
COMPLEXITY THEORY

Lecture 20: Circuits and Parallel Computation

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 7 Jan 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en


The Power of Circuits

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 2 of 26



P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?

Nobody knows.

Theorem 20.1 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σp
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀X⃗.∃Y⃗.φ is true if, for all values of X⃗, φ(X⃗) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of X⃗ if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 3 of 26



P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?
Nobody knows.

Theorem 20.1 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σp
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀X⃗.∃Y⃗.φ is true if, for all values of X⃗, φ(X⃗) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of X⃗ if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 3 of 26



P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?
Nobody knows.

Theorem 20.1 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σp
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀X⃗.∃Y⃗.φ is true if, for all values of X⃗, φ(X⃗) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of X⃗ if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 3 of 26



P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?

Nobody knows.

Theorem 20.2 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σp

2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 20.3: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σp
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σp
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 4 of 26



P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?
Nobody knows.

Theorem 20.2 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σp

2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 20.3: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σp
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σp
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 4 of 26



P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?
Nobody knows.

Theorem 20.2 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σp

2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 20.3: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σp
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σp
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 4 of 26



How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 20.4 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 5 of 26



How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 20.4 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 5 of 26



How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 20.4 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?

Nobody knows.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 5 of 26



How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 20.4 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 5 of 26



Modelling Parallelism With Circuits

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 6 of 26



What is Efficiently Parallelisable?

Experience suggests:
Some problems can be solved efficiently in parallel, while others can not.

How could this be shown?

Intuitive definition:
A problem has an efficient parallel algorithm if it can be solved for inputs of size n

• in polylogarithmic time, i.e., in time O(logk n) for some k ≥ 0,

• using a computer with a polynomial number of parallel processors, i.e., O(nd)
processors for some d ≥ 0.

Note: Using O(nd) processors efficiently requires a massively parallel algorithm.
However, one could always use fewer processors (each taking on more work), possibly
leading to a proportional increase in time.

The hard bit in parallelisation is to utilise many processors effectively – reducing to fewer
processors is easy.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 7 of 26



What is Efficiently Parallelisable?

Experience suggests:
Some problems can be solved efficiently in parallel, while others can not.

How could this be shown?

Intuitive definition:
A problem has an efficient parallel algorithm if it can be solved for inputs of size n

• in polylogarithmic time, i.e., in time O(logk n) for some k ≥ 0,

• using a computer with a polynomial number of parallel processors, i.e., O(nd)
processors for some d ≥ 0.

Note: Using O(nd) processors efficiently requires a massively parallel algorithm.
However, one could always use fewer processors (each taking on more work), possibly
leading to a proportional increase in time.

The hard bit in parallelisation is to utilise many processors effectively – reducing to fewer
processors is easy.
Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 7 of 26



Modelling Parallel Computation

What kind of “parallel computer” do we mean here?

(1) How do processors communicate?

(2) What can a processor do in one step?

(3) How are processors synchronised?

Detailed answer: define Parallel Random Access Machine (PRAM)

Our answer:
Details are not critical as long as we can make some general assumptions:

(1) Every processor can send a message to any other processor in O(log n) time

(2) In one step, each processors can perform one Boolean operation on “a few” bits,
say O(log n)

(3) Processor steps are synched with a global clock

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 8 of 26



Modelling Parallel Computation

What kind of “parallel computer” do we mean here?

(1) How do processors communicate?

(2) What can a processor do in one step?

(3) How are processors synchronised?

Detailed answer: define Parallel Random Access Machine (PRAM)

Our answer:
Details are not critical as long as we can make some general assumptions:

(1) Every processor can send a message to any other processor in O(log n) time

(2) In one step, each processors can perform one Boolean operation on “a few” bits,
say O(log n)

(3) Processor steps are synched with a global clock

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 8 of 26



Modelling Parallel Computation in Circuits

Simple PRAM computations can be mapped to Boolean circuits
(with some extra circuitry for executing more operations or for modelling message
passing)

Circuits as models for parallel computation:

• circuit gates can operate in parallel – they only depend on their inputs

• the time needed to evaluate a circuit depends on its depth, not size
(depth = longest distance from an input to an output node)

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 9 of 26



Example: Generalised AND
The function that tests if all inputs are 1 can be encoded by combining binary AND
gates:

. . .

