Problem 9.1
Consider program \(P \) consisting of the following three clauses:
\[
\begin{align*}
p(X) & \leftarrow \neg q(X) \land r(X) \land t(X). \\
p(X) & \leftarrow \neg s(X) \land r(X). \\
t(a) & \leftarrow \top.
\end{align*}
\]
Assume that \(IC = \emptyset \) and that \(O = \{ p(a) \} \), and that the set of abducibles \(A_P \) consists of the following facts and assumptions:
\[
\begin{align*}
q(a) & \leftarrow \top. \\
r(a) & \leftarrow \top. \\
s(a) & \leftarrow \top.
\end{align*}
\]
\[
\begin{align*}
q(a) & \leftarrow \bot. \\
r(a) & \leftarrow \bot. \\
s(a) & \leftarrow \bot.
\end{align*}
\]
1. What are the (minimal) explanations for \(O \) given \(P \)?
2. What follows skeptically and credulously from \(P \) and \(O \)?

Problem 9.2
Show that the following proposition holds:

Proposition

Let \(\mathcal{P} \) be a propositional logic program. Computing the least model of \(wc\mathcal{P} \) under the Lukasiewicz logic can be done in polynomial time.

Problem 9.3
Consider the following proposition:

Proposition

Let \(\langle \mathcal{P}, \mathcal{A}, IC, \models_{wc\mathcal{P}} \rangle \) be an abductive framework, where \(\mathcal{P} \) is a propositional logic program. Deciding whether \(\mathcal{E} \) is an explanation for \(O \) given \(\mathcal{P} \) can be done in polynomial time.

Show that the proposition holds by showing the following:
\[
\begin{align*}
1. & \mathcal{E} \text{ is a consistent subset of } \mathcal{A}, \\
2. & wc(\mathcal{P} \cup \mathcal{E}) \text{ is consistent under Lukasiewicz logic and} \\
3. & \mathcal{P} \cup \mathcal{E} \models_{wc\mathcal{P}} O.
\end{align*}
\]

Problem 9.4
Show that the following proposition holds

Proposition

Let \(\langle \mathcal{P}, \mathcal{A}, IC, \models_{wc\mathcal{P}} \rangle \) be an abductive framework, where \(\mathcal{P} \) is a propositional logic program. Deciding whether \(\mathcal{E} \) is a minimal explanation of \(O \) can be done in polynomial time.