Concurrency Theory

Lecture 8: Bisimilarity and Testing

Stephan Mennicke Knowledge-Based Systems Group

June 7, 2023

Recap: CCS

 $\mathcal{N} = \{a, b, c, \ldots\} \dots \text{set of names } (\tau \notin \mathcal{N})$ $\overline{\mathcal{N}} = \{\overline{\alpha} \mid \alpha \in \mathcal{N}\} \dots \text{set of conames}$ $Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\} \text{ (note, there is no } \overline{\tau} \text{ and for } \alpha \in Act \setminus \{\tau\}, \ \overline{\overline{\alpha}} = \alpha)$ The set of (CCS) processes Pr is defined by $P \quad ::= \quad \mathbf{0} \mid \mu . P \mid P + P \mid P \mid P \mid (\nu a)(P) \mid K$

where $\mu \in Act$, $a \in \mathcal{N}$, and $K \in \mathcal{K}$.

Define the language CCS parameterized over Act, \mathcal{K} , and $\mathcal{T}_{\mathcal{K}} \subseteq \mathcal{K} \times Act \times Pr$. $CCS(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$

Recap: SOS of CCS

 $CCS(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ specifies an LTS $(Pr, Act, \rightarrow \cup \mathcal{T}_{\mathcal{K}})$ where $\rightarrow \subseteq (Pr \setminus \mathcal{K}) \times Act \times Pr$ is the smallest relation satisfying the following rules:

What about Interaction? Testing (1/2)

- Two processes are equivalent if no experiment distinguishes them
- Experiment = test, a pattern of demands on the process
- Observer reports about *success* or *failure* of the test, depending on the process behavior
- Our goal: set up a testing scenario such that the distinguishing power of tests is exactly that of bisimilarity

What about Interaction? Testing (2/2)

- As before, we consider a single LTS (Pr, Act, \rightarrow) .
- Additionally, we'll assume image-finiteness for the transition system.
- \bullet Tests are objects T that are performed on a process as a form of experiment.
- We use op to indicate success and op for lack of success.
- Because of nondeterminism, different runs may produce different results.
- For tests T and processes P we, thus, look at observations

 $\mathcal{O}(T,P)\subseteq\{\top,\bot\}$

• Two processes P and Q are *behaviorally equivalent* iff $\mathcal{O}(T, P) = \mathcal{O}(T, Q)$ for all tests T.

Testing: Syntax and Semantics

A test \boldsymbol{T} is an expression of the following grammar:

$$T ::= \mathsf{SUCC} \mid \mathsf{FAIL} \mid \mu.T \mid \tilde{\mu}.T \mid T \land T \mid T \lor T \mid \forall T \mid \exists T$$

For an arbitrary process ${\cal P}$ and test ${\cal T}$, define the observations admitted by ${\cal P}$ through ${\cal T}$ as:

$$\mathcal{O}(\mathsf{SUCC}, P) = \{\top\}$$

$$\mathcal{O}(\mathsf{FAIL}, P) = \{\bot\}$$

$$\mathcal{O}(\mu, T, P) = \begin{cases} \{\bot\} & \text{if } P \xrightarrow{\mu} \\ \bigcup \{\mathcal{O}(T, P') \mid P \xrightarrow{\mu} P'\} & \text{otherwise.} \end{cases}$$

$$\mathcal{O}(\tilde{\mu}, T, P) = \begin{cases} \{\top\} & \text{if } P \xrightarrow{\mu} \\ \bigcup \{\mathcal{O}(T, P') \mid P \xrightarrow{\mu} P'\} & \text{otherwise.} \end{cases}$$

$$\mathcal{O}(T_1 \land T_2, P) = \mathcal{O}(T_1, P) \land^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(T_1 \lor T_2, P) = \mathcal{O}(T_1, P) \lor^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(T_1 \lor T_2, P) = \mathcal{O}(T_1, P) \lor^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(\mathsf{concurrency Theory - Testing for Bisimilarity} \qquad \textcircled{O}(\mathsf{prod}(T_1 \land T_2) \land \mathsf{prod}(T_1 \land T_2, P)) = \mathcal{O}(T_1, P) \lor^* \mathcal{O}(T_2, P)$$

