
Approximate Computation of Exact Association
Rules?

Saurabh Bansal1[0000−0003−1297−2184], Sriram Kailasam1[0000−0002−2218−8660],
and Sergei Obiedkov2[0000−0003−1497−4001]

1 IIT Mandi, India
saurabh18213@gmail.com, sriramk@iitmandi.ac.in

2 HSE University, Russia
sergei.obj@gmail.com

Abstract. We adapt a polynomial-time approximation algorithm for
computing the canonical basis of implications to approximately compute
frequent implications, also known as exact association rules. To this end,
we define a suitable notion of approximation that takes into account the
frequency of attribute subsets and show that our algorithm achieves a
desired approximation with high probability. We experimentally evaluate
the proposed algorithm on several artificial and real-world data sets.

Keywords: Association rule · Implication · PAC learning.

1 Introduction

Formal concept analysis offers several approaches to computing implication bases
of a formal context. Most popular ones are based on Next Closure, a general
algorithm for computing closed sets of a closure operator [11]. This algorithm is
suitable for building the canonical basis of a formal context, since its premises,
taken together with closed attribute sets of the context, form a closure system.
The attribute-incremental algorithm from [19] is often faster than approaches
based on Next Closure, but its memory requirements limit its applicability
to contexts with a moderate number of closed sets.

Recently, probably approximately correct (PAC) algorithms for computing
the implication basis have been considered [8,9]. In this paper, we continue this
line of research by proposing a new notion of approximation that focuses on cap-
turing the frequent (in the sense of frequent itemset mining) part of the implica-
tion theory behind the context. We adapt a previously proposed PAC-algorithm
to compute this frequency-aware approximation and show that it usually pro-
duces more accurate approximations than the original PAC-algorithm and thus
can be useful even if one is not interested specifically in frequent implications.
We also show that the algorithm runs much faster than exact Next Closure-
based algorithms on dense formal contexts, at least if the size their canonical

? Supported by SPARC, a Government of India Initiative under grant no.
SPARC/2018-2019/P682/SL.

2 S. Bansal et al.

basis is significantly smaller than the number of closed sets (which is often the
case, as suggested by our experiments in Section 5).

The paper is organized as follows. In Section 2, we present the necessary
definitions from formal concept analysis. Section 3 recalls two notions of Horn
approximations and a PAC-algorithm for finding them. In Section 4, we intro-
duce frequency-aware approximations and adapt the algorithm from the previous
section to compute them. Section 5 describes the results of empirical evaluation
of the proposed algorithm.

2 Main Definitions

Recall that a formal context K is a triple (G,M, I), where G is a set of objects,
M is a set of attributes, and I ⊆ G × M is an incidence relation specifying
which objects have which attributes [13]. For X ⊆ G and Y ⊆M , the following
derivation operators are defined:

X ′ = {m ∈M | ∀g ∈ X : (g,m) ∈ I} Y ′ = {g ∈ G | ∀m ∈ Y : (g,m) ∈ I}

Two closure operators are defined by subsequent application of the two derivation
operators; X ′′ and Y ′′ are said to be closed in K. Closed subsets of M are called
(concept) intents of K. The set of all intents of K is denoted by IntK.

An implication is an expression of the form A → B, where A ⊆ M is called
the premise and B ⊆ M the conclusion of the implication. A subset C ⊆ M is
a model of A→ B if A 6⊆ C or B ⊆ C. The implication A→ B holds or is valid
in K if, for every g ∈ G, the set {g}′ is its model. If {g}′ is not a model of an
implication, then g is a counterexample to it.

The support of an attribute set A ⊆ M is |A′|, the number of objects that
have all attributes from A. The relative support of A is |A′|/|G|. The (relative)
support or frequency of an implication A→ B is the (relative) support of A∪B.
An attribute set or an implication is called frequent if its support is above a
certain specified threshold. The support parameter is important in association
rule mining, where the goal is to find implications with high support that may
still have a small number of counterexamples in the context [1]. There, valid
implications are known as exact association rules.

A set C ⊆M is a model of a set L of implications over M if it is a model of
every implication from L. The set of all models of L is denoted by ModL.

An implication set L over M defines a closure operator that maps C ⊆ M
to the smallest subset L(C) ∈ ModL such that C ⊆ L(C). If C is a model of L,
then C = L(C) and we say that C is closed under L.

An implication A → B follows from an implication set L if every model of
L is a model of A → B or, equivalently, B ⊆ L(A). An implication set L is
non-redundant if no implication A→ B ∈ L follows from L \ {A→ B}.

A non-redundant set L of implications valid in K is called a basis of K if
every implication valid in K follows from L. A formal context can have several
bases of different sizes. The canonical or Duquenne–Guigues basis of K is known
to contain the smallest number of implications among all bases of K [14]. It

Approximate Computation of Exact Association Rules 3

is defined as {P → P ′′ | P is a pseudo-intent of K}, where P ⊆ M is called a
pseudo-intent if P 6= P ′′ and, for every Q (P , we have Q′′ ⊆ P whenever Q is
a pseudo-intent.

