OWL
OWL

User Interface & Applications

Trust

Proof

Unifying Logic

Crypto

Query: SPARQL

Ontology: OWL

Rule: RIF

RDFS

Data interchange: RDF

XML

URI/IRI

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
Agenda

• Motivation
• Introduction Description Logics
• The Description Logic ALC
• Extensions of ALC
• Inference Problems
Description Logics

- Description logics (DLs) are one of the current KR paradigms
- Have significantly influenced the standardization of Semantic Web languages
 - OWL is essentially based on DLs
- Numerous reasoners

<table>
<thead>
<tr>
<th>Quonto</th>
<th>JFact</th>
<th>FaCT++</th>
<th>RacerPro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owlgres</td>
<td>Pellet</td>
<td>SHER</td>
<td>snorocket</td>
</tr>
<tr>
<td>OWLIM</td>
<td>Jena</td>
<td>Oracle Prime</td>
<td>QuOnto</td>
</tr>
<tr>
<td>Trowl</td>
<td>HermiT</td>
<td>condor</td>
<td>CB</td>
</tr>
<tr>
<td>ELK</td>
<td>konclude</td>
<td></td>
<td>RScale</td>
</tr>
</tbody>
</table>
OWL Tools

good support by editors

- Protégé, http://protege.stanford.edu
- SWOOP, http://code.google.com/p/swoop/
Description Logics

- origin of DLs: semantic networks and frame-based systems
- downside of the former: only intuitive semantics - diverging interpretations
- DLs provide a formal semantics on logical grounds
- can be seen as decidable fragments of first-order logic (FOL), closely related to modal logics
- significant portion of DL-related research devoted to clarifying the computational effort of reasoning tasks in terms of their worst-case complexity
- despite high complexities, even for expressive DLs exist optimized reasoning algorithms with good average case behavior
Agenda

- Motivation
- \textbf{Introduction Description Logics}
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
DL building blocks

- **individuals**: birte, cs63.800, sebastian, etc.
 - \(\leadsto\) constants in FOL, resources in RDF
- **concept names**: Person, Course, Student, etc.
 - \(\leadsto\) unary predicates in FOL, classes in RDF
- **role names**: hasFather, attends, worksWith, etc.
 - \(\leadsto\) binary predicates in FOL, properties in RDF
 - can be subdivided into abstract and concrete roles (object und data properties)

the set of all individual, concept and role names is called signature or vocabulary
Constituents of a DL Knowledge Base

- **TBox \mathcal{T}**: information about concepts and their taxonomic dependencies
- **ABox \mathcal{A}**: information about individuals, their concept and role memberships

In more expressive DLs also:

- **RBox \mathcal{R}**: information about roles and their mutual dependencies
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
\(\mathcal{ALC} \), Attribute Language with Complement, is the simplest DL that is Boolean closed

we define (complex) \(\mathcal{ALC} \) concepts as follows:

- every concept name is a concept,
- \(\top \) and \(\bot \) are concepts,
- for concepts \(C \) and \(D \), \(\neg C \), \(C \sqcap D \), and \(C \sqcup D \) are concepts,
- for a role \(r \) and a concept \(C \), \(\exists r.C \) and \(\forall r.C \) are concepts

Example: \(\text{Student} \sqcap \forall \text{attendsCourse}.\text{MasterCourse} \)

Intuitively: describes the concept comprising all students that attend only master courses
Concept Constructors vs. OWL

- \top corresponds to `owl:Thing`
- \bot corresponds to `owl:Nothing`
- \sqcap corresponds to `owl:intersectionOf`
- \sqcup corresponds to `owl:unionOf`
- \neg corresponds to `owl:complementOf`
- \forall corresponds to `owl:allValuesFrom`
- \exists corresponds to `owl:someValuesFrom`
Concept Axioms

