Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Games with Missing Information: Solving

Lecture 7, 3rd Jun 2024 // Algorithmic Game Theory, SS 2024

Previously ...

- In complete information games, players know the rules, possible outcomes and each other's preferences over outcomes.
- In perfect information games, moves are sequential and all players know all previous moves.
- In extensive-form games, information is not necessarily complete or perfect.
- Uncertainty of players (due to missing information) can be modelled by information sets and chance nodes (moves by Nature).
- Bayes' Theorem shows how to compute with conditional probabilities.
- The law of total probability relates marginal to conditional probabilities.

Overview

Example: Simplified Poker

Behaviour Strategies and Belief Systems

Weak Sequential Equilibria

Solving Simplified Poker

Example: Simplified Poker

Simplified Poker: Game Description

Binmore's Simplified Poker

- Two players, Ann and Bob, each put \$1 into a jackpot.
- They then draw one card from a deck of three cards: $\{1,2,3\}$.
- Ann can either check (pass on), or raise (put another $\$ 1$ into the jackpot).
- Next, Bob responds:
- If Ann has checked, then Bob must call, that is, a showdown happens:

Both players show their cards and the player with the higher (number) card receives the jackpot.

- If Ann has raised, then Bob can decide between fold (withdraw from the game and let Ann get the jackpot) or call (put another \$1 into the jackpot and then have a showdown).

Simplified Poker: Formal Model

Simplified Poker can be modelled as an extensive-form game as follows:

- $P=\{$ Ann, Bob, Nature $\}$
- $\mathbf{M}=\left(M_{\text {Ann }}, M_{\text {Bob }}, M_{\text {Nature }}\right)$ with
- $M_{\text {Ann }}=\{$ check, raise $\}$,
- $M_{\text {Bob }}=\{$ fold, call $\}$,
- $M_{\text {Nature }}=\{$ deal123, deal132, deal213, deal231, deal312, deal321\}.
- $\mathcal{J}=\left\{\mathcal{J}_{\mathrm{A} 1}, \mathcal{J}_{\mathrm{A} 2}, \mathcal{J}_{\mathrm{A} 3}, \mathcal{J}_{\mathrm{B} 1}, \mathcal{J}_{\mathrm{B} 2}, \mathcal{J}_{\mathrm{B} 3}\right\}$ with
$-\mathcal{J}_{\mathrm{A} 1}=\{[$ deal123], [deal132] $\}$,
$\mathcal{J}_{\mathrm{A} 2}=\{[$ deal213 $],[$ deal231 $]\}$,
$\mathcal{J}_{\mathrm{A} 3}=\{[$ deal312 $]$, [deal321] $\}$ with $p\left(\mathcal{J}_{\mathrm{A} 1}\right)=p\left(\mathcal{J}_{\mathrm{A} 2}\right)=p\left(\mathcal{J}_{\mathrm{A} 3}\right)=\mathrm{Ann}$,
$-J_{B 1}=\{[$ deal213, raise], [deal312, raise] $\}$,
$J_{\mathrm{B} 2}=\{[$ deal123, raise],$[$ deal321, raise $]\}$,
$\mathcal{J}_{\mathrm{B} 3}=\{[$ deal132, raise $]$, [deal231, raise] $\}$ with $p\left(\mathcal{J}_{\mathrm{B} 1}\right)=p\left(\mathcal{J}_{\mathrm{B} 2}\right)=p\left(\mathcal{J}_{\mathrm{B} 3}\right)=$ Bob.
- $\mathbf{u}=\left(u_{\mathrm{Ann}}, u_{\mathrm{Bob}}\right)$ with the functions as shown next in the game tree.

Simplified Poker: Analysis

Simplified Poker: Open Questions

What happens in the two remaining cases?

1. Should Ann raise (i.e. bluff) if she has a 1 ?
2. Should Bob call (the bluff) if he has a 2?

Behaviour Strategies and Belief Systems

Behaviour Strategies (1)

Definition

Let G be an extensive-form game with players P and information sets \mathcal{J}.