. . .

. . .

. . .

(n/2 gates)

(n/4 gates)

. . .

x1 x2 x3 x4 x5 xn. . .

• size: 2n − 1
• depth: log2 n

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 10 of 26



Small-Depth Circuits

Small depth = short (parallel) time

However: Every Boolean function can be computed by depth O(log n) circuits using
O(n2n) gates (exercise)

Hence, to capture “efficient parallel computation”, we also restrict the size:

Definition 20.5: For k ≥ 0, we define NCk to be the class of all problems that can
be solved by a circuit family C = C1, C2, C3, . . . such that

• the depth of Cn is bounded by O(logk n), and

• there is some d ≥ 0 so that the size of Cn is bounded by O(nd)
(in other words: NCk

⊆ P/poly).

(NC is for “Nick’s class”, named in honour of Nicholas Pippenger, who studied such circuits, by
Stephen Cook.)

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 11 of 26



Small-Depth Circuits

Small depth = short (parallel) time

However: Every Boolean function can be computed by depth O(log n) circuits using
O(n2n) gates (exercise)

Hence, to capture “efficient parallel computation”, we also restrict the size:

Definition 20.5: For k ≥ 0, we define NCk to be the class of all problems that can
be solved by a circuit family C = C1, C2, C3, . . . such that

• the depth of Cn is bounded by O(logk n), and

• there is some d ≥ 0 so that the size of Cn is bounded by O(nd)
(in other words: NCk

⊆ P/poly).

(NC is for “Nick’s class”, named in honour of Nicholas Pippenger, who studied such circuits, by
Stephen Cook.)

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 11 of 26



Alternating Circuits

Different complexity classes are obtained when allowing generalised Boolean gates with
many inputs:

Definition 20.6: An AND gate with unbounded fan-in is a gate that computes a
generalised AND function over an arbitrary number n ≥ 2 of inputs. OR gates with
unbounded fan-in are defined similarly.

For k ≥ 0, we define ACk exactly like NCk but allowing circuits to use gates with
unbounded fan-in.

Example 20.7: Generalised AND is in NC1 and in AC0.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 12 of 26



The NC Hierarchy

The classes NCk and ACk form a hierarchy:

• if i ≤ j then NCi
⊆ NCj (obvious)

• if i ≤ j then ACi
⊆ ACj (obvious)

• NCi
⊆ ACi (obvious)

• ACi
⊆ NCi+1 (since generalised AND and OR can be replaced with O(log n)

bounded fan-in gates as in our example)

The limit of this hierarchy is defined as NC =
⋃

k≥0 NCk so we get:

AC0
⊆ NC1

⊆ AC1
⊆ · · · ⊆ NCk

⊆ ACk
⊆ NCk+1

⊆ · · · NC

Note: NC0 is not a very useful class, as those circuits cannot process the whole input

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 13 of 26



The NC Hierarchy

The classes NCk and ACk form a hierarchy:

• if i ≤ j then NCi
⊆ NCj (obvious)

• if i ≤ j then ACi
⊆ ACj (obvious)

• NCi
⊆ ACi (obvious)

• ACi
⊆ NCi+1 (since generalised AND and OR can be replaced with O(log n)

bounded fan-in gates as in our example)

The limit of this hierarchy is defined as NC =
⋃

k≥0 NCk so we get:

AC0
⊆ NC1

⊆ AC1
⊆ · · · ⊆ NCk

⊆ ACk
⊆ NCk+1

⊆ · · · NC

Note: NC0 is not a very useful class, as those circuits cannot process the whole input

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 13 of 26



Uniform vs. Non-uniform

Recall: a circuit family is uniform if it can be computed by a (restricted form of) Turing
machine

• Our definitions of NCk and ACk so far did not require uniformity

• It is common to define uniform NCk and uniform ACk using logspace-uniformity (or
even more restricted forms of uniformity)

• Clearly: uniform NCk
⊆ NCk and uniform ACk

⊆ ACk

Convention: For the rest of this lecture, we restrict to (logspace) uniform versions
of NCk and ACk.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 14 of 26