For concepts C, D, a general concept inclusion (GCI) axiom has the form

$$C \sqsubseteq D$$

- $C \equiv D$ is an abbreviation for $C \sqsubseteq D$ and $D \sqsubseteq C$
- a TBox (terminological Box) consists of a set of GCIs

$\text{TBox } \mathcal{T}$
ABox

an ALC ABox assertion can be of one of the following forms

- $C(a)$, called concept assertion
- $r(a, b)$, called role assertion

an ABox consists of a set of ABox assertions
The Description Logic \(\mathcal{ALC} \)

- \(\mathcal{ALC} \) is a syntactic variant of the modal logic \(\mathbf{K} \)
- semantics defined in a model-theoretic way, that is, via interpretations
- can be expressed in first-order predicate logic
- a DL interpretation \(\mathcal{I} \) consists of a domain \(\Delta^\mathcal{I} \) and a function \(\cdot^\mathcal{I} \), that maps
 - individual names \(a \) to domain elements \(a^\mathcal{I} \in \Delta^\mathcal{I} \)
 - concept names \(C \) to sets of domain elements \(C^\mathcal{I} \subseteq \Delta^\mathcal{I} \)
 - role names \(r \) to sets of pairs of domain elements \(r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I} \)
Schematic Representation of an Interpretation

- Individual names: \(a \)
- Concept names: \(C \)
- Role names: \(r \)

\[\Delta \]

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Interpretation of Complex Concepts

The interpretation of complex concepts is defined inductively:

<table>
<thead>
<tr>
<th>Name</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>\top</td>
<td>Δ^I</td>
</tr>
<tr>
<td>bottom</td>
<td>\bot</td>
<td>\emptyset</td>
</tr>
<tr>
<td>negation</td>
<td>$\neg C$</td>
<td>$\Delta^I \setminus C^I$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
<td>$C^I \cap D^I$</td>
</tr>
<tr>
<td>disjunction</td>
<td>$C \sqcup D$</td>
<td>$C^I \cup D^I$</td>
</tr>
<tr>
<td>universal quantifier</td>
<td>$\forall r.C$</td>
<td>${x \in \Delta^I \mid (x, y) \in r^I \text{ implies } y \in C^I}$</td>
</tr>
<tr>
<td>existential quantifier</td>
<td>$\exists r.C$</td>
<td>${x \in \Delta^I \mid \text{there is some } y \in \Delta^I, \text{ such that } (x, y) \in r^I \text{ and } y \in C^I}$</td>
</tr>
</tbody>
</table>
Interpretation of Axioms

interpretation can be extended to axioms:

<table>
<thead>
<tr>
<th>name</th>
<th>syntax</th>
<th>semantic</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusion</td>
<td>$C \sqsubseteq D$</td>
<td>holds if $C^\mathcal{I} \sqsubseteq D^\mathcal{I}$</td>
<td>$\mathcal{I} \models C \sqsubseteq D$</td>
</tr>
<tr>
<td>equivalence</td>
<td>$C \equiv D$</td>
<td>holds if $C^\mathcal{I} = D^\mathcal{I}$</td>
<td>$\mathcal{I} \models C \equiv D$</td>
</tr>
<tr>
<td>concept assertion</td>
<td>$C(a)$</td>
<td>holds if $a^\mathcal{I} \in C^\mathcal{I}$</td>
<td>$\mathcal{I} \models C(a)$</td>
</tr>
<tr>
<td>role assertion</td>
<td>$r(a, b)$</td>
<td>holds if $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$</td>
<td>$\mathcal{I} \models r(a, b)$</td>
</tr>
</tbody>
</table>
Logical Entailment in Knowledge Bases