1. A pure strategy for player $i \in P$ is a function s_{i} that assigns a possible move to each of player i 's information sets.
2. A behaviour strategy for player $i \in P$ is a function π_{i} that assigns a probability distribution over possible moves to each of player i is information sets.

- $s_{i}\left(\mathcal{J}_{j}\right)$ denotes the move taken by player i at information set $J_{j} \in \mathcal{J}$.
- $\pi_{i}\left(\mathcal{J}_{j}\right)\left(m_{k}\right)$ is the probability that player i will make move m_{k} at information set \mathcal{J}_{j}. For readability, we will write this as $\pi_{i}\left(m_{k} \mid \mathcal{J}_{j}\right)$.
- As usual, a pure strategy s_{i} with $s_{i}\left(\mathcal{J}_{j}\right)=m_{k}$ can be seen as a behaviour strategy π_{i} with $\pi_{i}\left(m_{k} \mid \mathcal{J}_{j}\right)=1$ and $\pi_{i}\left(m_{\ell} \mid \mathcal{J}_{j}\right)=0$ for $m_{\ell} \in M_{i}, \ell \neq k$.

Behaviour Strategies (2)

Example (Simplified Poker)

Consider information set $\mathrm{J}_{\mathrm{A} 1}=\{$ [deal123], [deal132]\} where Ann has a 1 . With $\pi_{\text {Ann }}\left(J_{A 1}\right)=\left\{\right.$ check $\mapsto \frac{1}{2}$, raise $\left.\mapsto \frac{1}{2}\right\}$, she bases her decision to bluff (with her 1) on a (balanced) coin flip.

A behaviour strategy profile $\boldsymbol{\pi}$ induces expected utilities for all players:

$$
U_{i}(\boldsymbol{\pi}):=\sum_{z \in Z} P(z \mid \boldsymbol{\pi}) \cdot u_{i}(z)
$$

where $P(h \mid \boldsymbol{\pi})$ is the probability that history h is reached whenever play happens according to profile $\boldsymbol{\pi}$: inductively, define $P([] \mid \pi):=1$ and

$$
P([h ; m] \mid \boldsymbol{\pi}):=\pi_{p\left(J_{h}\right)}\left(m \mid J_{h}\right) \cdot P(h \mid \boldsymbol{\pi})
$$

- where $\mathcal{J}_{h} \in \mathcal{J}$ is the unique information set with $h \in \mathcal{J}_{h}$,
- and $\pi_{\text {Nature }}$ is obtained from the probability distributions specified by G.

Towards Solution Concepts: Example

Consider the following extensive-form game G_{4} and its normal form:
1

2

$(1,2)$	ℓ	r
A	$(0,2)$	$(0,2)$
L	$(2,1)$	$(-1,-1)$
R	$(1,1)$	$(-2,0)$

- The normal form game has two pure Nash equilibria: (A, r) and (L, ℓ).
- Arguably, only (L, ℓ) respects sequentiality:
- If play reaches $\{[\mathrm{L}],[\mathrm{R}]\}$, then 2 will choose ℓ.
- Knowing this, 1 will choose L.
\rightsquigarrow Adapt subgame perfect equilibria to information sets?

Subgames of Extensive-Form Games

Definition

Let G be an extensive-form game. A subgame G^{\prime} of G consists of:

- A non-terminal history $h^{\prime} \in H$ of G, the root of G^{\prime},
- all histories $H^{\prime} \subseteq H$ of G that start with h^{\prime} (including $Z^{\prime}=H^{\prime} \cap Z$), and
- all other aspects of G restricted to H^{\prime} (players, moves, information sets, turn function p, probability distributions for Nature, and utilities), where for all $\mathcal{J}_{j} \in \mathcal{J}$, either $\mathcal{J}_{j} \cap H^{\prime}=\mathcal{J}_{j}$ or $\mathcal{J}_{j} \cap H^{\prime}=\emptyset$.

Observation

If G^{\prime} is a subgame of G, then its root h^{\prime} is in information set $\left\{h^{\prime}\right\}$.