Testing: Syntax and Semantics

 $T ::= \mathsf{SUCC} \mid \mathsf{FAIL} \mid a.T \mid \tilde{a}.T \mid T \land T \mid T \lor T \mid \forall T \mid \exists T$ $\mathcal{O}(\mathsf{SUCC}, P) = \{\top\}$ $\mathcal{O}(\mathsf{FAIL}, P) = \{\bot\}$ $\mathcal{O}(a.T,P) = \begin{cases} \{\bot\} & \text{if } P \not\xrightarrow{a} \\ \bigcup \{\mathcal{O}(T,P') \mid P \xrightarrow{a} P'\} & \text{otherwise.} \end{cases}$ $\mathcal{O}(\tilde{a}.T,P) = \begin{cases} \{\top\} & \text{if } P \not\xrightarrow{a} \\ \bigcup \{\mathcal{O}(T,P') \mid P \xrightarrow{a} P'\} & \text{otherwise.} \end{cases}$ $\mathcal{O}(T_1 \wedge T_2, P) = \mathcal{O}(T_1, P) \wedge^* \mathcal{O}(T_2, P)$ $\mathcal{O}(T_1 \vee T_2, P) = \mathcal{O}(T_1, P) \vee^* \mathcal{O}(T_2, P)$ $\mathcal{O}(\forall T, P) = \begin{cases} \{\bot\} & \text{if } \bot \in \mathcal{O}(T, P) \\ \{\top\} & \text{otherwise} \end{cases}$ $\mathcal{O}(\exists T, P) = \begin{cases} \{\bot\} & \text{if } \top \in \mathcal{O}(T, P) \\ \{\bot\} & \text{otherwise} \end{cases}$

Properties of Tests and Observation (1/)

Theorem 1 Every test T has an inverse test \overline{T} , such that for all processes P,

1. $\perp \in \mathcal{O}(T, P)$ if, and only if, $\top \in \mathcal{O}(\overline{T}, P)$ and 2. $\top \in \mathcal{O}(T, P)$ if, and only if, $\perp \in \mathcal{O}(\overline{T}, P)$.

Proof (of 1): Define \overline{T} by

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline a.T' &=& \tilde{a}.\overline{T'} & & \tilde{a}.T' &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Proof by induction on the structure of T. Let P be a process.

Base: T = FAIL. Then $\mathcal{O}(T, P) = \{\bot\}$ and $\mathcal{O}(\overline{T}, P) = \mathcal{O}(\text{SUCC}, P) = \{\top\}$.

Properties of Tests and Observations (2/)

Step: By case distinction.

- $T = T_1 \wedge T_2$: $\bot \in \mathcal{O}(T, P)$ iff $\bot \in \mathcal{O}(T_1, P)$ or $\bot \in \mathcal{O}(T_2, P)$ iff(IH) $\top \in \mathcal{O}(\overline{T_1}, P)$ or $\top \in \mathcal{O}(\overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T_1} \vee \overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T}, P)$
- $T = T_1 \vee T_2$: $\bot \in \mathcal{O}(T, P)$ iff $\bot \in \mathcal{O}(T_1, P)$ and $\bot \in \mathcal{O}(T_2, P)$ iff(IH) $\top \in \mathcal{O}(\overline{T_1}, P)$ and $\top \in \mathcal{O}(\overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T_1} \wedge \overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T}, P)$

Properties of Tests and Observations (3/)

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline a.T' &=& \tilde{a}.\overline{T'} & & \overline{\tilde{a}}.T' &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Step: By case distinction.

- $T = \exists T': \bot \in \mathcal{O}(T, P) \text{ iff } \mathcal{O}(T', P) = \{\bot\} \text{ iff}(\mathsf{IH}) \mathcal{O}(\overline{T'}, P) = \{\top\}$ iff $\top \in \mathcal{O}(\forall \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$
- $T = \forall T': \perp \in \mathcal{O}(T, P) \text{ iff } \perp \in \mathcal{O}(T', P) \text{ iff}(\mathsf{IH}) \top \in \mathcal{O}(\overline{T'}, P) \text{ iff}$ $\top \in \mathcal{O}(\exists \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$

Properties of Tests and Observations (4/)

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline a.T' &=& \tilde{a}.\overline{T'} & & \overline{\tilde{a}.T'} &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Step (cont'd): By case distinction.

- T = a.T': $\bot \in \mathcal{O}(T, P)$ iff (a) $P \xrightarrow{q}$ or (b) $\bot \in \mathcal{O}(T', P')$ for some P' with $P \xrightarrow{a} P'$. In case (a), $\mathcal{O}(\tilde{a}.\overline{T'}, P) = \{\top\}$. In case (b), $\top \in \mathcal{O}(\overline{T'}, P')$ by IH. Hence, $\top \in \mathcal{O}(\tilde{a}.\overline{T'}, P)$ by the arguments for (a) and (b).
- $T = \tilde{a}.T': \perp \in \mathcal{O}(T, P)$ iff $P \xrightarrow{a} P'$ (for some P') and $\perp \in \mathcal{O}(T', P')$ iff $\top \in \mathcal{O}(\overline{T'}, P')$ iff $\top \in \mathcal{O}(a.\overline{T'}, P)$ iff $\top \in \mathcal{O}(\overline{T}, P).$

Properties of Tests and Observation (5/5)

Definition 2 $P \sim_T Q$ if, and only if, $\mathcal{O}(T, P) = \mathcal{O}(T, Q)$ for all tests T.

Theorem 3 If $P \not\sim_T Q$, then there is a test case T, such that $\mathcal{O}(T, P) = \{\bot\}$ and $\mathcal{O}(T, Q) = \{\top\}$.