- Let \mathcal{I} be an interpretation, \mathcal{T} a TBox, \mathcal{A} an Abox and $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ a knowledge base.
- \mathcal{I} is a model for \mathcal{T}, if $\mathcal{I} \models \text{ax}$ for every axiom ax in \mathcal{T}, written $\mathcal{I} \models \mathcal{T}$.
- \mathcal{I} is a model for \mathcal{A}, if $\mathcal{I} \models \text{ax}$ for every assertion ax in \mathcal{A}, written $\mathcal{I} \models \mathcal{A}$.
- \mathcal{I} is a model for \mathcal{K}, if $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$.
- An axiom ax follows from \mathcal{K}, written $\mathcal{K} \models \text{ax}$, if every model \mathcal{I} of \mathcal{K} is also a model of ax.
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping \(\pi \) with \(C, D \) complex classes, \(r \) a role and \(A \) an atomic class:

\[
\begin{align*}
\pi(C \sqsubseteq D) &= \forall x. (\pi_x(C) \rightarrow \pi_x(D)) \\
\pi(C \equiv D) &= \forall x. (\pi_x(C) \leftrightarrow \pi_x(D))
\end{align*}
\]
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping \(\pi \) with \(C, D \) complex classes, \(r \) a role and \(A \) an atomic class:

\[
\begin{align*}
\pi(C \sqsubseteq D) &= \forall x.(\pi_x(C) \to \pi_x(D)) \\
\pi(C \equiv D) &= \forall x.(\pi_x(C) \leftrightarrow \pi_x(D)) \\
\pi_x(A) &= A(x) \\
\pi_x(\neg C) &= \neg \pi_x(C) \\
\pi_x(C \sqcap D) &= \pi_x(C) \land \pi_x(D) \\
\pi_x(C \sqcup D) &= \pi_x(C) \lor \pi_x(D) \\
\pi_x(\forall r.C) &= \forall y.(r(x, y) \to \pi_y(C)) \\
\pi_x(\exists r.C) &= \exists y.(r(x, y) \land \pi_y(C))
\end{align*}
\]
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping π with C, D complex classes, r a role and A an atomic class:

$$\pi(C \sqsubseteq D) = \forall x.(\pi_x(C) \to \pi_x(D))$$

$$\pi(C \equiv D) = \forall x.(\pi_x(C) \leftrightarrow \pi_x(D))$$

$$\pi_x(A) = A(x)$$

$$\pi_x(\neg C) = \neg \pi_x(C)$$

$$\pi_x(C \cap D) = \pi_x(C) \land \pi_x(D)$$

$$\pi_x(C \cup D) = \pi_x(C) \lor \pi_x(D)$$

$$\pi_x(\forall r.C) = \forall y.(r(x, y) \to \pi_y(C))$$

$$\pi_x(\exists r.C) = \exists y.(r(x, y) \land \pi_y(C))$$

$$\pi_y(A) = A(y)$$

$$\pi_y(\neg C) = \neg \pi_y(C)$$

$$\pi_y(C \cap D) = \pi_y(C) \land \pi_y(D)$$

$$\pi_y(C \cup D) = \pi_y(C) \lor \pi_y(D)$$

$$\pi_y(\forall r.C) = \forall x.(r(y, x) \to \pi_x(C))$$

$$\pi_y(\exists r.C) = \exists x.(r(y, x) \land \pi_x(C))$$
Semantics via Translation into FOL

- translation only requires two variables

\[\mathcal{ALC} \text{ is a fragment of FOL with two variables } \mathcal{L}_2 \]

\[\text{satisfiability checking of sets of } \mathcal{ALC} \text{ axioms is decidable} \]
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic ALC
- Extensions of ALC
- Inference Problems
Inverse Roles

- a role can be
 - a role name \(r \)
 - an inverse role \(r^- \)
- the semantics of inverse roles is defined as follows:

\[
(r^-)^I = \{(y, x) \mid (x, y) \in r^I\}
\]

- the extension of \(ALC \) by inverse roles is denoted as \(ALC_I \)
- corresponds to \texttt{owl:inverseOf}
Parts of a Knowledge Base

- **TBox \(\mathcal{T} \)**: information about concepts and their taxonomic dependencies
- **ABox \(\mathcal{A} \)**: information about individuals, their concepts and role connections

 in more expressive DLs also:

- **RBox \(\mathcal{R} \)**: information about roles and their mutual dependencies
Role Axioms

- for r, s roles, a role inclusion axiom – RIA has the form $r \sqsubseteq s$
- $r \equiv s$ is the abbreviation for $r \sqsubseteq s$ and $s \sqsubseteq r$
- an RBox (role box) or role hierarchy consists of a set of role axioms
- $r \sqsubseteq s$ holds in an interpretation \mathcal{I} if $r^\mathcal{I} \subseteq s^\mathcal{I}$, written $\mathcal{I} \models r \sqsubseteq s$
- the extension of ALC by role hierarchies is denoted with $ALCH$, if we also have inverse roles: $ALCHI$
- corresponds to owl:subPropertyOf

RBox \mathcal{R}
An Example Knowledge Base

RBox \mathcal{R}

own \sqsubseteq careFor

TBox \mathcal{T}

Healthy \sqsubseteq \negDead

Cat \sqsubseteq Dead \sqcup Alive

HappyCatOwner \sqsubseteq \existsowns.Cat \sqcap \forallcaresFor.Healthy

ABox \mathcal{A}

HappyCatOwner (schrödinger)
An Example Knowledge Base

RBox \(\mathcal{R} \)

<table>
<thead>
<tr>
<th>own</th>
<th>careFor</th>
</tr>
</thead>
</table>

“If somebody owns something, they care for it.”

TBox \(\mathcal{T} \)

| Healthy | \(\sqsubseteq \) | \(\neg \) Dead |
|---------|-------------------|

“Healthy beings are not dead.”

| Cat | \(\sqsubseteq \) | Dead \(\sqcup \) Alive |
|-----|-------------------|

“Every cat is dead or alive.”

| HappyCatOwner | \(\sqsubseteq \) | \(\exists \) owns.Cat \(\sqcap \) \(\forall \) caresFor.Healthy |
|---------------|-------------------|

“A happy cat owner owns a cat and everything he cares for is healthy.”

ABox \(\mathcal{A} \)

<table>
<thead>
<tr>
<th>HappyCatOwner</th>
<th>(schrödinger)</th>
</tr>
</thead>
</table>

“Schrödinger is a happy cat owner.”
Role Transitivity

- for r a role, a transitivity axiom has the form $\text{Trans}(r)$
- $\text{Trans}(r)$ holds in an interpretation \mathcal{I} if $r^\mathcal{I}$ is a transitive relation, i.e., $(x, y) \in r^\mathcal{I}$ and $(y, z) \in r^\mathcal{I}$ imply $(x, z) \in r^\mathcal{I}$, written $\mathcal{I} \models \text{Trans}(r)$
- the extension of \mathcal{ALC} by transitivity axioms is denoted by S (after the modal logic S_5)
- corresponds to $\text{owl:TransitiveProperty}$
Role Functionality

- for \(r \) a role, a **functionality axiom** has the form \(\text{Func}(r) \)
- \(\text{Func}(r) \) holds in an interpretation \(I \) if \((x, y_1) \in r^I \) and \((x, y_2) \in r^I \) imply \(y_1 = y_2 \), written \(I \models \text{Func}(r) \)
- translation into FOL requires equality (=)
- the extension of \(ALC \) by functionality axioms is denoted by \(ALCF \)
- corresponds to \texttt{owl:FunctionalProperty}
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq_\mathcal{R}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq_\mathcal{R} r$ holds
- all other roles are simple
- Example: $\mathcal{R} = \{u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t)\}$

non-simple:

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq^*_{\mathcal{R}}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq^*_{\mathcal{R}} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{ u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t) \}$

non-simple: t

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq^\mathcal{R}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq^\mathcal{R} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t)\}$

non-simple: t, s
Simple and Non-Simple Roles

- given a role hierarchy \(\mathcal{R} \), we let \(\sqsubseteq_\mathcal{R} \) denote the reflexive and transitive closure w.r.t. \(\sqsubseteq \)
- for a role hierarchy \(\mathcal{R} \), we can distinguish the roles in \(\mathcal{R} \) into simple and non-simple roles
- a role \(r \) is non-simple w.r.t. \(\mathcal{R} \), if there is a role \(t \) such that Trans\((t) \in \mathcal{R} \) and \(t \sqsubseteq_\mathcal{R} r \) holds
- all other roles are are simple
- Example: \(\mathcal{R} = \{ u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t) \} \)

\[
\begin{array}{c}
q \\
\downarrow \\
\text{non-simple: } t, s, r
\end{array}
\]

\[
\begin{array}{cccc}
u & \rightarrow & t & \rightarrow & s & \rightarrow & r
\end{array}
\]

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq^*_{\mathcal{R}}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq^*_\mathcal{R} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{u \sqsubseteq t, \quad t \sqsubseteq s, \quad s \sqsubseteq r, \quad q \sqsubseteq r, \quad \text{Trans}(t)\}$

non-simple: t, s, r \hspace{1em} simple: q, u

TU Dresden, 16 May 2014 \hspace{1em} Foundations of Semantic Web Technologies
(Unqualified) Number Restrictions

- for a simple role s and a natural number n, $\leq n s$, $\geq n s$ and $= n s$ are concepts
- the semantics is defined by:

 $$(\leq n s)^I = \{x \in \Delta^I \mid \#\{y \in \Delta^I \mid (x, y) \in s^I\} \leq n\}$$
 $$(\geq n s)^I = \{x \in \Delta^I \mid \#\{y \in \Delta^I \mid (x, y) \in s^I\} \geq n\}$$
 $$(= n s)^I = \{x \in \Delta^I \mid \#\{y \in \Delta^I \mid (x, y) \in s^I\} = n\}$$

- the extension of \mathcal{ALC} by (unqualified) number restrictions is denoted by \mathcal{ALCN}
- correspond to $\text{owl:}\text{maxCardinality}$, $\text{owl:}\text{minCardinality}$, and owl:cardinality
- restriction to simple roles ensures decidability e.g. for checking knowledge base satisfiability
- definition of TBox requires an RBox being already defined
(Unqualified) Number Restrictions in FOL

- translation into FOL requires equality or counting quantifiers
- translation defined as follows (likewise for π_y):

 \[\pi_x(\leq n s) = \exists^{\leq n} y. (s(x, y)) \]
 \[\pi_x(\geq n s) = \exists^{\geq n} y. (s(x, y)) \]
 \[\pi_x(= n s) = \exists^{\leq n} y. (s(x, y)) \land \exists^{\geq n} y. (s(x, y)) \]

- the following equivalences hold:

 \[\neg (\leq n s) = \geq n + 1 \]
 \[\neg (\geq 0 s) = \bot \]
 \[\leq 0 s = \forall s. \bot \]
 \[\top \sqsubseteq 1 s = \text{Func}(s) \]
Nominals or Closed Classes

- defines a class by complete enumeration of its instances
- for \(a_1, \ldots, a_n \) individuals, \(\{a_1, \ldots, a_n\} \) is a concept
- semantics defined as follows:

\[
\text{DL: } (\{a_1, \ldots, a_n\})^\mathcal{I} = \{a_1^\mathcal{I}, \ldots, a_n^\mathcal{I}\}
\]
\[
\text{FOL: } \pi_x(\{a_1, \ldots, a_n\}) = (x = a_1 \lor \ldots \lor x = a_n)
\]

- extension of \(\mathcal{ALC} \) by nominals denoted as \(\mathcal{ALCO} \)
- corresponds to \texttt{owl:oneOf}
Nominals for Encoding Further OWL Constructors

