leicht zu zeigen. O
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Wie schwer sind Datenbankabfragen?

Korollar: Die Beantwortung von SQL-Anfragen ist PSpace-schwer, sogar wenn die
Datenbank nur eine einzige Tabelle mit einer einzigen Zeile enthalt.

Die Komplexitat steckt vor allem in der Struktur der Anfrage.

Ist die Anfrage fest vorgegeben oder in ihrer GréBe beschrénkt, dann wird das
praktische Verhalten oft von der Datenbankgréf3e dominiert: Bezuglich dieser GréBe ist
das Problem aber in LogSpace.

Man kann sogar noch niedrigere Komplexitatsschranken bezlglich der DatenbankgréBe
angeben (siehe Vorlesung Database Theory).

~ SQL-Anfragebeantwortung ist praktisch implementierbar, aber nur solange die
Anfragen nicht zu komplex werden.
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Die Grenzen der Pradikatenlogik
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Reprise: Formeln als Anfragen

linien: haltestellen:
Linie | Typ SID | Name Rollstuhl
85 Bus 17 Hauptbahnhof true
3 Tram 42 Helmholtzstr. true
F1 Fahre 57 Stadtgutstr. true
123 | Gustav-Freytag-Str. | false

verbindung: Die einfache Aritt der Pradikatenlogik wird durch ein
Von | Zu Linie Schema mit Namen (und oft auch Datentypen) ersetzt:
57 42 85 ® linien[Linie:string, Typ:string]
17 789 | 3 ® haltestellen[SID:int, Halt:string, Rollstuhl:bool]
® verbindung[Von:int, Zu:int, Linie:string]

Relationale Algebra: Parameter (Spalten) durch Namen adressiert
Prédikatenlogik: Parameter durch Reihenfolge adressiert

Die Anfrage Jziinie-(verbindung(xvon. Xzu. ZLinie) A linien(ziinie, XTyp)) €ntspricht einer
(nattrrlichen) Join-Operation (A) mit anschlieBender Projektion (3):
Tvon,zu, Typ(Verbindung » linien).
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Pradikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”

Qolxo] = (xo = 42)
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Pradikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholizstr. sind:”
Qolxo] = (xo = 42)
“Haltestellen direkt neben Helmholtzstr.:”

O1lx1] = Axo, zLinie-(verbindung(xo, x1, zLinie) A Qolxo])
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Pradikatenlogik als Anfragesprache
Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”
Qolxo] = (xo = 42)
“Haltestellen direkt neben Helmholtzstr.:”
Q1 lx11 = Ixo, zLinie-(verbindung(xo, x1, zLinie) A Qolxo])
“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”

Oa[x2] = Fx1, ZLinie-(verbindung(xr, x2, zLinie) A Q1lx11)
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Pradikatenlogik als Anfragesprache

Beispielanfragen:

“Haltestellen, die Helmholtzstr. sind:”
Qolxol = (xo ~ 42)
“Haltestellen direkt neben Helmholtzstr.:”
Oi[x1] = Txo, zLinie-(verbindung(xo, x1, zLinie) A QolXo])
“Haltestellen, die zwei Halte weit von Helmholtzstr. entfernt sind:”
O>[x2] = Tx1, zLinie-(verbindung(x, x2, zuinie) A Q1lx11])
Und so weiter . ..

“Haltestellen, die von Helmholtzstr. aus mit einem Kurzstreckentticket erreichbar sind:”

Qolx] V Qilx] Vv Oalx] vV O3x] V Q4lx]
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Die Grenzen der Pradikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?
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Die Grenzen der Pradikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?

Es stellt sich heraus, dass das unmdglich ist.

Intuition: Pradikatenlogik kann nur “lokale” Eigenschaften Gberprifen.
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Die Grenzen der Pradikatenlogik

Wie finden wir alle Haltestellen, die man von Helmholtzstr. aus erreichen kann?

Es stellt sich heraus, dass das unmdglich ist.

Intuition: Pradikatenlogik kann nur “lokale” Eigenschaften Gberprifen.

Das lasst sich mathematisch ausdriicken:

Vage Behauptung (frei nach Gaifmans Locality Theorem): Fiir jeden Satz F gibt es
eine Zahl d, so dass flr beliebige Interpretationen 7 und 7 gilt:

® Wenn man nur zusammenhéngende endliche Teile von 7 und J betrachtet, die
héchstens Pfade der Lange d enthalten (,Durchmesser < d*),

® und wenn sich 7 und J bezliglich dieser d-Umgebungen nicht unterscheiden,
e dann kann auch F die Interpretationen nicht unterscheiden: 7 = F gdw. J E F.

Der Durchmesser d, der angibt wie weit F hdchstens ,schauen® kann, hangt exponentiell von der
Schachtelungstiefe der Quantoren ab.
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Rekursive Anfragen

Nichtlokale Eigenschaften wie z.B. die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdriicken?
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Rekursive Anfragen

Nichtlokale Eigenschaften wie z.B. die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdriicken?

Idee: Um beliebig weit zu ,schauen®, muss man Rekursion einflhren.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn
(1) sie die Haltestelle Helmholtzstr. ist, oder
(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.
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Zusammenfassung und Ausblick

Beschrankt man Pradikatenlogik auf endliche Interpretationen, so gibt es kein
vollstédndiges und korrektes Verfahren zum logischen SchlieBen — dafiir wird
Erflllbarkeit semi-entscheidbar.

Das Auswertungsproblem auf endlichen Interpretationen entspricht der
Anfragebeantwortung in Datenbanken.
(Komplexitat: PSpace-vollstéandig, aber sub-polynomiell bezlglich der Datenbankgréf3e.)

Pradikatenlogik hat Grenzen:
® bei der Modellierung (logisches SchlieBBen), z.B. transitiver Abschluss;
® bei logischen Abfragen (Model Checking), z.B. Erreichbarkeit.

Was erwartet uns als nachstes?
e Datalog und Logik héherer Ordnung
o Godel
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