Example

G_{4} only has the trivial subgame, itself.

Towards Solution Concepts: Stocktaking

- Viewing an extensive-form game as a normal-form game, we could obtain (mixed) Nash equilibria.
- That did not fully work even for perfect-information sequential games:
- There, we used a stronger solution concept: subgame perfect equilibria, where strategies must play best responses in all subgames.
- With information sets, not every decision point corresponds to a subgame.
- Information sets off the equilibrium path might be relevant.

Example (G_{4})

- G_{4} has only itself as subgame, so equilibrium (A, r) is "subgame perfect".
- In (A, r), information set $\{[L],[R]\}$ is reached with probability zero.
- To define playing best responses "everywhere": What is the expected payoff from information set $\{[L],[R]\}$ when play happens as in (A, r) ?
\rightsquigarrow We will additionally model players' beliefs about histories ...

Belief Systems

Definition

Let G be an extensive-form game with n players and information sets \mathcal{J}.
A belief system for G is a tuple $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ of functions β_{i} that assign

- to each $\mathcal{J}_{j} \in \mathcal{J}$ with $p\left(\mathcal{J}_{j}\right)=i \neq$ Nature
- a probability distribution $\beta_{i}\left(\mathcal{J}_{j}\right)$ on histories $h \in \mathcal{J}_{j}$.
- We denote $\beta_{i}\left(\mathcal{J}_{j}\right)(h)$ by $\beta_{i}\left(h \mid \mathcal{J}_{j}\right)$;
- the value $\beta_{i}\left(h \mid \mathcal{J}_{j}\right)$ reflects player i 's (where $\left.i=p\left(\mathcal{J}_{j}\right)\right)$ belief about the likelihood that h is the true history, given that i knows to be in \mathcal{J}_{j}.

Example (Simplified Poker)

- In belief system $\beta_{\text {Ann }}$ with $\beta_{\text {Ann }}\left(\mathcal{J}_{A 1}\right)=\left\{\left[\right.\right.$ deal123] $\mapsto \frac{1}{2}$, [deal132] $\left.\mapsto \frac{1}{2}\right\}$, Ann considers "Bob has a 2 " and "Bob has a 3 " to be equally likely.
- If $\beta_{\text {Bob }}\left([\right.$ deal123, raise $\left.] \mid J_{B 2}\right)=0$, then Bob is sure that Ann does not bluff.

Assessments

Definition

Let G be an extensive-form game with non-Nature players $1, \ldots, n$.
An assessment of G is a pair $(\boldsymbol{\pi}, \boldsymbol{\beta})$ consisting of a profile $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of behaviour strategies and a belief system $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$.

Example (Simplified Poker)

Consider the assessment ($\boldsymbol{\pi}^{\prime}, \boldsymbol{\beta}^{\prime}$) with

- $\pi_{\text {Ann }}^{\prime}\left(\mathcal{J}_{\mathrm{A} 1}\right)=\left\{\right.$ check $\mapsto \frac{1}{2}$, raise $\left.\mapsto \frac{1}{2}\right\}$, and playing optimally elsewhere,
- $\pi_{\mathrm{Bob}}^{\prime}\left(\mathrm{J}_{\mathrm{B} 2}\right)=\left\{\right.$ fold $\mapsto \frac{1}{2}$, call $\left.\mapsto \frac{1}{2}\right\}$, and playing optimally elsewhere;
- $\beta_{A n n}^{\prime}\left(\mathcal{J}_{A 1}\right), \beta_{A n n}^{\prime}\left(J_{A 2}\right)$, and $\beta_{A n n}^{\prime}\left(\mathcal{J}_{A 3}\right)$ all uniform distributions,
- where in $J_{B 3}$ and $J_{B 1}$ Bob is sure that Ann does not raise with a 2 , and
- $\beta_{\text {Bob }}^{\prime}\left(\mathcal{J}_{B 2}\right)=\left\{[\right.$ deal123, raise $] \mapsto \frac{1}{4},[$ deal321, raise $\left.] \mapsto \frac{3}{4}\right\}$.