3 Probably Approximately Correct Computation of
Implications

Being able to compute the canonical basis L of a formal context K in total
polynomial time, i.e., time polynomial in the sizes of K and L, is a major open
problem. Known algorithms that compute L directly also compute IntK as a
side product [11,19,5,15]. However, | IntK| can be exponentially larger than |L|,
see Example 1 from Section 5.3.

This motivates approximation algorithm design for finding the canonical ba-
sis. Probably approximately correct computation of the canonical basis of a
formal context has been considered in various settings in [8,20,9,21]. The set-
tings differ in whether the context is available directly or via a particular set of
queries, as in the query learning framework [2] or in attribute exploration [12].

The notions of approximation that we will use here are more general than
in these works. Assuming a probability distribution D over attribute subsets of
M , we define the Horn D-distance between an implication set L over M and a
context K = (G,M, I) as the probability of obtaining a subset closed under L
but not in K or vice versa when choosing it according to D:

distD(L,K) := Pr
D

(A ∈ ModL4 IntK).

Here, A4 B is the symmetric difference between the sets A and B. An ε-Horn
D-approximation of K, where 0 < ε < 1, is an implication set L over M such that
distD(L,K) ≤ ε. If D is the uniform distribution, then ε-Horn D-approximation
of K is the ε-Horn approximation of K as defined in the papers referenced above.

These papers also use the notion of an ε-strong Horn approximation, which
we generalize in a similar way. The strong Horn D-distance between L and K is
the probability of choosing a subset with different closures under L and in K:

distDstrong(L,K) := Pr
D

(L(A) 6= A′′).

L is an ε-strong Horn D-approximation of K if distDstrong(L,K) ≤ ε. An ε-strong
Horn D-approximation is always an ε-Horn D-approximation.

An approximation L is an upper approximation of K if all implications of L
are valid in K, or, equivalently, L(A) ⊆ A′′ for all A ⊆M , i.e., if IntK ⊆ ModL.

We are interested in algorithms that, given a formal context K = (G,M, I),
a distribution D over subsets of M , and parameters 0 < ε ≤ 1 and 0 < δ ≤ 1,
compute, with probability at least 1−δ, an ε- or ε-strong Horn D-approximation
of K. As discussed in [20], such algorithms exist for the uniform distribution and
they work in time polynomial in |G|, |M |, the size of the canonical basis of
K, 1/ε, and 1/δ. Such an algorithm for an upper ε-Horn approximation has

4 S. Bansal et al.

been presented (in a different setting) already in [16] based on the results for
learning Horn formulas with membership and equivalence queries [3]. We present
its generalization to an arbitrary distribution as Algorithm 1.

Algorithm 1 HornApproximation(K, EXD, ε, δ)

Input: A formal context K = (G,M, I), a sampling oracle EXD that returns a subset
of M according to distribution D, 0 < ε ≤ 1, and 0 < δ ≤ 1.

Output: A set of implications L that, with probability at least 1 − δ, is an ε-Horn
D-approximation of K.

1: L := []
2: i := 1
3: while IsApproximatelyEquivalent(L, K, EXD, qi(ε, δ)) returns X do
4: found := false
5: for all A→ B ∈ L do
6: C := A ∩X
7: if A 6= C 6= C′′ then
8: found := true
9: replace A→ B by C → C′′ in L

10: exit for
11: if not found then
12: add X → X ′′ to the end of L
13: i := i+ 1
14: return L

Algorithm 1 receives a sampling oracle EXD that takes no arguments and,
when called, returns a subset of M according to distribution D. Starting with
an empty list L of implications, the algorithm repeatedly calls procedure IsAp-
proximatelyEquivalent to check if L is an ε-Horn D-approximation of K. If
not, this procedure is expected to return a model X of L such that X 6= X ′′,
which means that there is an implication valid in K that does not follow from L.
This X is called a negative counterexample to L, as opposed to a positive coun-
terexample Y , which is such that L(Y) 6= Y = Y ′′. The algorithm then either
refines one of the implications of L or simply adds implication X → X ′′ so as
to ensure that X (L(X) ⊆ X ′′. This guarantees that L always contains only
valid implications of K and thus no positive counterexamples to L are possible.

If the IsApproximatelyEquivalent procedure always returns a negative
counterexample X when it exists, then Algorithm 1 computes the canonical basis
of K. This easily follows from the results presented in [4] regarding the original
query-based algorithm from [3]. In this case, the IsApproximatelyEquivalent
procedure implements an equivalence oracle in the sense of [2,3]. However, finding
such an X given K and L is the problem referred to as CMI in [17], where it
is shown that it is at least as hard as (the decision version of) the Hypergraph
Transversal Problem; no polynomial-time algorithm is known to exist for it.

Approximate Computation of Exact Association Rules 5

To achieve an ε-Horn approximation with probability at least 1 − δ, we use
Algorithm 2, which makes a certain number of attempts to generate such an X
using EXD and returns true if all attempts fail.

