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Previously . . .
• In complete information games, players know the rules, possibleoutcomes and each other’s preferences over outcomes.• In perfect information games, moves are sequential and all playersknow all previous moves.• In extensive-form games, information is not necessarily complete orperfect.• Uncertainty of players (due to missing information) can be modelled by

information sets and chance nodes (moves by Nature).• Bayes’ Theorem shows how to compute with conditional probabilities.• The law of total probability relates marginal to conditional probabilities.
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Example: Simplified Poker
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Simplified Poker: Game Description

Binmore’s Simplified Poker
• Two players, Ann and Bob, each put $1 into a jackpot.
• They then draw one card from a deck of three cards: {1, 2, 3}.
• Ann can either check (pass on), or raise (put another $1 into the jackpot).
• Next, Bob responds:

– If Ann has checked, then Bobmust call, that is, a showdown happens:Both players show their cards and the player with the higher (number) cardreceives the jackpot.– If Ann has raised, then Bob can decide between fold (withdraw from thegame and let Ann get the jackpot) or call (put another $1 into the jackpot andthen have a showdown).
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Simplified Poker: Formal Model
Simplified Poker can be modelled as an extensive-form game as follows:
• P = {Ann, Bob, Nature}
• M = (MAnn,MBob,MNature) with– MAnn = {check, raise},– MBob = {fold, call},– MNature = {deal123, deal132, deal213, deal231, deal312, deal321}.
• I = {IA1, IA2, IA3, IB1, IB2, IB3} with– IA1 = {[deal123] , [deal132]},

IA2 = {[deal213] , [deal231]},
IA3 = {[deal312] , [deal321]} with p(IA1) = p(IA2) = p(IA3) = Ann,– IB1 = {[deal213, raise] , [deal312, raise]},
IB2 = {[deal123, raise] , [deal321, raise]},
IB3 = {[deal132, raise] , [deal231, raise]} with p(IB1) = p(IB2) = p(IB3) = Bob.

• u = (uAnn,uBob) with the functions as shown next in the game tree.
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Simplified Poker: Analysis
Ann

123
132

213
231

312
321

check

(–1, 1)
check

(–1, 1)
check

(1, –1)
check

(–1, 1)
check

(1, –1)
check

(1, –1)
Bob

raise raise

fold

(1, –1)
call

(–2, 2)
fold

(1, –1)
call

(–2, 2)
raise raise

Bob
fold

(1, –1)
call

(2, –2)
fold

(1, –1)
call

(2, –2)
raise raise

Bob
fold

(1, –1)
call

(–2, 2)
fold

(1, –1)
call

(2, –2)
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Simplified Poker: Open Questions

What happens in the two remaining cases?

1. Should Ann raise (i.e. bluff) if she has a 1?
2. Should Bob call (the bluff) if he has a 2?
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Behaviour Strategies and Belief Systems
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Behaviour Strategies (1)
Definition
Let G be an extensive-form game with players P and information sets I.
1. A pure strategy for player i ∈ P is a function si that assigns a possiblemove to each of player i’s information sets.
2. A behaviour strategy for player i ∈ P is a function πi that assigns aprobability distribution over possible moves to each of player i’sinformation sets.
• si(Ij) denotes the move taken by player i at information set Ij ∈ I.
• πi(Ij)(mk) is the probability that player i will make movemk at informationset Ij. For readability, we will write this as πi(mk|Ij).• As usual, a pure strategy si with si(Ij) = mk can be seen as a behaviourstrategy πi with πi(mk|Ij) = 1 and πi(mℓ|Ij) = 0 formℓ ∈ Mi, ℓ ̸= k.
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Behaviour Strategies (2)
Example (Simplified Poker)
Consider information set IA1 = {[deal123] , [deal132]} where Ann has a 1.
With πAnn(IA1) = {

check 7→ 12 , raise 7→ 12
}, she bases her decision to bluff

(with her 1) on a (balanced) coin flip.
A behaviour strategy profile π induces expected utilities for all players:

Ui(π) := ∑
z∈Z

P(z|π) · ui(z)
where P(h|π) is the probability that history h is reached whenever playhappens according to profile π: inductively, define P([] |π) := 1 and

P([h;m] |π) := πp(Ih)(m|Ih) · P(h|π)
• where Ih ∈ I is the unique information set with h ∈ Ih,• and πNature is obtained from the probability distributions specified by G.
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Towards Solution Concepts: Example
Consider the following extensive-form game G4 and its normal form:
1 []

A

(0, 2)

2 [L] [R]

L R

ℓ

(2, 1)
r

(–1, –1)
ℓ

(1, 1)
r

(–2, 0)

(1, 2) ℓ r

A (0, 2) (0, 2)
L (2, 1) (–1, –1)
R (1, 1) (–2, 0)

(2, 1) (1, 1)

(2, 1)

• The normal form game has two pure Nash equilibria: (A, r) and (L, ℓ).• Arguably, only (L, ℓ) respects sequentiality:
– If play reaches {[L], [R]}, then 2 will choose ℓ .– Knowing this, 1 will choose L.