Expected Utility for Assessments

Definition

Let G be an extensive-form game and $(\boldsymbol{\pi}, \boldsymbol{\beta})$ be an assessment of G.
The expected utility for player i at information set \mathcal{J}_{j} according to $(\boldsymbol{\pi}, \boldsymbol{\beta})$ is

$$
U_{i}\left(\mathcal{J}_{j}, \boldsymbol{\pi}, \boldsymbol{\beta}\right):=\sum_{h \in \mathcal{I}_{j}}\left(\beta_{i}\left(h \mid \mathcal{J}_{j}\right) \cdot \sum_{z \in Z}\left(P(z \mid h, \boldsymbol{\pi}) \cdot u_{i}(z)\right)\right)
$$

where $P\left(h^{\prime} \mid h, \pi\right)$ is the probability that history h^{\prime} is reached when playing according to $\boldsymbol{\pi}$ from history h on:

$$
\begin{aligned}
P(h \mid h, \boldsymbol{\pi}) & :=1 & & \text { for all } h \in H \\
P([] \mid h, \boldsymbol{\pi}) & :=0 & & \text { for all } h \neq[] \\
P\left(\left[h^{\prime} ; m\right] \mid h, \boldsymbol{\pi}\right) & :=\pi_{p\left(J_{\left.h^{\prime}\right)}\right.}\left(m \mid J_{h^{\prime}}\right) \cdot P\left(h^{\prime} \mid h, \boldsymbol{\pi}\right) & &
\end{aligned}
$$

Example: $U_{\mathrm{Bob}}\left(\mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{\prime}, \boldsymbol{\beta}^{\prime}\right)=\frac{1}{4} \cdot\left(\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 2\right)+\frac{3}{4} \cdot\left(\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot(-2)\right)=-1$.

Weak Sequential Equilibria

Best Responses and Sequential Rationality

Definition

Let $(\boldsymbol{\pi}, \boldsymbol{\beta})$ be an assessment for an extensive-form game G with players P.

1. Player i 's strategy π_{i} is a best response to $\boldsymbol{\pi}_{-i}$ at information set $\mathcal{J}_{j} \in \mathcal{J}$ iff π_{i} maximises $U_{i}\left(\mathcal{J}_{j},\left(\boldsymbol{\pi}_{-i}, \pi_{i}^{\prime}\right), \boldsymbol{\beta}\right)$ among all possible behaviour strategies π_{i}^{\prime} :

$$
U_{i}\left(\mathcal{J}_{j},\left(\boldsymbol{\pi}_{-i}, \pi_{i}, \boldsymbol{\beta}\right)\right)=\max _{\pi_{i}^{\prime} \in \Pi_{i}} U_{i}\left(\mathcal{J}_{j},\left(\boldsymbol{\pi}_{-i}, \pi_{i}^{\prime}, \boldsymbol{\beta}\right)\right)
$$

2. Assessment $(\boldsymbol{\pi}, \boldsymbol{\beta})$ is sequentially rational iff for all players $i \in P$, strategy π_{i} is a best response at each information set \mathcal{J}_{j} with $p\left(\mathcal{J}_{j}\right) \in\{i$, Nature $\}$.

Example (Simplified Poker)

- In $\left(\boldsymbol{\pi}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ seen earlier, $\pi_{\text {Bob }}^{\prime}$ is a best response to $\pi_{\text {Ann }}^{\prime}$ at $\mathcal{J}_{B 2}$, because any $\pi_{\text {Bob }}^{\prime \prime}\left(\mathcal{J}_{\mathrm{B} 2}\right)=\{$ fold $\mapsto(1-q)$, call $\mapsto q\}$ would likewise achieve a payoff of $U_{\text {Bob }}\left(\mathcal{J}_{\text {B2 }},\left(\pi_{\text {Ann }}^{\prime}, \pi_{\text {Bob }}^{\prime \prime}\right), \beta^{\prime}\right)=\frac{1}{4} \cdot(-1+q+2 q)+\frac{3}{4} \cdot(-1+q-2 q)=\frac{-1+3 q-3-3 q}{4}=-1$.
- In contrast, $\pi_{\mathrm{Ann}}{ }^{\prime}$ is not a best response to $\pi_{\mathrm{Bob}}{ }^{\prime}$ at $\mathcal{J}_{\mathrm{A} 1}$ as we shall see.