Algorithm 2 IsApproximatelyEquivalent(L, K, EXD, k)

Input: A set L of implications valid in context K = (G,M, I), a sampling oracle EXD
that returns a subset of M according to distribution D, and k ∈ N.

Output: A set X ⊆M such that L(X) = X 6= X ′′ if found; true, otherwise.
1: for j := 1 to k do
2: X := EXD()
3: if L(X) = X 6= X ′′ then
4: return X
5: return true

How many attempts are needed depends on how far we are in computing
a Horn approximation or, more precisely, how many counterexamples we have
already produced. In Algorithm 1, we use the function qi(ε, δ) to determine the
number of calls to EXD needed to generate the ith X. It has been known that
an algorithm using equivalence queries can be transformed into a PAC algorithm
for the same learning problem by replacing the ith equivalence query by⌈

1

ε
(ln

1

δ
+ i ln 2)

⌉
(1)

calls to the EXD oracle and terminating if none of them returns a counterex-
ample [2]. Here, ε is the desired approximation quality and δ is the upper bound
on the probability of failing to achieve an ε-approximation.

The quantity (1) grows linearly with i; however, a logarithmic dependence
on i is sufficient, as shown in [21]. Defining the function qi as

qi(ε, δ) =

⌈
log1−ε

δ

i(i+ 1)

⌉
, (2)

we guarantee that Algorithm 1 computes an ε-Horn D-approximation of K with
probability at least 1 − δ in time polynomial in |G|, |M |, |L|, 1/ε, and 1/δ,
where L is the set of implications upon the termination of the algorithm, whose
size never exceeds the size of the canonical basis of K. The total number of
calls to EXD is O(|L||M |(log |L||M |+log 1/δ)/ε) when using (2) compared with
O(|L||M |(|L||M |+ log 1/δ)/ε) when using (1) [21].

To obtain an ε-strong Horn D-approximation, we replace the call to IsAp-
proximatelyEquivalent in Algorithm 1 to the call to the IsStronglyAp-
proximatelyEquivalent procedure presented as Algorithm 3 [9].

4 Computing Frequency-Aware Approximations

For practical applications, it may be reasonable to assume that attribute subsets
are distributed according to their frequency. For a context K = (G,M, I) with

6 S. Bansal et al.

Algorithm 3 IsStronglyApproximatelyEquivalent(L, K, EXD, k)

Input: A set L of implications valid in context K = (G,M, I), a sampling oracle EXD
that returns a subset of M according to distribution D, and k ∈ N.

Output: A set L(X) ⊆M such that L(X) 6= X ′′ if found; true, otherwise.
1: for j := 1 to k do
2: Y := L(EXD())
3: if Y 6= Y ′′ then
4: return Y
5: return true

finite G and A ⊆M , this means

Pr(A) =
|A′|∑

B⊆M |B′|
. (3)

Plugging this probability into the definition of (strong) Horn distance, we obtain
the notion of frequency-aware Horn approximation: an ε- (ε-strong) Horn D-
approximation L of K is a frequency-aware ε- (ε-strong) Horn approximation of
K if D is the probability distribution defined by (3).

The reason for using a frequency-aware approximation is two-fold. On the one
hand, such approximation L ensures that most implications with high support
follow from L and, in the case of the strong approximation, the closures of most
frequent subsets under L coincide with their closures in the context. In the
framework of association rule mining [1], such implications and such subsets are
usually considered the most important. On the other hand, a frequency-aware
approximation ignores attribute subsets that never occur in data. For real-world
data sets, these may be the bulk of all the subsets, resulting in a misleadingly low
value of distD(L,K) when D is the uniform distribution. Using frequency-aware
approximation allows one to capture the implications that describe dependencies
inside attribute combinations that actually occur in data instead of focusing on
implications that describe incompatibilities between attributes (which may also
be important, but, in many cases, are a part of background knowledge).

To compute such frequency-aware approximations, we need to simulate a
sampling oracle that samples attribute subsets according to (3). This oracle can
be simulated by polynomial-time Algorithm 1 “Frequency-based Sampling” from
[7], resulting in a total–polynomial time PAC algorithm for computing frequent
implications. The algorithm uses the following probability distribution on objects
g ∈ G of context K = (G,M, I):

Pr(g) =
2|{g}

′|∑
h∈G 2|{h}′|

. (4)

In other words, the probability of an object g ∈ G is proportional to the number
of subsets of its intent {g′}.

The algorithm consists of two steps. First, it selects an object g from G
according to probability distribution (4), and then it selects a subset of {g}′

Approximate Computation of Exact Association Rules 7

uniformly at random. It is shown in [7], that this algorithm generates an attribute
subset according to probability distribution (3).

Therefore, a frequency-aware ε- or ε-strong Horn approximation can be com-
puted by Algorithm 1 by passing the algorithm just described in place of EXD.

5 Experimental Evaluation

In this section, we study the performance of the randomized algorithm on real-
life, as well as artificial data sets. We are primarily interested in two character-
istics: the runtime and the quality of approximation.