⇝ Adapt subgame perfect equilibria to information sets?
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Subgames of Extensive-Form Games
Definition
Let G be an extensive-form game. A subgame G′ of G consists of:
• A non-terminal history h′ ∈ H of G, the root of G′,
• all histories H′ ⊆ H of G that start with h′ (including Z ′ = H′ ∩ Z), and
• all other aspects of G restricted to H′ (players, moves, information sets,turn function p, probability distributions for Nature, and utilities),
where for all Ij ∈ I, either Ij ∩H′ = Ij or Ij ∩H′ = ∅.
Observation
If G′ is a subgame of G, then its root h′ is in information set {h′}.
Example
G4 only has the trivial subgame, itself.

Games with Missing Information: Solving (Lecture 7)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 13 of 32 Computational
Logic ∴ Group



Towards Solution Concepts: Stocktaking
• Viewing an extensive-form game as a normal-form game, we could obtain(mixed) Nash equilibria.• That did not fully work even for perfect-information sequential games:• There, we used a stronger solution concept: subgame perfect equilibria,where strategies must play best responses in all subgames.• With information sets, not every decision point corresponds to a subgame.• Information sets off the equilibrium path might be relevant.
Example (G4)
• G4 has only itself as subgame, so equilibrium (A, r) is “subgame perfect”.
• In (A, r), information set {[L], [R]} is reached with probability zero.
• To define playing best responses “everywhere”: What is the expectedpayoff from information set {[L], [R]} when play happens as in (A, r)?
⇝We will additionally model players’ beliefs about histories . . .
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Belief Systems
Definition
Let G be an extensive-form game with n players and information sets I.
A belief system for G is a tuple β = (β1, . . . ,βn) of functions βi that assign• to each Ij ∈ I with p(Ij) = i ̸= Nature

• a probability distribution βi(Ij) on histories h ∈ Ij.
• We denote βi(Ij)(h) by βi(h|Ij);• the value βi(h|Ij) reflects player i’s (where i = p(Ij)) belief about thelikelihood that h is the true history, given that i knows to be in Ij.
Example (Simplified Poker)
• In belief system βAnn with βAnn(IA1) = {

[deal123] 7→ 12 , [deal132] 7→ 12
},

Ann considers “Bob has a 2” and “Bob has a 3” to be equally likely.
• If βBob([deal123, raise] |IB2) = 0, then Bob is sure that Ann does not bluff.
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Assessments
Definition
Let G be an extensive-form game with non-Nature players 1, . . . ,n.
An assessment of G is a pair (π,β) consisting of a profile π = (π1, . . . ,πn) ofbehaviour strategies and a belief system β = (β1, . . . ,βn).
Example (Simplified Poker)
Consider the assessment (π′,β′) with
• π′

Ann(IA1) =
{
check 7→ 12 , raise 7→ 12

}, and playing optimally elsewhere,
• π′

Bob(IB2) =
{
fold 7→ 12 , call 7→ 12

}, and playing optimally elsewhere;
• β′

Ann(IA1), β′
Ann(IA2), and β′

Ann(IA3) all uniform distributions,
• where in IB3 and IB1 Bob is sure that Ann does not raise with a 2, and
• β′

Bob(IB2) =
{
[deal123, raise] 7→ 14 , [deal321, raise] 7→ 34

}.
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Expected Utility for Assessments
Definition
Let G be an extensive-form game and (π,β) be an assessment of G.
The expected utility for player i at information set Ij according to (π,β) is

Ui(Ij,π,β) := ∑
h∈Ij

(
βi(h|Ij) · ∑

z∈Z
(P(z|h,π) · ui(z)))

where P(h′|h,π) is the probability that history h′ is reached when playingaccording to π from history h on:
P(h|h,π) := 1 for all h ∈ H

P([] |h,π) := 0 for all h ̸= []

P([h′;m] |h,π) := πp(Ih′ )(m|Ih′ ) · P(h′|h,π)
Example: UBob(IB2,π′,β′) = 14 ·

(12 · (–1) + 12 · 2) + 34 ·
(12 · (–1) + 12 · (–2)) = –1.
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Weak Sequential Equilibria
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Best Responses and Sequential Rationality
Definition
Let (π,β) be an assessment for an extensive-form game G with players P.
1. Player i’s strategy πi is a best response to π–i at information set Ij ∈ I iff

πi maximises Ui(Ij, (π–i,π′
i
),β) among all possible behaviour strategies π′

i
:

Ui(Ij, (π–i,πi,β)) = maxπ′
i
∈Πi Ui(Ij, (π–i,π′

i
,β))

2. Assessment (π,β) is sequentially rational iff for all players i ∈ P, strategy
πi is a best response at each information set Ij with p(Ij) ∈ {i, Nature}.

