
Concurrency Theory

Lecture 8: Bisimilarity and Testing

Stephan Mennicke
Knowledge-Based Systems Group

June 7, 2023

Recap: CCS

N = {a, b, c, . . .} . . . set of names (τ /∈ N)

N = {α | α ∈ N} . . . set of conames

Act = N ∪N ∪ {τ} (note, there is no τ and for α ∈ Act \ {τ}, α = α)

The set of (CCS) processes Pr is defined by

P ::= 0 µ.P P + P P | P (νa)(P) K

where µ ∈ Act , a ∈ N , and K ∈ K.

Define the language CCS parameterized over Act , K, and TK ⊆ K ×Act × Pr.

CCS(Act ,K, TK)

Concurrency Theory – Testing for Bisimilarity 2

Recap: SOS of CCS

CCS(Act ,K, TK) specifies an LTS (Pr,Act ,−→ ∪TK) where −→⊆ (Pr \ K)×Act × Pr is
the smallest relation satisfying the following rules:

(Pref)
µ.P

µ−→ P

(SumL)
P

µ−→ P ′

P +Q
µ−→ P ′

(SumR)
Q

µ−→ Q′

P +Q
µ−→ Q′

(ParL)
P

µ−→ P ′

P |Q µ−→ P ′ |Q
(ParR)

Q
µ−→ Q′

P |Q µ−→ P |Q′

(Com)
P

µ−→ P ′ Q
µ−→ Q′

P |Q τ−→ P ′ |Q′
(Res)

P
µ−→ P ′

(νa) (P)
µ−→ (νa) (P ′)

if a /∈ {µ, µ}

Concurrency Theory – Testing for Bisimilarity 3

What about Interaction? Testing (1/2)

• Two processes are equivalent if no experiment distinguishes them

• Experiment = test, a pattern of demands on the process

• Observer reports about success or failure of the test, depending on the process
behavior

• Our goal: set up a testing scenario such that the distinguishing power of tests is
exactly that of bisimilarity

Concurrency Theory – Testing for Bisimilarity 4

What about Interaction? Testing (2/2)

• As before, we consider a single LTS (Pr ,Act ,−→).

• Additionally, we’ll assume image-finiteness for the transition system.

• Tests are objects T that are performed on a process as a form of experiment.

• We use ⊤ to indicate success and ⊥ for lack of success.

• Because of nondeterminism, different runs may produce different results.

• For tests T and processes P we, thus, look at observations

O(T, P) ⊆ {⊤,⊥}

• Two processes P and Q are behaviorally equivalent iff O(T, P) = O(T,Q) for all
tests T .

Concurrency Theory – Testing for Bisimilarity 5

Testing: Syntax and Semantics

A test T is an expression of the following grammar:

T ::= SUCC FAIL µ.T µ̃.T T ∧ T T ∨ T ∀T ∃T

For an arbitrary process P and test T , define the observations admitted by P through
T as:

O(SUCC, P) = {⊤}
O(FAIL, P) = {⊥}

O(µ.T, P) =

{
{⊥} if P ̸ µ−→⋃

{O(T, P ′) | P µ−→ P ′} otherwise.

O(µ̃.T, P) =

{
{⊤} if P ̸ µ−→⋃

{O(T, P ′) | P µ−→ P ′} otherwise.
O(T1 ∧ T2, P) = O(T1, P) ∧⋆ O(T2, P)

O(T1 ∨ T2, P) = O(T1, P) ∨⋆ O(T2, P)
Concurrency Theory – Testing for Bisimilarity 6

Testing: Syntax and Semantics

T ::= SUCC FAIL a.T ã.T T ∧ T T ∨ T ∀T ∃T

O(SUCC, P) = {⊤}
O(FAIL, P) = {⊥}

O(a.T, P) =

{
{⊥} if P ̸ a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.

O(ã.T, P) =

{
{⊤} if P ̸ a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.
O(T1 ∧ T2, P) = O(T1, P) ∧⋆ O(T2, P)

O(T1 ∨ T2, P) = O(T1, P) ∨⋆ O(T2, P)

O(∀T, P) =

{
{⊥} if ⊥ ∈ O(T, P)

{⊤} otherwise

O(∃T, P) =

{
{⊤} if ⊤ ∈ O(T, P)

{⊥} otherwise

Properties of Tests and Observation (1/)

Theorem 1
Every test T has an inverse test T , such that for all processes P ,

1. ⊥ ∈ O(T, P) if, and only if, ⊤ ∈ O(T , P) and

2. ⊤ ∈ O(T, P) if, and only if, ⊥ ∈ O(T , P).

Proof (of 1): Define T by

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Proof by induction on the structure of T . Let P be a process.

Base: T = FAIL. Then O(T, P) = {⊥} and O(T , P) = O(SUCC, P) = {⊤}.

Properties of Tests and Observations (2/)

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Step: By case distinction.

• T = T1 ∧ T2: ⊥ ∈ O(T, P) iff ⊥ ∈ O(T1, P) or ⊥ ∈ O(T2, P)

iff(IH) ⊤ ∈ O(T1, P) or ⊤ ∈ O(T2, P) iff ⊤ ∈ O(T1 ∨ T2, P) iff
⊤ ∈ O(T , P)

• T = T1 ∨ T2: ⊥ ∈ O(T, P) iff ⊥ ∈ O(T1, P) and ⊥ ∈ O(T2, P)

iff(IH) ⊤ ∈ O(T1, P) and ⊤ ∈ O(T2, P) iff ⊤ ∈ O(T1 ∧ T2, P) iff
⊤ ∈ O(T , P)

Properties of Tests and Observations (3/)

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Step: By case distinction.