Example: Parity is in NC1

x1 x2 x3 x4

However, we also have the following major result (without proof):

Theorem 20.8 (see Arora/Barak, Chapter 14): Parity is not in AC0, and there-
fore AC0 ⊊ NC1.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 15 of 26



Example: Parity is in NC1

x1 x2 x3 x4

However, we also have the following major result (without proof):

Theorem 20.8 (see Arora/Barak, Chapter 14): Parity is not in AC0, and there-
fore AC0 ⊊ NC1.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 15 of 26



Example: FOL model checking

FOL Model Checking

Input: First-order sentence φ; finite first-order structure I

Problem: Is φ satisfied by I?

We showed that this problem is PSpace-complete.

It turns out that this complexity is caused by the formula, not by the model:

FOL Model Checking for φ

Input: A finite first-order structure I.

Problem: Is φ satisfied by I?

Theorem 20.9 (see course Database Theory, Summer 2025, TU Dresden): For
any first-order sentence φ, FOL Model Checking for φ is in AC0.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 16 of 26



Example: FOL model checking

FOL Model Checking

Input: First-order sentence φ; finite first-order structure I

Problem: Is φ satisfied by I?

We showed that this problem is PSpace-complete.
It turns out that this complexity is caused by the formula, not by the model:

FOL Model Checking for φ

Input: A finite first-order structure I.

Problem: Is φ satisfied by I?

Theorem 20.9 (see course Database Theory, Summer 2025, TU Dresden): For
any first-order sentence φ, FOL Model Checking for φ is in AC0.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 16 of 26



Relationships to Other Complexity Classes (1)

Using the assumption of uniformity, we can solve circuit complexity problems by
(1) computing the circuit and (2) evaluating it.

The following are not hard to show:

Theorem 20.10 (Sipser, Theorem 10.41): NC ⊆ P

Theorem 20.11 (Sipser, Theorem 10.39): NC1
⊆ L

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 17 of 26



Relationships to Other Complexity Classes (2)

Conversely, some known classes are also subsumed by NC:

Theorem 20.12: NL ⊆ AC1

Proof notes:
General proof idea: (1) construct a “generalised” configuration graph for an NL machine (a graph
that describes all possible configuration graphs for inputs of a given length, using transitions that
depend on the actual input that is given); (2) check reachability of the goal state in this graph
(basically by repeated matrix multiplication in the reachability matrix).
We do not give a proof here. Sipser (Theorem 10.40) sketches the proof for NL ⊆ NC2; the proof
for NL ⊆ AC1 is the same but also uses that the depth is only logarithmic if we can use unbounded
fan-in gates. □

We therefore obtain the following picture:

AC0 ⊊ NC1
⊆ L ⊆ NL ⊆ AC1

⊆ NC2
⊆ · · · NC ⊆ P

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 18 of 26



Relationships to Other Complexity Classes (2)

Conversely, some known classes are also subsumed by NC:

Theorem 20.12: NL ⊆ AC1

Proof notes:
General proof idea: (1) construct a “generalised” configuration graph for an NL machine (a graph
that describes all possible configuration graphs for inputs of a given length, using transitions that
depend on the actual input that is given); (2) check reachability of the goal state in this graph
(basically by repeated matrix multiplication in the reachability matrix).
We do not give a proof here. Sipser (Theorem 10.40) sketches the proof for NL ⊆ NC2; the proof
for NL ⊆ AC1 is the same but also uses that the depth is only logarithmic if we can use unbounded
fan-in gates. □

We therefore obtain the following picture:

AC0 ⊊ NC1
⊆ L ⊆ NL ⊆ AC1

⊆ NC2
⊆ · · · NC ⊆ P

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 18 of 26



P-Completeness

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 19 of 26



The Limits of Parallel Computation

NC defines a hierarchy of efficiently parallelisable problems in P

Are all problems in P efficiently parallelisable?

Nobody knows.

State of the art:

• It is not known if NC , P or not

• It is not even known if NC1 , PH or not

• It is clear that AC0 , P (since AC0
⊂ NC1)

• It is clear that NC , PSpace (exercise: why?)

