

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Proof Theory (SLDNF Resolution)

Lecture 7, 24th Nov 2025 // Foundations of Logic Programming, WS 2025/26

Previously ...

- Prolog employs SLD resolution with the leftmost selection rule
 (~ LD resolution), traverses the search space using depth-first search (with backtracking), and regards a program as a sequence of clauses.
- Prolog also offers list processing and arithmetics.
- The cut prunes certain branches of Prolog trees, and can lead to more efficient programs, but also to programming errors.

```
not(X) :- X, !, fail.
not(_).
% atom fail always fails
% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as \+ X
```


Overview

Motivation: Why Negation?

Normal Logic Programs and Queries

SLDNF Resolution

Safety of Programs and Queries

Motivation: Why Negation?

Motivation: Example (1)

```
attends(andreas, fkr).
attends(maja, fkr).
attends(dirk, fkr).
attends(natalia, fkr).
attends(andreas, flp).
attends(maja, flp).
attends(stefan, flp).
attends(arturo, flp).
```

Who attends FLP but not FKR?

```
?- attends(X, flp), \+ attends(X, fkr).
```


Motivation: Example (2)

A list is a set \iff there are no duplicates in it.

```
is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).
```

The sets (lists) $A = [a_1, ..., a_m]$ and $B = [b_1, ..., b_n]$ are disjoint $:\iff$

- m = 0, or
- m > 0, $a_1 \notin B$, and $[a_2, \ldots, a_m]$ and B are disjoint

Normal Logic Programs and Queries

Normal Logic Programs and Queries

Definition

- We will use the symbol "~" as (weak) negation sign.
- A **literal** is an atom A or a (weakly) negated atom $\sim A$.
- A and $\sim A$ are **ground literals** : \iff A is a ground atom.
- A normal query is a finite sequence of (weak) literals.
- $H \leftarrow \vec{B}$ is a **normal clause** : \iff H is an atom and \vec{B} is a normal query.
- A normal (logic) program is a finite set of normal clauses.
- Everything is as before, but now we are allowed to use (weak) negation in clause bodies (and queries).
- Negation " \sim " in \sim A is "weak" because it does not state that A is false; it only states that A cannot be shown to be true from certain premises.
- In contrast, $\neg A$ states that A is false. More on this later in the course.

SLDNF Resolution

How Do We Compute?

Definition

The **negation as failure** (**nf**) rule is defined as follows:

Suppose $\sim A$ is selected in the query $Q = \vec{L}$, $\sim A$, \vec{N} .

- 1. If $P \cup \{A\}$ succeeds, then the derivation of $P \cup \{Q\}$ fails at this point.
- 2. If all derivations of $P \cup \{A\}$ fail, then Q resolves to $Q' = \vec{L}, \vec{N}$.

Thus:

 \sim *A* succeeds iff *A* finitely fails.

~A finitely fails iff A succeeds.

Note

SLDNF = Selection rule driven Linear resolution for Definite clauses augmented by the Negation as Failure rule

SLDNF Resolvents

Definition

Let $Q = \vec{L}$, \vec{K} , \vec{N} be a query and \vec{K} its selected literal.

- 1. K = A is an atom:
 - $H \leftarrow \vec{M}$ is a variant of a clause c that is variable-disjoint with Q
 - $-\theta$ is an mgu of A and H
 - $Q' = (\vec{L}, \vec{M}, \vec{N})\theta$ is the **SLDNF resolvent** of Q (and c w.r.t. A with θ)
 - We write this **SLDNF derivation step** as $Q \xrightarrow{\theta} Q'$.
- 2. $K = \sim A$ is a negative ground literal:
 - $Q' = \vec{L}$, \vec{N} is the **SLDNF resolvent** of Q (w.r.t. $\sim A$ with ε)
 - We write this **SLDNF derivation step** as $Q \xrightarrow{\varepsilon} Q'$.
- → SLDNF Resolvent for selected *negative non-ground* literals is undefined.

Pseudo Derivations

Definition

A maximal sequence of SLDNF derivation steps

$$Q_0 \xrightarrow{\theta_1} Q_1 \cdots Q_n \xrightarrow{\theta_{n+1}} Q_{n+1} \cdots$$

is a **pseudo derivation of** $P \cup \{Q_0\}$:

- $Q_0, \ldots, Q_{n+1}, \ldots$ are queries, each empty or with one literal selected in it;
- $\theta_1, \ldots, \theta_{n+1}, \ldots$ are substitutions;
- c₁,..., c_{n+1},... are clauses of program P
 (in case a positive literal is selected in the preceding query);
- for every SLDNF derivation step with input clause the condition standardization apart holds.

Forests

Definition

A triple $\mathcal{F} = (\mathcal{T}, T, subs)$ is a **forest** : \iff

- T is a set of trees where
 - nodes are queries;
 - a literal is selected in each non-empty query;
 - leaves may be marked as "success", "failure", or "floundered";
- $T \in \mathfrak{T}$ is the **main** tree;
- subs assigns to some nodes of trees in T with selected negative ground literal $\sim A$ a **subsidiary** tree of T with root A.