Consistency of Beliefs: Example

In ($\boldsymbol{\pi}^{\prime}, \boldsymbol{\beta}^{\prime}$) seen earlier, we had

$$
\begin{aligned}
& \pi_{\text {Ann }}^{\prime}\left(\mathcal{J}_{\mathrm{A} 1}\right)=\left\{\text { check } \mapsto \frac{1}{2}, \text { raise } \mapsto \frac{1}{2}\right\}, \text { and } \\
& \beta_{\text {Bob }}^{\prime}\left(\mathcal{J}_{\mathrm{B} 2}\right)=\left\{[\text { deal123, raise }] \mapsto \frac{1}{4},[\text { deal321, raise }] \mapsto \frac{3}{4}\right\}
\end{aligned}
$$

However, Bob's beliefs about $J_{\text {B2 }}$ seem inadequate, as

$$
\begin{aligned}
& P\left([\text { deal123, raise }] \mid \pi^{\prime}\right)=\frac{1}{6} \cdot \frac{1}{2}=\frac{1}{12} \text { and } \\
& P\left([\text { deal321, raise }] \mid \pi^{\prime}\right)=\frac{1}{6} \cdot 1=\frac{1}{6}=2 \cdot P\left([\text { deal123, raise }] \mid \boldsymbol{\pi}^{\prime}\right)
\end{aligned}
$$

A more realistic likelihood estimate of the situation given by $\boldsymbol{\pi}^{\prime}$ would be

$$
\beta_{\text {Bob }}^{\prime \prime}\left(\mathcal{J}_{\mathrm{B} 2}\right)=\left\{[\text { deal123, raise }] \mapsto \frac{1}{3},[\text { deal } 321, \text { raise }] \mapsto \frac{2}{3}\right\}
$$

Consistency of Beliefs: Definition

Definition

Let G be an extensive-form game and $(\boldsymbol{\pi}, \boldsymbol{\beta})$ be an assessment for G.
Assessment ($\boldsymbol{\pi}, \boldsymbol{\beta}$) satisfies consistency of beliefs iff for all information sets $\mathcal{J}_{j} \in \mathcal{J}$ and for all histories $h \in \mathcal{J}_{j}$, we have:

$$
\beta_{P\left(\mathcal{J}_{j}\right)}\left(h \mid \mathcal{J}_{j}\right)=\frac{P(h \mid \boldsymbol{\pi})}{\sum_{h \in \mathcal{J}_{j}} P(h \mid \boldsymbol{\pi})}=\frac{P(h \mid \boldsymbol{\pi})}{P\left(\mathcal{J}_{j} \mid \boldsymbol{\pi}\right)} \quad \text { whenever } P\left(\mathcal{J}_{j} \mid \boldsymbol{\pi}\right)>0
$$

Example (Simplified Poker)

The assessment ($\boldsymbol{\pi}^{\prime}, \boldsymbol{\beta}^{\prime}$) seen earlier does not satisfy consistency of beliefs.

Observation

Given a profile $\boldsymbol{\pi}$ of behaviour strategies, we can use the definition above to construct a belief system $\boldsymbol{\beta}$ that satisfies consistency of beliefs.

Weak Sequential Equilibria

Definition

Let G be an extensive-form game.
An assessment ($\boldsymbol{\pi}, \boldsymbol{\beta})$ for G is a weak sequential equilibrium iff it is both sequentially rational and satisfies consistency of beliefs.

Theorem (Kreps and Wilson, 1982)
Every extensive-form game with perfect recall and a finite set H of histories has a weak sequential equilibrium.

Recall: Perfect recall means that players know their own previous moves.

Example

Simplified Poker has perfect recall and is finite, therefore has a weak sequential equilibrium.