Example (Simplified Poker)
• In (π′,β′) seen earlier, π′

Bob is a best response to π′
Ann at IB2, because any

π′′
Bob(IB2) = {fold 7→ (1 – q), call 7→ q} would likewise achieve a payoff of
UBob(IB2, (π′

Ann,π′′
Bob),β′) = 14 · (–1 + q + 2q) + 34 · (–1 + q – 2q) = –1+3q–3–3q4 = –1.

• In contrast, πAnn ′ is not a best response to πBob ′ at IA1 as we shall see.
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Consistency of Beliefs: Example
In (π′,β′) seen earlier, we had

π
′
Ann(IA1) =

{
check 7→ 1

2, raise 7→ 1
2

}
, and

β
′
Bob(IB2) =

{
[deal123, raise] 7→ 1

4, [deal321, raise] 7→ 3
4

}
However, Bob’s beliefs about IB2 seem inadequate, as

P([deal123, raise] |π′) = 1
6 · 12 =

1
12 and

P([deal321, raise] |π′) = 1
6 · 1 =

1
6 = 2 · P([deal123, raise] |π′)

A more realistic likelihood estimate of the situation given by π′ would be
β

′′
Bob(IB2) =

{
[deal123, raise] 7→ 1

3, [deal321, raise] 7→ 2
3

}
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Consistency of Beliefs: Definition
Definition
Let G be an extensive-form game and (π,β) be an assessment for G.
Assessment (π,β) satisfies consistency of beliefs iff for all information sets
Ij ∈ I and for all histories h ∈ Ij, we have:

βp(Ij)(h|Ij) = P(h|π)∑
h∈Ij

P(h|π) =
P(h|π)
P(Ij|π) whenever P(Ij|π) > 0

Example (Simplified Poker)
The assessment (π′,β′) seen earlier does not satisfy consistency of beliefs.
Observation
Given a profile π of behaviour strategies, we can use the definition above toconstruct a belief system β that satisfies consistency of beliefs.
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Weak Sequential Equilibria
Definition
Let G be an extensive-form game.
An assessment (π,β) for G is a weak sequential equilibrium iffit is both sequentially rational and satisfies consistency of beliefs.
Theorem (Kreps and Wilson, 1982)
Every extensive-form game with perfect recall and a finite set H of historieshas a weak sequential equilibrium.
Recall: Perfect recall means that players know their own previous moves.
Example
Simplified Poker has perfect recall and is finite, therefore has a weaksequential equilibrium.
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Some Special Cases
Theorem
Let G be a sequential game with perfect information and G′ its associatedextensive-form game (using singleton information sets).
Every subgame-perfect equilibrium of G corresponds to a weak sequentialequilibrium of G′.
Theorem
Let G be a strategic (normal-form) game (with simultaneous moves) and G′

be its associated extensive-form game (using sequentialised moves andmove hiding).
Every mixed Nash equilibrium of G corresponds to a weak sequentialequilibrium of G′.
In both cases, we add a belief system satisfying consistency of beliefs.
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Solving Simplified Poker
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Solving Simplified Poker (1)
What happens in the two remaining cases?

Should Ann raise (i.e. bluff) if she has a 1?
Should Bob call (the bluff) if he has a 2?

• Denote by π∗ = (π∗
Ann,π∗

Bob) the behaviour strategy profile where bothplayers act optimally according to our previous analysis, and additionally
• Ann resolves to bluff (with a 1) with probability p, π∗

Ann(raise|IA1) = p,
• Bob resolves to call (with a 2) with probability q, π∗

Bob(call|IB2) = q.
• Denote by β∗ the belief system that is consistent with π∗.
• We know P([deal123] |π∗) = P([deal132] |π∗) = 16 , so P(IA1|π∗) = 13 and• β∗

Ann([deal123] |IA1) = β∗
Ann([deal132] |IA1) = 12 .