Definition

Let $T \in \mathfrak{T}$ be a tree.

- *T* is **successful** :⇔ it contains a leaf marked as "success".
- *T* is **finitely failed** :⇔ it is finite and all leaves are marked as "failure".

Pre-SLDNF Trees and their Extensions

Definition

The class of **pre-SLDNF trees** for a program P is the smallest class $\mathbb C$ of forests such that

- for every query Q: the **initial pre-SLDNF tree** ($\{T_Q\}, T_Q, subs$) is in \mathcal{C} , where T_Q contains the single node Q and subs(Q) is undefined;
- for every $\mathfrak{F} \in \mathfrak{C}$: the **extension** of \mathfrak{F} is in \mathfrak{C} .

Definition

The **extension** of $\mathcal{F} = (\mathcal{T}, T, subs)$ is the forest that is obtained as follows:

- 1. Every occurrence of the empty query is marked as "success."
- 2. For every non-empty query Q that is an unmarked leaf in some tree in \mathfrak{T} , perform the action $extend(\mathfrak{F}, Q, L)$, where L is the selected literal of Q.

Action *extend*(\mathcal{F} , Q, L)

Recall that *L* is the selected literal of *Q*.

Definition

- L is positive. Then extend(\mathcal{F} , Q, L) is obtained as follows:
 - Q has no SLDNF resolvents ⇒ Q is marked as "failure"
 - else ⇒ for every program clause c which is applicable to L, exactly one direct descendant of Q is added. This descendant is an SLDNF resolvent of Q and c w.r.t. L.
- $L = \sim A$ is negative. Then extend(\mathcal{F} , Q, L) is obtained as follows:
 - A non-ground ⇒ Q is marked as "floundered"
 - A ground: case distinction on Q:
 - subs(Q) undefined
 - \Rightarrow new tree T' with single node A is added to T and subs(Q) is set to T'
 - subs(Q) defined and successful ⇒ Q is marked as "failure"
 - subs(Q) defined and finitely failed
 - \Rightarrow SLDNF resolvent of Q is added as the only direct descendant of Q
 - subs(Q) defined and neither successful nor finitely failed \Rightarrow no action

SLDNF Trees (Successful, Failed, Finite)

Definition

An **SLDNF tree** is the limit of a sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2 \dots$, where

- \mathfrak{F}_0 is an initial pre-SLDNF tree;
- \mathcal{F}_{i+1} is the extension of \mathcal{F}_i , for every $i \in \mathbb{N}$.

The SLDNF tree **for** $P \cup \{Q\}$ is the SLDNF tree in which Q is the root of the main tree.

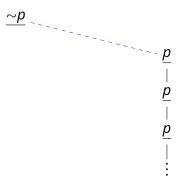
Definition

- A (pre-)SLDNF tree is successful : ⇒ its main tree is successful.
- A (pre-)SLDNF tree is **finitely failed** :
 its main tree is finitely failed.
- An SLDNF tree is **finite** : \iff no infinite paths exist in it, where a **path** is a sequence of nodes N_0, N_1, N_2, \ldots such that for every $i = 0, 1, 2, \ldots$:
 - either N_{i+1} is a direct descendant of N_i (in the same tree),
 - or N_{i+1} is the root of $subs(N_i)$.

Example (1)

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is infinite:



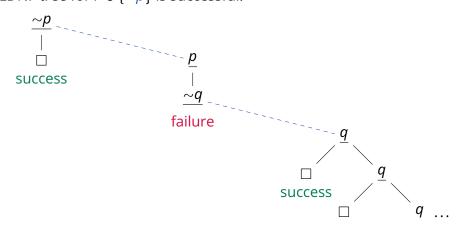
 $p \leftarrow p$

Example (2)

Consider the following logic program *P*:

The SLDNF tree for $P \cup \{\sim p\}$ is successful:

$$\begin{array}{cccc}
p & \leftarrow & \sim q \\
q & \leftarrow & \\
q & \leftarrow & q
\end{array}$$



Quiz: SLDNF Trees

Quiz

Consider the following logic program P over variables x, z and constants a, b: ...

SLDNF derivation

Definition

An **SLDNF derivation** of $P \cup \{Q\}$ is

- a branch in the main tree of an SLDNF tree \mathcal{F} for $P \cup \{Q\}$
- together with the set of all trees in \mathcal{F} whose roots can be reached from the nodes in this branch.

An SLDNF derivation is **successful** $:\iff$ the branch ends with \square .