Some Special Cases

Theorem

Let G be a sequential game with perfect information and G^{\prime} its associated extensive-form game (using singleton information sets).
Every subgame-perfect equilibrium of G corresponds to a weak sequential equilibrium of G^{\prime}.

Theorem

Let G be a strategic (normal-form) game (with simultaneous moves) and G^{\prime} be its associated extensive-form game (using sequentialised moves and move hiding).
Every mixed Nash equilibrium of G corresponds to a weak sequential equilibrium of G^{\prime}.

In both cases, we add a belief system satisfying consistency of beliefs.

Solving Simplified Poker

Solving Simplified Poker (1)

What happens in the two remaining cases?

Should Ann raise (i.e. bluff) if she has a 1 ?
Should Bob call (the bluff) if he has a 2?

- Denote by $\boldsymbol{\pi}^{*}=\left(\pi_{\text {Ann }}^{*}, \pi_{\text {Bob }}^{*}\right)$ the behaviour strategy profile where both players act optimally according to our previous analysis, and additionally
- Ann resolves to bluff (with a 1) with probability $p, \pi_{\text {Ann }}^{*}\left(\right.$ raise $\left.\mid \mathcal{J}_{\mathrm{A} 1}\right)=p$,
- Bob resolves to call (with a 2) with probability $q, \pi_{\text {Bob }}^{*}\left(\mathrm{call} \mid \mathcal{J}_{\mathrm{B} 2}\right)=q$.
- Denote by $\boldsymbol{\beta}^{*}$ the belief system that is consistent with $\boldsymbol{\pi}^{*}$.
- We know $P\left([\right.$ deal123 $\left.] \mid \boldsymbol{\pi}^{*}\right)=P\left([\right.$ deal132 $\left.] \mid \boldsymbol{\pi}^{*}\right)=\frac{1}{6}$, so $P\left(\mathcal{J}_{\mathrm{A} 1} \mid \boldsymbol{\pi}^{*}\right)=\frac{1}{3}$ and
- $\beta_{\text {Ann }}^{*}\left([\right.$ deal123 $\left.] \mid J_{A 1}\right)=\beta_{\text {Ann }}^{*}\left([\right.$ deal132 $\left.] \mid J_{A 1}\right)=\frac{1}{2}$.

1. How should Ann choose the value of p ?
2. How should Bob choose the value of q ?

Solving Simplified Poker (2)

$$
\begin{aligned}
P\left(\mathcal{J}_{\mathrm{B} 2} \mid \boldsymbol{\pi}^{*}\right) & =P\left([\text { deal } 123, \text { raise }] \mid \boldsymbol{\pi}^{*}\right)+P\left([\text { deal321, raise }] \mid \boldsymbol{\pi}^{*}\right) \\
& =P\left([\text { deal123 }] \mid \boldsymbol{\pi}^{*}\right) \cdot \pi_{A n n}^{*}\left(\text { raise } \mid \mathcal{J}_{\mathrm{A} 1}\right)+P\left([\text { deal } 321] \mid \boldsymbol{\pi}^{*}\right) \cdot \pi_{\mathrm{Ann}}^{*}\left(\text { raise } \mid \mathcal{J}_{\mathrm{A} 3}\right) \\
& =\frac{1}{6} \cdot p+\frac{1}{6} \cdot 1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P\left([\text { deal123, raise }] \mid \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right)=\frac{P\left([\text { deal123, raise }] \mid \boldsymbol{\pi}^{*}\right)}{P\left(\mathcal{J}_{\mathrm{B} 2} \mid \boldsymbol{\pi}^{*}\right)}=\frac{\frac{p}{6}}{\frac{p}{6}+\frac{1}{6}}=\frac{p}{p+1} \\
& P\left([\text { deal321, raise }] \mid \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right)=\frac{P\left([\text { deal321, raise }] \mid \boldsymbol{\pi}^{*}\right)}{P\left(\mathcal{J}_{\mathrm{B} 2} \mid \boldsymbol{\pi}^{*}\right)}=\frac{\frac{1}{6}}{\frac{p}{6}+\frac{1}{6}}=\frac{1}{p+1}
\end{aligned}
$$