Proof: Since $P \not\sim_T Q$, there is at least one test case T_0 with $\mathcal{O}(T_0, P) \neq \mathcal{O}(T_0, Q)$. Transform T_0 into the required T by the following procedure:

- 1. If $\mathcal{O}(T_0, Q) = \{\top\}$, set $T = \forall T_0$. If $\mathcal{O}(T_0, Q) = \{\bot\}$, set $\mathcal{O}(\forall \overline{T_0})$.
- 2. Otherwise, if $\mathcal{O}(T_0, P) = \{\bot\}$, set $T = \exists T_0$ and if $\mathcal{O}(T_0, P) = \{\top\}$, set $T = \exists \overline{T_0}$.

Theorem 4 $\Leftrightarrow = \sim_T$ on image-finite processes.

Relationship to Modal Logic (1/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

$$\varphi \quad ::= \quad true \ \Big| \ \textit{false} \ \Big| \ \varphi \wedge \varphi \ \Big| \ \varphi \vee \varphi \ \Big| \ [\mu] \ \varphi \ \Big| \ \langle \mu \rangle \ \varphi$$

A process P satisfies an HML formula $\varphi,$ denoted $P\models\varphi,$ iff

• $\varphi = true;$

•
$$\varphi = \psi_1 \wedge \psi_2$$
, and $P \models \psi_1$ and $P \models \psi_2$;

•
$$\varphi = \psi_1 \lor \psi_2$$
, and $P \models \psi_1$ or $P \models \psi_2$;

- $\varphi = [\mu] \psi$ and for all P' with $P \xrightarrow{\mu} P'$, $P' \models \psi$;
- $\varphi = \langle \mu \rangle \psi$ and there is a P' with $P \xrightarrow{\mu} P'$ and $P' \models \psi$.

Relationship to Modal Logic (2/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

$$\varphi \quad ::= \quad \textit{true} \ \Big| \ \textit{false} \ \Big| \ \varphi \wedge \varphi \ \Big| \ \varphi \vee \varphi \ \Big| \ [\mu] \ \varphi \ \Big| \ \langle \mu \rangle \ \varphi$$

Define a test in our framework from every HML formula via structural induction:

•
$$[true] = SUCC and [false] = FAIL;$$

- $\llbracket \psi_1 \land \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \land \llbracket \psi_2 \rrbracket$ and $\llbracket \psi_1 \lor \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \lor \llbracket \psi_2 \rrbracket$:
- $\llbracket [\mu] \psi \rrbracket = \forall \mu$. $\llbracket \psi \rrbracket$ and $\llbracket \langle \mu \rangle \psi \rrbracket = \exists \mu$. $\llbracket \psi \rrbracket$.

Relationship to Modal Logic (3/3)

- [true] = SUCC and [false] = FAIL;
- $[\![\psi_1 \land \psi_2]\!] = [\![\psi_1]\!] \land [\![\psi_2]\!]$ and $[\![\psi_1 \lor \psi_2]\!] = [\![\psi_1]\!] \lor [\![\psi_2]\!];$
- $\llbracket [\mu] \psi \rrbracket = \forall \mu. \llbracket \psi \rrbracket$ and $\llbracket \langle \mu \rangle \psi \rrbracket = \exists \mu. \llbracket \psi \rrbracket.$

Theorem 5 For every HML formula φ and process P,

1. $P \models \varphi$ iff $\mathcal{O}(\llbracket \varphi \rrbracket, P) = \{\top\};$ 2. $P \not\models \varphi$ iff $\mathcal{O}(\llbracket \varphi \rrbracket, P) = \{\bot\}.$

Two processes P and Q are HML-equivalent, denoted $P \sim_{\mathsf{HML}} Q$, iff for all HML formulae φ , $P \models \varphi$ iff $Q \models \varphi$.

Theorem 6 (Hennessy-Milner Theorem)
On image-finite processes, \sim_{HML} and \Leftrightarrow coincide.UNIVERSITAT
DESEMBLYConcurrency Theory – Testing for Bisimilarity

What about (Completed) Traces?

```
The Hennessy-Milner Logic:
```

$$\varphi \quad ::= \quad \textit{true} \ \Big| \ \textit{false} \ \Big| \ \varphi \land \varphi \ \Big| \ \varphi \lor \varphi \ \Big| \ [\mu] \ \varphi \ \Big| \ \langle \mu \rangle \ \varphi$$

The Trace Logic:

$$\varphi ::= true \left| \left< \mu \right> \varphi \right.$$

The Completed Trace Logic:

$$arphi \hspace{0.1 cm}$$
 ::= true $\left| \hspace{0.1 cm} \langle \mu
angle \, arphi \hspace{0.1 cm} \left| \hspace{0.1 cm} [Act] \hspace{0.1 cm}$ false

Summary & Outlook

- Tests and logical formulae characterize bisimilarity
- They give insights in what is needed to distinguish processes for a certain equivalence relation

Next:

- Alternative model: Carl Adam Petri and his Nets
- What is decidable about Petri nets?
- Enhancing CCS: the π -calculus