- `owl:hasValue` "forces" role to a certain individual
  ```xml
  <owl:Class rdf:ID="Woman">
    <owl:equivalentClass>
      <owl:Restriction>
        <owl:onProperty rdf:resource="#hasGender"/>
        <owl:hasValue rdf:resource="#female"/>
      </owl:Restriction>
    </owl:equivalentClass>
  </owl:Class>
  ```

- in description logic:
 \[
 \text{Woman} \equiv \exists \text{hasGender.}\{\text{female}\}
 \]
Further Kinds of ABox Assertions

an ABox assertion can have one of the following forms

- $C(a)$ (concept assertion)
- $r(a, b)$ (role assertion)
- $\neg r(a, b)$ (negative role assertion)
- $a \approx b$ (equality assertion)
- $a \not\approx b$ (inequality assertion)
Further Kinds of ABox Assertions

an ABox assertion can have one of the following forms

- $C(a)$ (concept assertion)
- $r(a, b)$ (role assertion)
- $\neg r(a, b)$ (negative role assertion)
- $a \approx b$ (equality assertion)
- $a \not\approx b$ (inequality assertion)
Internalization of ABox Assertions

if nominals are supported, every knowledge base with an ABox can be transformed into an equivalent KB without ABox:

\[
\begin{align*}
C(a) &= \{a\} \sqsubseteq C \\
r(a, b) &= \{a\} \sqsubseteq \exists r.\{b\} \\
\neg r(a, b) &= \{a\} \sqsubseteq \forall r.\neg\{b\} \\
a \approx b &= \{a\} \equiv \{b\} \\
a \not\approx b &= \{a\} \sqsubseteq \neg\{b\}
\end{align*}
\]
Overview Nomenclature

\mathcal{ALC} Attribute Language with Complement
 S \mathcal{ALC} + role transitivity
 \mathcal{H} subroles
 O closed classes
 I inverse roles
 N (unqualified) number restrictions
 (D) datatypes
 F functional roles

OWL DL is $\mathcal{SHOIN}(D)$ and OWL Lite is $\mathcal{SHIF}(D)$
Different Terms in DLs and in OWL

<table>
<thead>
<tr>
<th>OWL</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>concept</td>
</tr>
<tr>
<td>property</td>
<td>role</td>
</tr>
<tr>
<td>object property</td>
<td>abstract role</td>
</tr>
<tr>
<td>data property</td>
<td>concrete role</td>
</tr>
<tr>
<td>oneOf</td>
<td>nominal</td>
</tr>
<tr>
<td>ontology</td>
<td>knowledge base</td>
</tr>
<tr>
<td></td>
<td>TBox, RBox, ABox</td>
</tr>
</tbody>
</table>

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Example: A More Complex Knowledge Base

Human ⊆ Animal ⊆ Biped
Man ≡ Human ⊆ Male
Male ⊆ ¬Female
\{President_Obama\} ≡ \{Barack_Obama\}
\{john\} ⊆ ¬\{peter\}
hasDaughter ⊆ hasChild
hasChild ≡ hasParent ¬
cost ≡ price
Trans(ancestor)
Func(hasMother)
Func(hasSSN ¬)
Open versus Closed World Assumption

OWA Open World Assumption
– the existence of further individuals is possible, if they are not explicitly excluded
– OWL uses the OWA

CWA Closed World Assumption
– it is assumed that the knowledge base contains all individuals and facts
Open versus Closed World Assumption

OWA Open World Assumption
- the existence of further individuals is possible, if they are not explicitly excluded
- OWL uses the OWA

CWA Closed World Assumption
- it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob) Man(bob)</td>
<td></td>
<td>=? (∀ child.Man)(bill)</td>
</tr>
<tr>
<td>(≤ 1 child)(bill)</td>
<td></td>
<td>=? (∀ child.Man)(bill)</td>
</tr>
</tbody>
</table>
Open versus Closed World Assumption

OWA Open World Assumption
 – the existence of further individuals is possible, if they are not explicitly excluded
 – OWL uses the OWA