1. How should Ann choose the value of p?
2. How should Bob choose the value of q?
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Solving Simplified Poker (2)

P(IB2|π∗) = P([deal123, raise] |π∗) + P([deal321, raise] |π∗)
= P([deal123] |π∗) · π∗

Ann(raise|IA1) + P([deal321] |π∗) · π∗
Ann(raise|IA3)

=
1
6 · p + 16 · 1

Therefore,
P([deal123, raise] |IB2,π∗) = P([deal123, raise] |π∗)

P(IB2|π∗) =
p6

p6 + 16
=

p

p + 1
P([deal321, raise] |IB2,π∗) = P([deal321, raise] |π∗)

P(IB2|π∗) =
16

p6 + 16
=

1
p + 1

Ann’s goal is to make Bob indifferent between his two moves in IB2, that is:
UBob(fold, IB2,π∗) = UBob(call, IB2,π∗)
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Solving Simplified Poker (3)
We have the below payoff when Bob plays fold at IB2 with probability 1:
UBob(fold, IB2,π∗) = P([deal123, raise] |IB2,π∗) · uBob([deal123, raise, fold]) +

P([deal321, raise] |IB2,π∗) · uBob([deal321, raise, fold])
=

p

p + 1 · (–1) + 1
p + 1 · (–1) = –1

and likewise, if Bob plays a pure call at IB2:
UBob(call, IB2,π∗) = P([deal123, raise] |IB2,π∗) · uBob([deal123, raise, call]) +

P([deal321, raise] |IB2,π∗) · uBob([deal321, raise, call])
=

p

p + 1 · 2 + 1
p + 1 · (–2) = 2p – 2

p + 1
So overall, Ann’s goal is to choose p such that

–1 =
2p – 2
p + 1 whence we obtain p =

1
3.
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Solving Simplified Poker (4)
It remains to calculate q = π∗

Bob(call|IB2).
Intuitively, Bob’s goal is to make Ann indifferent between her two moves in IA1:

UAnn(check, IA1,π∗) = UAnn(raise, IA1,π∗)

For the left-hand side, we obtain the expected utility of a pure check at IA1:
UAnn(check, IA1,π∗)

= P([deal123] |IA1,π∗) · uAnn([deal123, check]) +
P([deal132] |IA1,π∗) · uAnn([deal132, check])

=
1
2 · (–1) + 12 · (–1) = –1
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Solving Simplified Poker (5)
For the right-hand side, we get the expected utility of a pure raise at IA1:

UAnn(raise, IA1,π∗)
= P([deal123] |IA1,π∗) · πBob(fold|IB2) · uAnn([deal123, raise, fold]) +
P([deal123] |IA1,π∗) · πBob(call|IB2) · uAnn([deal123, raise, call]) +
P([deal132] |IA1,π∗) · πBob(fold|IB3) · uAnn([deal132, raise, fold]) +
P([deal132] |IA1,π∗) · πBob(call|IB3) · uAnn([deal132, raise, call])

=
1
2 · (1 – q) · 1 + 12 · q · (–2) + 12 · 0 · 1 + 12 · 1 · (–2) = 1

2 · (1 – q – 2q – 2)

Overall, Bob’s goal is thus to choose q such that
–1 =

–3q – 1
2 whence we obtain q =

1
3.
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Solving Simplified Poker: Takeaways

• Bluffing can be part of a rational strategy (playing against rationalopponents):
– Ann bluffs a third of the times she has her worst possible hand,– which is justified because Bob will call that raise only a third of the times.

• The expected value of the game for the obtained π∗ is
UAnn(π∗) = p – 3pq + q

6 =
1
18 = –UBob(π∗)

so Ann has an advantage. Thus players switch roles after each round.
• If Ann deviates from π∗, then Bob will best-respond (punish) by adapting q:

– for p > 13 setting q = 1, and
– for p < 13 setting q = 0.
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Solving (heads-up limit Texas hold’em) Poker
Bowling et al. [2015] consider heads-up limit hold’em poker to be“essentially weakly solved”:
• There are 3.16 · 1017 possible states, and 3.19 · 1014 decision points.
• They used an algorithm called counterfactual regret minimisation+ (CFR+):

– Uses self-play and in hindsight, computes regret (utility difference to bestdecision) of taken moves.– Obtains successive approximations to a Nash equilibrium.– Took 900 core-years of computation, on 200 nodes of 24 cores each.– Solution quality can be assessed via so-called exploitability:Expected loss of the computed strategy against the worst-case opponent.
• Essentially solved: Lifetime of play (70y · 365d · 12h · 200 games) cannotstatistically differentiate the game from being solved (at 95% confidence).
• Game-theoretic value is between 87.7 and 89.7mbb/g (milli-big-blinds pergame) for the dealer (the player moving first).
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Conclusion
Summary
• A behaviour strategy assigns move probabilities to information sets.
• A belief system assigns probabilities to histories in information sets.
• An assessment is a pair (behaviour strategy profile, belief system).
• A sequentially rational assessment plays best responses “everywhere”.
• An assessment satisfies consistency of beliefs whenever the beliefsystem’s probabilities match what is expected from everyone playingaccording to the behaviour strategy profile.
• An assessment is a weak sequential equilibrium iff it is bothsequentially rational and satisfies consistency of beliefs.
• Mixed Nash equilibria for normal-form games and subgame perfectequilibria for sequential perfect-information games are special cases ofweak sequential equilibria for extensive-form games.
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