5.1 Quality Factor

The randomized algorithms presented here are guaranteed to produce an upper
ε- or ε-strong Horn approximation with the desired probability. In particular,
if L is the implication set obtained from K when running the algorithm for ε-
approximation with parameters ε and δ and a sampling oracle for probability
distribution D, then, with probability at least 1 − δ, we have distD(L,K) ≤ ε.
Since L contains only implications valid in K and, consequently, IntK ⊆ ModL,
this means that

|ModL| − | IntK|
2|M |

≤ ε

when D is the uniform distribution. In other words, the difference between
|ModL| and | IntK| is small when considered on the scale of 2|M |: ModL con-
tains at most ε2|M | extra subsets in addition to those in IntK.

However, if IntK is small compared to 2|M |, this may still allow ModL to
be several times larger than IntK. To see if this really happens in practice, we
introduce the quality factor (QF) defined as follows:

QF (L,K, A) =
| IntK ∩P(A)|
|ModL ∩P(A)|

,

where A ⊆ M and P(A) is the power set of A. This measures the proportion
of subsets of A closed in the context among those closed under the computed
implications. When we report the quality factor in the experiments, we set A to
be the set of roughly α|M | most frequent attributes of M , where α is 1/4 for
real-world data sets and 1/2 for artificial data sets.

5.2 Testbed

The testbed consists of a server Intel Xeon E5-2650 v3 @ 2.30GHz with 20 cores
and 40 threads.

8 S. Bansal et al.

5.3 Data Sets

The formal contexts used in the experiments are described in Table 1, where the
last five columns correspond to the number of attributes, the number of objects,
the size of the canonical basis, the number of intents, and the density, |I|/|G||M |,
of the context (G,M, I) named in the first column.

Table 1. Contexts.

Context Attributes Objects Canonical basis Intents Density

Census 122 48842 71787 248846 0.08
nom10shuttle 97 43500 810 2931 0.10
Mushroom 119 8124 2323 238710 0.19
Connect 114 7222 86583 50468988 0.38
inter10shuttle 178 43500 936 38199148 0.46
Chess 75 3196 73162 930851337 0.49
Example 1 (n = 5) 25 3125 5 28629152 0.80
Example 1 (n = 6) 36 46656 6 62523502210 0.83
Example 2 (n = 10) 21 30 1024 2038103 0.92
Example 2 (n = 15) 31 45 32768 2133134741 0.95

The first six data sets are real-world data sets, while the rest are syntheti-
cally generated. The real-world data sets have been derived from Census, Shut-
tle, Mushroom, Connect, and Chess data sets from the UCI machine learning
repository [10]. They have been converted into formal contexts by using nomi-
nal scaling for categorical features (one attribute per category) and by scaling
numerical features into multiple attributes using equidistant cut points. In the
inter10shuttle data set, inter-ordinal rather than nominal scaling is used [15].

Example 1 is a context with nn objects and n2 attributes M = M1∪· · ·∪Mn

with |Mi| = n,Mi ∩Mj = ∅ for all 1 ≤ i < j ≤ n, where the object intents {g}′
are all possible subsets of M such that |{g}′ ∩Mi| = n − 1 for all 1 ≤ i ≤ n
[12]. The canonical basis consists of only n implications of the type Mi → M
for 1 ≤ i ≤ n. The number of concept intents is (2n − 1)n + 1. This context
is interesting, because the number of its closed attribute sets is exponential in
|M |, while the size of the canonical basis is only linear in |M |. This is precisely
the type of a context that should be hard for Next Closure–based algorithms,
since they have to compute all closed sets as a side product, and much easier for
our randomized algorithm. We ran experiments for n = 5 and n = 6.

Example 2 is a context with 3n objects g1, g2, . . . , g3n and 2n+ 1 attributes
m0,m1, . . . ,m2n, where object gi has attribute mj if i ≤ n and j 6∈ {0, i, i+ n},
or if i > n and j 6= i − n [18]. There are exactly 2n pseudo-intents of the form
{mi1 ,mi2 , . . . ,min} where ij ∈ {j, j +n}; thus, the size of the canonical basis is
exponential in the context size. We ran experiments for n = 10 and n = 15.

Approximate Computation of Exact Association Rules 9

5.4 Experiments

In all the experiments, a parallelized implementation of the randomized al-
gorithm was used. We parallelized the search for a counterexample in Algo-
rithms 2 and 3, as well as the search for an implication A → B to be re-
fined in the main loop of Algorithm 1. Our implementation and the data sets
used for the experiments are available at https://github.com/saurabh18213/
Implication-Basis. Unless mentioned otherwise, forty threads were allocated
to run the algorithm. The actual number of threads used at different points of
the execution of the algorithm was determined using certain heuristics.