CWA Closed World Assumption
 – it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob)</td>
<td>$\models^? (\forall \text{child.Man})(\text{bill})$</td>
<td>DL answers don’t know</td>
</tr>
<tr>
<td>Man(bob)</td>
<td></td>
<td>Prolog</td>
</tr>
<tr>
<td>$(\leq 1 \text{ child})(\text{bill})$</td>
<td>$\models^? (\forall \text{child.Man})(\text{bill})$</td>
<td></td>
</tr>
</tbody>
</table>
Open versus Closed World Assumption

OWA Open World Assumption
- the existence of further individuals is possible, if they are not explicitly excluded
- OWL uses the OWA

CWA Closed World Assumption
- it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob) Man(bob)</td>
<td>(\forall \text{child.Man})(bill)</td>
<td>DL answers don’t know</td>
</tr>
<tr>
<td>((\leq 1 \text{child})(bill))</td>
<td>(\forall \text{child.Man})(bill)</td>
<td>Prolog yes</td>
</tr>
</tbody>
</table>

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Open versus Closed World Assumption

OWA Open World Assumption
- the existence of further individuals is possible, if they are not explicitly excluded
- OWL uses the OWA

CWA Closed World Assumption
- it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob)</td>
<td>⩵? (∀ child.Man)(bill)</td>
<td>DL answers don’t know</td>
</tr>
<tr>
<td>Man(bob)</td>
<td></td>
<td>Prolog yes</td>
</tr>
<tr>
<td>(⩽ 1 child)(bill)</td>
<td>⩵? (∀ child.Man)(bill)</td>
<td>yes</td>
</tr>
</tbody>
</table>

TU Dresden, 16 May 2014
Foundations of Semantic Web Technologies
Open versus Closed World Assumption

OWA Open World Assumption
 – the existence of further individuals is possible, if they are not explicitly excluded
 – OWL uses the OWA

CWA Closed World Assumption
 – it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob)</td>
<td></td>
<td>= ? (∀ child.Man)(bill)</td>
</tr>
<tr>
<td>Man(bob)</td>
<td></td>
<td>Prolog yes</td>
</tr>
<tr>
<td>(⩽ 1 child)(bill)</td>
<td></td>
<td>= ? (∀ child.Man)(bill)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
Important Inference Problems for a Knowledge Base \mathcal{K}

- **Global consistency of the knowledge base:** $\mathcal{K} \models ? \text{ false? } \mathcal{K} \models ? \top \sqsubseteq \bot$?

 Is the knowledge base “plausible”?

- **Class consistency:** $\mathcal{K} \models ? C \sqsubseteq \bot$?

 Is the class C necessarily empty?

- **Class inclusion (subsumption):** $\mathcal{K} \models ? C \sqsubseteq D$?

 Taxonomic structure of the knowledge base

- **Class equivalence:** $\mathcal{K} \models ? C \equiv D$?

 Do two classes comprise the same individual sets?

- **Class disjointness:** $\mathcal{K} \models ? C \cap D \sqsubseteq \bot$?

 Are two classes disjoint?

- **Class membership:** $\mathcal{K} \models ? C(a)$?

 Is the individual a contained in class C?

- **Instance retrieval:** find all x with $\mathcal{K} \models C(x)$

 Find all (known!) members of the class C.

TU Dresden, 16 May 2014 Foundations of Semantic Web Technologies
Decidability of OWL DL

- decidability means that there is a terminating algorithm for all the aforementioned inference problems
- OWL DL is a fragment of FOL, thus FOL inference procedures could be used in principle (Resolution, Tableaux)
 - but these are not guaranteed to terminate!
- problem: find algorithms that are guaranteed to terminate
- no “naive” solutions for this
OWL 2: Outlook

- OWL 2 extends the fragments introduced here by further constructors
- OWL 2 also defines simpler fragments (PTime for standard inferencing problems)
- diverse tools for automated inferencing
- editors support creation of ontologies / knowledge bases