Ann's goal is to make Bob indifferent between his two moves in $\mathcal{J}_{\mathrm{B} 2}$, that is:

$$
U_{\text {Bob }}\left(\text { fold, } \mathcal{J}_{\text {B2 }}, \boldsymbol{\pi}^{*}\right)=U_{\text {Bob }}\left(\text { call }, J_{\text {B2 }}, \pi^{*}\right)
$$

Solving Simplified Poker (3)

We have the below payoff when Bob plays fold at $\mathcal{J}_{\mathrm{B} 2}$ with probability 1 :

$$
\begin{aligned}
U_{\text {Bob }}\left(\text { fold }, \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right)= & P\left([\text { deal123, raise }] \mid \mathcal{J}_{B 2}, \boldsymbol{\pi}^{*}\right) \cdot u_{\mathrm{Bob}}([\text { deal123, raise, fold }])+ \\
& P\left([\text { deal321, raise }] \mid \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right) \cdot u_{\mathrm{Bob}}([\text { deal321, raise, fold }]) \\
= & \frac{p}{p+1} \cdot(-1)+\frac{1}{p+1} \cdot(-1)=-1
\end{aligned}
$$

and likewise, if Bob plays a pure call at $\mathcal{J}_{\mathrm{B} 2}$:

$$
\begin{aligned}
U_{\text {Bob }}\left(\text { call }, \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right)= & P\left([\text { deal123, raise }] \mid \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right) \cdot u_{\mathrm{Bob}}([\text { deal123, raise, call }])+ \\
& P\left([\text { deal321, raise }] \mid \mathcal{J}_{\mathrm{B} 2}, \boldsymbol{\pi}^{*}\right) \cdot u_{\mathrm{Bob}}([\text { deal321, raise, call }]) \\
= & \frac{p}{p+1} \cdot 2+\frac{1}{p+1} \cdot(-2)=\frac{2 p-2}{p+1}
\end{aligned}
$$

So overall, Ann's goal is to choose p such that

$$
-1=\frac{2 p-2}{p+1} \quad \text { whence we obtain } \quad p=\frac{1}{3}
$$

Solving Simplified Poker (4)

It remains to calculate $q=\pi_{\text {Bob }}^{*}\left(\mathrm{call} \mid \mathcal{J}_{\mathrm{B} 2}\right)$.
Intuitively, Bob's goal is to make Ann indifferent between her two moves in $\mathcal{J}_{\mathrm{A} 1}$:

$$
U_{\text {Ann }}\left(\text { check }, \mathcal{J}_{\text {A }}, \boldsymbol{\pi}^{*}\right)=U_{\text {Ann }}\left(\text { raise, } \mathcal{J}_{\text {A1 }}, \boldsymbol{\pi}^{*}\right)
$$

For the left-hand side, we obtain the expected utility of a pure check at $\mathcal{J}_{\mathrm{A} 1}$:

$$
\begin{aligned}
& U_{\text {Ann }}\left(\text { check }, \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \\
= & P\left([\text { deal123 }] \mid \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot u_{\text {Ann }}([\text { deal } 123, \text { check }])+ \\
& P\left([\text { deal } 132] \mid \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot u_{\text {Ann }}([\text { deal } 132, \text { check }]) \\
= & \frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot(-1)=-1
\end{aligned}
$$

Solving Simplified Poker (5)