In Experiments 1, 3 and 4, we set ε = 0.1 for real-world data sets, ε = 0.01
for Example 1, ε = 0.01 for Example 2 (n = 10), and ε = 0.001 for Example
2 (n = 15). In Experiment 2, we vary the value of ε. All the reported results
are for δ = 0.1. No significant change in total time, the computed number of
implications, and Quality Factor was observed when δ was varied. For real-world
and artificial data sets, all the results are average of three and five measurements,
respectively.

Experiment 1: Comparing approximations. In this experiment, we com-
pute ε- and ε-strong HornD-approximations for differentD, varying the sampling
oracle used in Algorithms 2 and 3. We use the Uniform oracle that generates
subsets of M uniformly at random and the Frequent oracle that generates sub-
sets according to the probability distribution specified by (3), as described in
Section 4. In addition, we test the following combination of the two oracles. We
first use the Uniform oracle. If, at some call to Algorithm 3, all k attempts to
generate a counterexample with the Uniform oracle fail, instead of terminating
the algorithm, we “redo” the k attempts, now with the Frequent oracle. If one
of the attempts succeeds, we keep using the Frequent oracle for the remaining
part of the computation; otherwise, the algorithm terminates. This approach is
denoted by Both in the results below.

Table 2. Runtime in seconds for different types of approximation.

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.18 1451.64 1184.10 0.16 5.02 0.21
nom10shuttle 0.15 0.73 0.71 0.14 0.43 0.44
Mushroom 0.11 1.89 1.95 0.06 0.16 0.14
Connect 0.14 307.51 307.10 0.07 0.08 0.07
inter10shuttle 0.59 6.77 6.47 0.58 0.60 0.60
Chess 0.07 167.96 169.77 0.04 0.04 0.03
Example 1 (n = 5) 0.03 0.03 0.04 0.03 0.03 0.04
Example 1 (n = 6) 0.31 0.27 0.36 0.31 0.29 0.37
Example 2 (n = 10) 0.27 0.17 0.27 0.21 0.19 0.26
Example 2 (n = 15) 96.72 74.64 108.77 83.31 75.12 115.81

https://github.com/saurabh18213/Implication-Basis
https://github.com/saurabh18213/Implication-Basis

10 S. Bansal et al.

Table 3. The number of implications computed for different types of approximation.
The last column shows the number of implications in the entire canonical basis.

ε-strong Horn approximation ε-Horn approximation Total

Data set Uniform Frequent Both Uniform Frequent Both

Census 48 20882 19111 41 1210 71 71787
nom10shuttle 76 201 201 76 137 146 810
Mushroom 95 577 593 7 72 59 2323
Connect 120 10774 10730 7 9 9 86583
inter10shuttle 172 446 430 171 171 171 936
Chess 64 6514 6542 48 48 48 73162
Example 1 (n = 5) 5 0 5 5 0 5 5
Example 1 (n = 6) 6 0 6 6 0 6 6
Example 2 (n = 10) 357 269 340 321 262 347 1024
Example 2 (n = 15) 7993 6813 8375 7612 6970 8424 32768

Table 4. Quality Factor (QF) for different types of approximation.

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.0003 0.0184 0.0180 0.0003 0.0014 0.0004
nom10shuttle 0.0004 0.0695 0.0613 0.0004 0.0157 0.0208
Mushroom 0.0004 0.1454 0.1482 0.0001 0.0032 0.0014
Connect 0.9979 0.9979 0.9979 0.0001 0.0016 0.0016
inter10shuttle 0.4900 0.5533 0.5429 0.4900 0.4900 0.4900
Chess 0.6927 1.0000 0.9830 0.6927 0.6927 0.6927
Example 1 (n = 5) 1.0000 0.9692 1.0000 1.0000 0.9692 1.0000
Example 1 (n = 6) 1.0000 0.9844 1.0000 1.0000 0.9844 1.0000
Example 2 (n = 10) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Example 2 (n = 15) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The time taken, the number of implications computed, and the value of the
Quality Factor for each data set are shown in Tables 2, 3, and 4, respectively.

When computing an ε-strong Horn approximation, the runtime on the real-
world data sets is significantly higher with the Frequent oracle than with the
Uniform oracle, but so is the number of implications computed and, usually,
the Quality Factor. An exception is Connect, for which QF almost does not
change despite a sharp increase in the number of implications. With ε-Horn
approximation, the situation is generally similar.

The runtime, the number of implications, and QF are lower for Example 1
when using the Frequent oracle than when using the Uniform oracle. This is
because all non-trivial valid implications (i.e., implications A→ B with B 6⊆ A)
have zero support and are ignored by frequency-aware approximations. The ran-
domized algorithm computes no implications when using the Frequency oracle.

Approximate Computation of Exact Association Rules 11

In Example 2, all non-trivial valid implications have non-zero support. In
particular, all 2n implications from the canonical basis have a rather high support
n (while the total number of objects in the context is 3n), and their premises are
also rather large (n out of 2n + 1 attributes). Because of this, all three metrics
are almost the same for the Uniform and Frequent oracles in Example 2: chances
to generate a negative counterexample to a current implication set L are similar
for the two oracles.