“Most experts believe that” NC , P
{ if this is true, then some problems in P cannot be parallelised efficiently

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 20 of 26



The Limits of Parallel Computation

NC defines a hierarchy of efficiently parallelisable problems in P

Are all problems in P efficiently parallelisable?
Nobody knows.

State of the art:

• It is not known if NC , P or not

• It is not even known if NC1 , PH or not

• It is clear that AC0 , P (since AC0
⊂ NC1)

• It is clear that NC , PSpace (exercise: why?)

“Most experts believe that” NC , P
{ if this is true, then some problems in P cannot be parallelised efficiently

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 20 of 26



P-Complete Problems

Recall the definition from Lecture 11:

Definition 11.7: A problem L ∈ P is complete for P if every other language in P is
log-space reducible to L.

If NC , P then P-complete problems are tractable but
not efficiently parallelisable and therefore inherently serial.

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 21 of 26



Circuit Evaluation is P-complete

Circuit Value

Input: A Boolean Circuit C with one output, and an
input word w ∈ {0, 1}n

Problem: Does C return 1 on this input?

Theorem 20.13: Circuit Value is P-complete.

Proof: Membership is easy. For completeness, we reduce the word problem of an
arbitrary polynomially time-bounded Turing machine. A circuit for this problem was
constructed earlier for Theorem 18.12. This circuit family is logspace-uniform (as
already remarked in Theorem 18.18), so we get a logspace-reduction. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 22 of 26



Propositional Horn Logic

A problem that is closer to artificial intelligence:

• A propositional fact is a formula consisting of a single propositional variable X

• A propositional Horn rule is a formula of the form X1 ∧ X2 → X3

• A propositional Horn theory is a set of propositional Horn rules and facts

The semantics of propositional Horn theories is defined as usual for propositional logic.

Prop Horn Entailment

Input: A propositional Horn theory T and a propo-
sitional variable X

Problem: Does T entail X to be true?

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 23 of 26



Propositional Horn Logic is P-Complete

Theorem 20.14: Prop Horn Entailment is P-complete.

Proof sketch: One can give a direct Turing machine encoding:
• We use propositional variables to represent configurations as for Cook-Levin
• We encode TM behaviour directly, e.g., for transitions ⟨q,σ⟩ 7→ ⟨q′,σ′, d⟩ we can use rules

like Qq,t ∧ Pi,t ∧ Si,σ,t → Qq′,t+1 ∧ Pi+d,t+1 ∧ Si,σ′,t+1 (for all times t and positions i)
• We do not need rules that forbid inconsistent configurations (two states at once etc.): Horn

logic has a least model, and we don’t need to worry about other models when checking
entailment

• Disjunctive acceptance conditions (“accepts if there is some time point at which is reaches
an accepting state”) can be encoded by many implications (one for each case) without “real”
disjunctions

For details, see Theorem 4.2 in Dantsin, Eiter, Gottlob, Voronkov: Complexity and expressive
power of logic programming (link). ACM Computing Surveys, 2001. □

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 24 of 26

http://cmpe.emu.edu.tr/bayram/courses/531/forpresentation/p374-dantsin.pdf
http://cmpe.emu.edu.tr/bayram/courses/531/forpresentation/p374-dantsin.pdf


Complexity vs. Runtime

Horn logic is P-complete:

• One of the hardest problems in P

• Inherently non-parallelisable

However:

• Prop Horn Entailment can be decided in linear time
[Dowling/Gallier, 1984]

• This does not imply that all problems in P have linear time algorithms

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 25 of 26



Summary and Outlook

Small-depth circuits can be used to model efficient parallel computation

NC defines a hierarchy of problems below P:

AC0
⊂ NC1

⊆ L ⊆ NL ⊆ AC1
⊆ NC2

⊆ · · · NC ⊆ P

P-complete problems, such as Horn logic entailment, are believed not to be efficiently
parallelisable.

What’s next?

• Randomness

• Quantum Computing

• Interactive Proof Systems

• Examinations

Markus Krötzsch; 7 Jan 2025 Complexity Theory slide 26 of 26


	Circuits and Parallel Computation
	The Power of Circuits
	Modelling Parallelism With Circuits
	P-Completeness