Definition

Let the main tree of an SLDNF tree for $P \cup \{Q_0\}$ contain a branch

$$\xi = Q_0 \xrightarrow{\theta_1} Q_1 \cdots Q_{n-1} \xrightarrow{\theta_n} Q_n = \square$$

The **computed answer substitution** (cas) of Q_0 (w.r.t. ξ) is $(\theta_1 \cdots \theta_n)|_{Var(Q_0)}$.

A Theorem on Limits

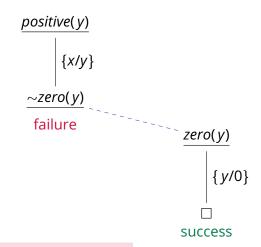
Theorem 3.10 [Apt and Bol, 1994]

- (i) Every SLDNF tree is the limit of a unique sequence of pre-SLDNF trees.
- (ii) If the SLDNF tree \mathcal{F} is the limit of the sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$, then:
 - (a) \mathcal{F} is successful and yields cas θ iff some \mathcal{F}_i is successful and yields cas θ ,
 - (b) \mathcal{F} is finitely failed iff some \mathcal{F}_i is finitely failed.

Safety of Programs and Queries

Why Only Select *Ground* Negative Literals? (1)

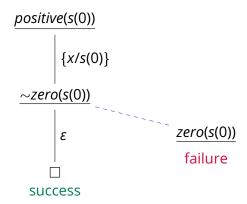
$$zero(0) \leftarrow positive(x) \leftarrow \sim zero(x)$$



Hence, $\neg \exists y (positive(y))$? That is, $\forall y (\neg positive(y))$?

Why Only Select *Ground* Negative Literals? (2)

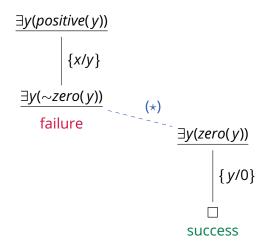
$$zero(0) \leftarrow positive(x) \leftarrow \sim zero(x)$$



Hence, positive(s(0)). **That is**, $\exists y(positive(y))$.

Why Only Select *Ground* Negative Literals? (3)

```
zero(0) \leftarrow
positive(x) \leftarrow \sim zero(x)
```



Mistake in (*): $\exists y(zero(y)) \not\equiv \neg \exists y(\neg zero(y))$

Non-Ground Negative Literals in Prolog

```
zero(0).
positive(X) :- \ \ zero(X).
\mid ?- positive(0).
no
\mid ?- positive(s(0)).
yes
| ?- positive(Y).
no
```


SLDNF Selection Rules & Blocked Queries

Definition

- An **SLDNF selection rule** is a function that, given a pre-SLDNF tree $\mathfrak{F} = (\mathfrak{T}, T, subs)$, selects a literal in every non-empty unmarked leaf in every tree in \mathfrak{T} .
- An SLDNF tree \mathcal{F} is **via** a selection rule $\mathcal{R}:\iff \mathcal{F}$ is the limit of a sequence of pre-SLDNF trees in which literals are selected according to \mathcal{R} .
- A selection rule \Re is **safe** : \iff \Re never selects a non-ground negative literal.

Definition

- A query Q is **blocked** : \iff Q is non-empty and contains exclusively non-ground negative literals.
- $P \cup \{Q\}$ **flounders** : \iff some SLDNF tree for $P \cup \{Q\}$ contains a blocked node.

Safe Programs and Queries

Definition

- A query Q is **safe** : \iff every variable in Q occurs in a positive literal of Q.
- A clause $H \leftarrow \vec{B}$ is **safe** : \iff the query $\sim H$, \vec{B} is safe. (Thus: A unit clause $H \leftarrow$ is **safe** : \iff H is a ground atom.)
- A program P is **safe** : \iff all its clauses are safe.

Safe clauses and programs are sometimes also called *allowed*.

Theorem 3.13 [Apt and Bol, 1994]

Suppose that *P* and *Q* are safe. Then

- (i) $P \cup \{Q\}$ does not flounder;
- (ii) if θ is a cas of Q, then $Q\theta$ is ground.

Note: Safety is a syntactic criterion and can be checked effectively.

Safe Programs: Example

```
zero(0) \leftarrow positive(x) \leftarrow \sim zero(x)
```

This program is not safe.

```
zero(0) \leftarrow
positive(x) \leftarrow num(x), \sim zero(x)
num(0) \leftarrow
num(s(x)) \leftarrow num(x)
```

This program is safe.

Conclusion

Summary

- Normal logic programs allow for "negation" in queries (clause bodies).
- The negation as failure rule treats negated atoms ~A in queries by asking the query A in a subsidiary tree and negating the answer.
- A proof theory for normal logic programs is given by **SLDNF resolution**.
- Care must be taken not to let non-ground negative literals get selected.
- A clause is **safe** iff each of its variables occurs in a positive body literal.

Suggested action points:

- Construct the (leftmost selection rule) SLDNF tree for *positive*(*y*) with the safe version of the program.
- Find examples for programs and queries with blocked nodes in some SLDNF tree.