As expected, for real-world data sets, most of the metrics are higher in the
case of ε-strong approximation than in the case of ε-approximation. For the ar-
tificial data sets, there is not much difference due to the fact that the closure of
all non-closed sets there is M and, therefore, Algorithm 1 adds to L only impli-
cations of the form X →M whether it computes ε- or ε-strong approximation.

When using both oracles, as described above, we usually obtain results sim-
ilar to what we get with the Frequent oracle alone. An important exception
is Example 1, where all implications have zero support. In general, using both
oracles lets us capture such zero-support implications in addition to frequent
implications.

Experiment 2: The quality of approximation. In this experiment, we vary
the value of the ε parameter. The results in Tables 5–7 are for ε-strong Horn
approximation with counterexamples generated following the approach labeled
as “Both” in the description of Experiment 1. As expected, for most data sets,
the run time, the number of implications computed, and the value of the quality
factor increase as the value of ε is decreased. The exceptions are Chess and
Connect, where a very good approximation (QF≈ 1) is computed even at ε = 0.3.
The decrease in ε has no substantial effect on any of the metrics, even though
the number of implications computed is several times smaller than the size of the
canonical basis. It seems that the implication set L computed by the randomized
algorithm forms the essential part of the implication theory behind the context,
while valid implications that do not follow from Lmust have limited applicability
due to large premises with low support.

Table 5. Time in seconds for different values of ε.

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.19 37.63 1184.10 2345.26 2336.88
nom10shuttle 0.44 0.47 0.71 0.82 1.43
Mushroom 0.82 1.27 1.95 2.75 5.03
Connect 308.69 307.54 307.10 306.97 307.44
inter10shuttle 4.41 5.34 6.47 7.91 12.72
Chess 169.23 169.50 169.77 168.04 168.99
Example 1 (n = 5) 0.02 0.02 0.03 0.03 0.04
Example 1 (n = 6) 0.23 0.23 0.29 0.30 0.36
Example 2 (n = 10) 0.002 0.002 0.002 0.01 0.27
Example 2 (n = 15) 0.002 0.002 0.002 0.002 0.63

12 S. Bansal et al.

Table 6. The number of implications computed for different values of ε. The last
column shows the number of implications in the entire canonical basis.

Data set 0.3 0.2 0.1 0.05 0.01 Total

Census 49 2865 19111 26257 26253 71787
nom10shuttle 136 149 201 231 303 810
Mushroom 349 440 593 749 1036 2323
Connect 10790 10746 10730 10735 10759 86583
inter10shuttle 356 383 430 479 582 936
Chess 6563 6572 6542 6537 6578 73162
Example 1 (n = 5) 3 4 5 5 5 5
Example 1 (n = 6) 1 2 6 6 6 6
Example 2 (n = 10) 1 2 4 28 340 1024
Example 2 (n = 15) 0 0 0 1 422 32768

Table 7. Quality Factor (QF) for different values of ε.

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.0004 0.0034 0.0180 0.0208 0.0208
nom10shuttle 0.0090 0.0140 0.0613 0.1017 0.1753
Mushroom 0.0382 0.0692 0.1482 0.2726 0.4504
Connect 0.9979 0.9979 0.9979 0.9979 0.9979
inter10shuttle 0.4956 0.5202 0.5429 0.6451 0.8910
Chess 0.9981 1.0000 0.9830 0.9963 1.0000
Example 1 (n = 5) 0.9692 0.9815 1.0000 1.0000 1.0000
Example 1 (n = 6) 0.9844 0.9875 0.9969 1.0000 1.0000
Example 2 (n = 10) 1.0000 1.0000 1.0000 1.0000 1.0000
Example 2 (n = 15) 1.0000 1.0000 1.0000 1.0000 1.0000

It should also be said that the Quality Factor as we compute it is not very
relevant to Examples 1 and 2. Recall that, for artificial data sets, we select the
|M |/2 most frequent attributes of M and then check how many subsets of these
attributes are closed under the computed implications but not in the context.
However, for Example 2, any selection of |M |/2 attributes contains at most one
subset that is not closed in the context; so the value of the Quality Factor is
bound to be high no matter what implications we compute. This explains why
we have QF = 1 even for cases when no implications have been computed. The
situation is similar for Example 1, though less dramatic. There, the number of
implications computed is a better indicator of the approximation quality than
QF. Tables 5 and 6 show that, for Example 1, we compute the basis exactly at
ε ≤ 0.05 in a fraction of a second.

Experiment 3: The frequency of implications. In this experiment, we
compute the support of implications in an ε-strong Horn approximation obtained

Approximate Computation of Exact Association Rules 13

with counterexamples generated using the Frequent oracle. The results are shown
in Table 8. We show relative supports as percentages of |G|. In the second column,
the average support of the implications is shown. For columns 3–6, if the value of
Px is y, then at least x% of the implications in the approximation have support
greater than or equal to y. Example 1 is not shown because it has no implications
with non-zero support.

Table 8. The relative support of the implications in the approximation.