For the right-hand side, we get the expected utility of a pure raise at $\mathcal{J}_{\mathrm{A} 1}$:

$$
\begin{aligned}
& U_{\mathrm{Ann}}\left(\text { raise }, \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \\
= & P\left([\text { deal123 }] \mid J_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot \pi_{\mathrm{Bob}}\left(\text { fold } \mid \mathcal{J}_{\mathrm{B} 2}\right) \cdot u_{\mathrm{Ann}}([\text { deal123, raise, fold }])+ \\
& P\left([\text { deal123 }] \mid \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot \pi_{\mathrm{Bob}}\left(\text { call } \mid \mathcal{J}_{\mathrm{B} 2}\right) \cdot u_{\mathrm{Ann}}([\text { deal123, raise, call }])+ \\
& P\left([\text { deal132 }] \mid \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot \pi_{\mathrm{Bob}}\left(\text { fold } \mid \mathcal{J}_{\mathrm{B} 3}\right) \cdot u_{\mathrm{Ann}}([\text { deal132, raise, fold }])+ \\
& P\left([\text { deal132 }] \mid \mathcal{J}_{\mathrm{A} 1}, \boldsymbol{\pi}^{*}\right) \cdot \pi_{\mathrm{Bob}}\left(\text { call } \mid \mathcal{J}_{\mathrm{B} 3}\right) \cdot u_{\mathrm{Ann}}([\text { deal132, raise, call }]) \\
= & \frac{1}{2} \cdot(1-q) \cdot 1+\frac{1}{2} \cdot q \cdot(-2)+\frac{1}{2} \cdot 0 \cdot 1+\frac{1}{2} \cdot 1 \cdot(-2)=\frac{1}{2} \cdot(1-q-2 q-2)
\end{aligned}
$$

Overall, Bob's goal is thus to choose q such that

$$
-1=\frac{-3 q-1}{2} \quad \text { whence we obtain } \quad q=\frac{1}{3}
$$

Solving Simplified Poker: Takeaways

- Bluffing can be part of a rational strategy (playing against rational opponents):
- Ann bluffs a third of the times she has her worst possible hand,
- which is justified because Bob will call that raise only a third of the times.
- The expected value of the game for the obtained $\boldsymbol{\pi}^{*}$ is

$$
U_{\mathrm{Ann}}\left(\boldsymbol{\pi}^{*}\right)=\frac{p-3 p q+q}{6}=\frac{1}{18}=-U_{\mathrm{BOb}}\left(\boldsymbol{\pi}^{*}\right)
$$

so Ann has an advantage. Thus players switch roles after each round.

- If Ann deviates from $\boldsymbol{\pi}^{*}$, then Bob will best-respond (punish) by adapting q :
- for $p>\frac{1}{3}$ setting $q=1$, and
- for $p<\frac{1}{3}$ setting $q=0$.

Solving (heads-up limit Texas hold'em) Poker

Bowling et al. [2015] consider heads-up limit hold'em poker to be "essentially weakly solved":

- There are $3.16 \cdot 10^{17}$ possible states, and $3.19 \cdot 10^{14}$ decision points.
- They used an algorithm called counterfactual regret minimisation $\left(\mathrm{CFR}^{+}\right)$:
- Uses self-play and in hindsight, computes regret (utility difference to best decision) of taken moves.
- Obtains successive approximations to a Nash equilibrium.
- Took 900 core-years of computation, on 200 nodes of 24 cores each.
- Solution quality can be assessed via so-called exploitability:

Expected loss of the computed strategy against the worst-case opponent.

- Essentially solved: Lifetime of play (70y • 365d • 12h • 200 games) cannot statistically differentiate the game from being solved (at 95\% confidence).
- Game-theoretic value is between 87.7 and $89.7 \mathrm{mbb} / \mathrm{g}$ (milli-big-blinds per game) for the dealer (the player moving first).

Conclusion

Summary

- A behaviour strategy assigns move probabilities to information sets.
- A belief system assigns probabilities to histories in information sets.
- An assessment is a pair (behaviour strategy profile, belief system).
- A sequentially rational assessment plays best responses "everywhere".
- An assessment satisfies consistency of beliefs whenever the belief system's probabilities match what is expected from everyone playing according to the behaviour strategy profile.
- An assessment is a weak sequential equilibrium iff it is both sequentially rational and satisfies consistency of beliefs.
- Mixed Nash equilibria for normal-form games and subgame perfect equilibria for sequential perfect-information games are special cases of weak sequential equilibria for extensive-form games.