• T = ∃T ′: ⊥ ∈ O(T, P) iff O(T ′, P) = {⊥} iff(IH) O(T ′, P) = {⊤}
iff ⊤ ∈ O(∀T ′, P) iff ⊤ ∈ O(T , P).

• T = ∀T ′: ⊥ ∈ O(T, P) iff ⊥ ∈ O(T ′, P) iff(IH) ⊤ ∈ O(T ′, P) iff
⊤ ∈ O(∃T ′, P) iff ⊤ ∈ O(T , P).

Properties of Tests and Observations (4/)

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Step (cont’d): By case distinction.

• T = a.T ′: ⊥ ∈ O(T, P) iff (a) P ̸ a−→ or (b) ⊥ ∈ O(T ′, P ′) for some
P ′ with P a−→ P ′. In case (a), O(ã.T ′, P) = {⊤}. In case (b),
⊤ ∈ O(T ′, P ′) by IH. Hence, ⊤ ∈ O(ã.T ′, P) by the arguments for
(a) and (b).

• T = ã.T ′: ⊥ ∈ O(T, P) iff P
a−→ P ′ (for some P ′) and

⊥ ∈ O(T ′, P ′) iff ⊤ ∈ O(T ′, P ′) iff ⊤ ∈ O(a.T ′, P) iff
⊤ ∈ O(T , P).

Properties of Tests and Observation (5/5)

Definition 2
P ∼T Q if, and only if, O(T, P) = O(T,Q) for all tests T .

Theorem 3
If P ̸∼T Q, then there is a test case T , such that O(T, P) = {⊥} and O(T,Q) = {⊤}.

Proof: Since P ̸∼T Q, there is at least one test case T0 with O(T0, P) ̸= O(T0, Q).
Transform T0 into the required T by the following procedure:

1. If O(T0, Q) = {⊤}, set T = ∀T0. If O(T0, Q) = {⊥}, set O(∀T0).
2. Otherwise, if O(T0, P) = {⊥}, set T = ∃T0 and if O(T0, P) = {⊤}, set
T = ∃T0.

Theorem 4
-=∼T on image-finite processes.

Concurrency Theory – Testing for Bisimilarity 12

Relationship to Modal Logic (1/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

φ ::= true false φ ∧ φ φ ∨ φ [µ]φ ⟨µ⟩φ

A process P satisfies an HML formula φ, denoted P |= φ, iff

• φ = true;

• φ = ψ1 ∧ ψ2, and P |= ψ1 and P |= ψ2;

• φ = ψ1 ∨ ψ2, and P |= ψ1 or P |= ψ2;

• φ = [µ]ψ and for all P ′ with P
µ−→ P ′, P ′ |= ψ;

• φ = ⟨µ⟩ψ and there is a P ′ with P
µ−→ P ′ and P ′ |= ψ.

Concurrency Theory – Testing for Bisimilarity 13

Relationship to Modal Logic (2/3)

Hennessy-Milner Logic (HML) is the model logic formed by the following grammar:

φ ::= true false φ ∧ φ φ ∨ φ [µ]φ ⟨µ⟩φ

Define a test in our framework from every HML formula via structural induction:

• JtrueK = SUCC and JfalseK = FAIL;

• Jψ1 ∧ ψ2K = Jψ1K ∧ Jψ2K and Jψ1 ∨ ψ2K = Jψ1K ∨ Jψ2K;

• J[µ]ψK = ∀µ. JψK and J⟨µ⟩ψK = ∃µ. JψK.

Concurrency Theory – Testing for Bisimilarity 14

Relationship to Modal Logic (3/3)

• JtrueK = SUCC and JfalseK = FAIL;
• Jψ1 ∧ ψ2K = Jψ1K ∧ Jψ2K and Jψ1 ∨ ψ2K = Jψ1K ∨ Jψ2K;
• J[µ]ψK = ∀µ. JψK and J⟨µ⟩ψK = ∃µ. JψK.

Theorem 5
For every HML formula φ and process P ,

1. P |= φ iff O(JφK, P) = {⊤};
2. P ̸|= φ iff O(JφK, P) = {⊥}.

Two processes P and Q are HML-equivalent, denoted P ∼HML Q, iff for all HML
formulae φ, P |= φ iff Q |= φ.

Theorem 6 (Hennessy-Milner Theorem)
On image-finite processes, ∼HML and - coincide.

Concurrency Theory – Testing for Bisimilarity 15

What about (Completed) Traces?

The Hennessy-Milner Logic:

φ ::= true false φ ∧ φ φ ∨ φ [µ]φ ⟨µ⟩φ

The Trace Logic:
φ ::= true ⟨µ⟩φ

The Completed Trace Logic:

φ ::= true ⟨µ⟩φ [Act] false

Concurrency Theory – Testing for Bisimilarity 16

Summary & Outlook

• Tests and logical formulae characterize bisimilarity

• They give insights in what is needed to distinguish processes for a certain
equivalence relation

Next:

• Alternative model: Carl Adam Petri and his Nets

• What is decidable about Petri nets?

• Enhancing CCS: the π-calculus

Concurrency Theory – Testing for Bisimilarity 17