Data set Average P10 P50 P90 P99 |G|
Census 0.0335 0.0409 0.0082 0.0020 0.0020 48842
nom10shuttle 5.4038 12.1456 1.2345 0.0023 0.0000 43500
Mushroom 11.7045 25.6360 7.9764 1.1489 0.5252 8124
Connect 0.9276 1.3385 0.2446 0.0415 0.0277 7222
inter10shuttle 35.7838 99.9831 11.7080 0.0092 0.0069 43500
Chess 6.7690 15.7697 4.0989 0.9387 0.5423 3196
Example 2 (n = 10) 32.2586 33.3333 33.3333 30.0000 26.6667 30
Example 2 (n = 15) 32.6944 33.3333 33.3333 31.1111 28.8889 45

Experiment 4: Runtime. In this experiment, we compare the performance of
the randomized algorithm for computing an ε-strong approximation with that
of two algorithms computing the canonical basis exactly: the optimized version
of Next Closure from [5] (referred to as “6 + 1” there) and LinCbO from
[15], which combines this optimized version with the LinClosure algorithm
for computing the closures under implications [6] and introduces further opti-
mizations. The randomized algorithm is run with the values of ε and δ specified
in the beginning of Section 5.4. Counterexamples were generated following the
approach labeled as “Both” in the description of Experiment 1.

We show the results in Table 9. To make comparison fair, we give the runtime
of both the parallel version of the randomized algorithm with forty threads and
the version with one thread only. The number of threads does not affect the value
of the quality factor, which is therefore shown only once. The exact algorithms
have taken excessive time on Example 1 (n = 6); so we had to terminate them
before the basis was computed.

Between the two exact algorithms, LinCbO is consistently faster. The ran-
domized algorithm, both with forty threads and one thread, runs faster than
the exact algorithms on all contexts except the two sparse contexts (Census and
nom10shuttle) and the medium-density context (Mushroom). For Mushroom
context, the randomized algorithm runs faster than the exact algorithms, when
forty threads are used. On Mushroom context, the value of the quality factor of
the implication set obtained by the randomized algorithm is rather low, although
higher than for the two sparse contexts. For the dense contexts, the value of the
quality factor is close to 1 except for inter10shuttle, where it is around 0.54.

14 S. Bansal et al.

Table 9. Runtime in seconds (Experiment 4)

Data set 1 thread 40 threads QF Next Closure LinCbO

Census 29 608 1184.10 0.0180 522 177
nom10shuttle 3.34 0.71 0.0613 1.25 0.44
Mushroom 25.92 1.95 0.1482 49 10.8
Connect 6239.75 307.10 0.9979 23 310 19 420
inter10shuttle 42.52 6.47 0.5429 19 223 16 698
Chess 1955.12 169.77 0.9830 325 076 234 309
Example 1 (n = 5) 0.05 0.04 1.0000 384 65
Example 1 (n = 6) 0.55 0.36 1.0000 – –
Example 2 (n = 10) 0.22 0.27 1.0000 5.94 2.8
Example 2 (n = 15) 84.97 108.77 1.0000 203 477 29 710

This behavior is consistent with our expectations. In dense contexts, we usu-
ally have a large number of concept intents, which have to be enumerated as a
side product by the exact algorithms. This slows them down considerably. The
randomized algorithm does not have this weakness. In general, the randomized
algorithm is preferable when the size of the basis is small with respect to the
number of concept intents. If however the size of the canonical basis is compara-
ble with the number of intents (as in the case of Census and nom10shuttle), the
randomized algorithm tends to perform much worse, both in terms of runtime
and quality. Context density can be a good (even if not always reliable) indicator
for the applicability of the randomized algorithm.

Note also that the forty-thread version of the algorithm is up to twenty four
times faster than the single-thread version on hard instances (such as Census
and Connect).

6 Conclusion

Finding the canonical basis of a formal context is a computationally hard prob-
lem, which makes it reasonable to search for relatively efficient approximate
solutions. To this end, an approach within the framework of probably approxi-
mately correct learning has been recently proposed [8,20] based on older works
in machine learning and knowledge compilation [3,16]. The main contribution
of this paper is two-fold. On the one hand, we extend the previously proposed
approach by introducing frequency (or support) into approximation so as to shift
the focus to approximating frequent implications. On the other hand, we present
the first experimental evaluation of this approach in terms of its efficiency com-
pared to the exact computation of the canonical basis.

Loosely speaking, a frequency-aware Horn approximation of a formal context
K, as considered in this paper, is a subset L of implications valid in K from which
most valid frequent implications of K follow. Somewhat more precisely, such L
is biased towards ensuring, for A ⊆ M with large support |A′|, that A = L(A)
if and only if A = A′′, or, in the case of strong approximation, that L(A) =

Approximate Computation of Exact Association Rules 15

A′′. In many application settings, frequent implications, also known as exact
association rules, are regarded as the most important. We present a polynomial-
time algorithm to compute such an approximation with high probability. The
resulting set L is polynomial in the size of the input context and the parameters
controlling the quality of approximation and the probability of achieving it. For
certain practical purposes, such L may be even more valuable than a full basis of
frequent implications (whichever way it is defined), whose size can be exponential
in the size of the input context.

A frequency-aware approximation can be relevant even if we are not inter-
ested specifically in frequent implications. If most attribute subsets are of zero
support, which often happens in real-world data sets, then L would be regarded
as a good Horn approximation provided that L(A) = M for all (or most) sub-
sets A that never occur in data—no matter where L maps those relatively few
subsets that do occur. Taking frequency into account solves this problem by
making it hard to ignore such subsets. This results in a much more meaningful
approximation.

Our experiments show that, if the size of the canonical basis is small com-
pared to the number of concept intents, a high-quality approximation can be
computed in significantly less time than it takes Next Closure–based algorithms
to compute the basis exactly. The randomized algorithm that we propose for this
purpose is very easy to parallelize, which can further decrease the total runtime.
It remains to be seen how well, in terms of efficiency, the algorithm performs
against algorithms that are not related to Next Closure.

Acknowledgments

We thank Aimene Belfodil for letting us know of the paper [7].

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between
sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Manage-
ment of Data, Washington, DC, USA, May 26-28, 1993. pp. 207–216. ACM
Press (1993). https://doi.org/10.1145/170035.170072, https://doi.org/10.1145/
170035.170072

2. Angluin, D.: Queries and concept learning. Machine learning 2(4), 319–342 (1988)

3. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Machine
Learning 9, 147–164 (1992)

4. Arias, M., Balcázar, J.L.: Construction and learnability of canonical Horn formu-
las. Machine Learning 85(3), 273–297 (2011). https://doi.org/10.1007/s10994-011-
5248-5, http://dx.doi.org/10.1007/s10994-011-5248-5

5. Bazhanov, K., Obiedkov, S.: Optimizations in computing the Duquenne–Guigues
basis of implications. Annals of Mathematics and Artificial Intelligence 70(1), 5–24
(2014)

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/s10994-011-5248-5
https://doi.org/10.1007/s10994-011-5248-5
http://dx.doi.org/10.1007/s10994-011-5248-5

16 S. Bansal et al.

6. Beeri, C., Bernstein, P.: Computational problems related to the design of normal
form relational schemas. ACM TODS 4(1), 30–59 (March 1979)

7. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sam-
pling by efficient two-step random procedures. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. p. 582–590. KDD’11, Association for Computing Machinery, New York,
NY, USA (2011). https://doi.org/10.1145/2020408.2020500, https://doi.org/

10.1145/2020408.2020500

8. Borchmann, D., Hanika, T., Obiedkov, S.: On the usability of probably approxi-
mately correct implication bases. In: Bertet, K., Borchmann, D., Cellier, P., Ferré,
S. (eds.) Formal Concept Analysis. Proceedings ICFCA 2017. Lecture Notes in
Computer Science, vol. 10308, pp. 72–88 (2017)

9. Borchmann, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning
of Horn envelopes from queries. Discrete Applied Mathematics 273, 30 – 42 (2020).
https://doi.org/https://doi.org/10.1016/j.dam.2019.02.036

10. Dua, D., Graff, C.: UCI Machine Learning Repository (2017)
11. Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of the 8th

International Conference on Formal Concept Analysis. pp. 312–340. ICFCA’10,
Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
11928-6 22

12. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer (2016)
13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Berlin/Heidelberg (1999)
14. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives ré-

sultant d’un tableau de données binaires. Mathématiques et Sciences Humaines
24(95), 5–18 (1986)

15. Janostik, R., Konecny, J., Krajča, P.: LinCbO: fast algorithm for computation of
the Duquenne–Guigues basis (2021), https://arxiv.org/abs/2011.04928

16. Kautz, H.A., Kearns, M.J., Selman, B.: Horn approximations of empirical data.
Artif. Intell. 74(1), 129–145 (1995)

17. Khardon, R.: Translating between Horn representations and their characteristic
models. J. Artif. Intell. Res. (JAIR) 3, 349–372 (1995)

18. Kuznetsov, S.: On the intractability of computing the Duquenne–Guigues base.
Journal of Universal Computer Science 10(8), 927–933 (2004)

19. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. Annals of Mathematics and Artificial Intelligence 49(1), 77–99
(2007)

20. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D.,
Le Ber, F., Sertkaya, B. (eds.) Formal Concept Analysis. pp. 32–44. Springer In-
ternational Publishing, Cham (2019)

21. Yarullin, R., Obiedkov, S.: From Equivalence Queries to PAC Learning: The Case
of Implication Theories. International Journal of Approximate Reasoning 127, 1–
16 (2020)

https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/2020408.2020500
https://doi.org/https://doi.org/10.1016/j.dam.2019.02.036
https://doi.org/10.1007/978-3-642-11928-6_22
https://doi.org/10.1007/978-3-642-11928-6_22
https://arxiv.org/abs/2011.04928

	Approximate Computation of Exact Association Rules

