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1 Einleitung

Ein Pseudo-Boolean-Constraint (PB) ist die Komparation einer konstanten Zahl

mit der Summe von gewichteten negierten oder nicht negierten booleschen Va-
n

riablen. Es wird in der Form Z,_l wj - x; < k notiert mit w; und £ aus

der Menge der ganzen Zahlen und z; aus der Menge der booleschen Literale.
PB-Constraints bilden die Grundlage fir viele Formale Problembeschreibungen.

In dieser Belegarbeit wird die Méglichkeit untersucht, PB-Constraints durch
Praprozessortechniken zu vereinfachen, mit dem Ziel, dass die entstanden Cons-
traints schneller von einem SAT-basierten Solver geldst werden kénnen als ohne
Praprozessortechniken. Schwerpunkte sind die Entwicklung und Implementie-
rung verschiedener Praprozessortechniken sowie die Empirische Untersuchung
der implementierten Algorithmen.

PB-Constraints enthalten ganze Zahlen und sind daher fiir den Menschen
besser lesbar als die KNF. Zudem ist die Inferenz auf PB-Constraints meist
einfacher moglich als in einer dquivalenten KNF. Einige sehr lange Konjunk-
tionen von Klauseln lassen sich in wenigen PB-Constraints ausdriicken. Proble-
me aus vielen Bereichen kénnen pseudoboolesch formuliert werden, darunter
Probleme aus der Optimierungsrechnung, Graphentheorie, Kombinatorik, VLSI-
Design, Industrie und Wirtschaft [RM09]. In der Ungleichung 1 + 2o + 23 > 1
konnen beispielsweise die Literale gewichtet werden, sodass ein PB-Constraint
entsteht: 2-x1 +1 29+ 1-23 > 2. Dieses kann in die KNF umgeformt werden:
(x1Vx2) A (21 V x3). Wird bei einem Optimierungsproblem die Zielfunktion als
PB-Constraint angegeben, dann lassen sich die Gewichte in der zu minimieren-
den bzw. maximierenden linken Seite leicht erkennen.

Es ist allerdings meist schneller ein PB-Constraint in KNF umzuwandeln
und von einem SAT-Solver l6sen zu lassen als ein nativer PB-SAT-Solver ein
PB-Constraint l6st. Es existieren bereits hochst effiziente SAT-Solver fiir KNF,
gleichzeitig werden in regelmaBigen Wettbewerben stets neue entwickelt und
verbessert [Sat].

Der Préaprozessor kann zu geeigneten PB-Constraints sowohl dquivalente
Klauseln finden als auch aquivalente kiirzere PB-Constraints bilden. Bei kom-
plexen PB-Constraints kann die dquivalente KNF sehr viele Klauseln enthalten,
kurze PB-Constraints haben allerdings meist eine KNF mit wenig Klauseln und
diese kann ein SAT-Solver meist schneller 16sen [EB05]. Der Praprozessor bildet
somit die Grundlage fiir eine hohe Performance des SAT-Solvers. Im folgenden
Beispiel wird ein Constraint in die KNF umgeformt, indem alle Belegungen ne-
giert werden, die das PB-Constraint nicht erfiillen.



Beispiel.

l-z1+2-290+3-23>4
gdw. (z1 Az AT3) A (21 AT2 AT3) A (T1 Axa AT3) A (T A Ta AT3)A

( )
(Tl N To /\1’3)
(Tl V T2 \/:L'3) A (Tl V X2 \/xg) A (a:l V T2 \/LE3) A (acl V X2 \/:Cg)/\
( )

x1VxoVTs

gdw.

Der Umformungsprozess lasst sich durch Praprozessortechniken so optimie-
ren, dass die resultierenden Disjunktionen in der KNF oft kiirzer ausfallen und
triviale Unerfiillbarkeiten bereits frith erkannt werden.

Beispiel.

l-214+2-294+3-23>4
gdw. 23 A1-214+2 - 29 > 1
gdw. x3 A (z1 V 22)

2 Vorbemerkung und verwandte Arbeiten

Es werden Begriffe definiert, die in dieser Arbeit benutzt werden. AnschlieBend
wird grundlegende Literatur zu PB-Constraints und Praprozessortechniken vor-
gestellt.

2.1 Begriffe

Variablen Es sei V eine feste unendliche Menge boolescher Variablen.

Literal Es sei L die Menge aller Literale. Ein Literal ist eine positive Variable v
oder eine negative Variable —wv.

Komplement Das Komplement eines Literals = wird notiert als T, wobei

- {ﬂv Falls x ein positives Literal v ist

v Falls x ein negatives Literal —v ist

PB-Constraint Ein PB-Constraint ist ein Ausdruck der Form
ijl wj-x; < k.

Dabei sind z; € L Literale und w; € Z die Gewichte der Literale z; mit
j € [1..n]. Auf der linken Seite des Ausdrucks erscheint die Summe Z?Zl wj-T;.

Auf der rechten Seite wird die Konstante k£ € Z notiert. Beide Seiten verbindet
der Komparator <1 € {=,<,<,>,>}. Ein Summand eines PB-Constraints ist
ein Teilausdruck der linken Seite von der Form w-x mit w € Z und x € L.



Klausel Eine Klausel ist ein PB-Constraint 1-21+...+1-x, > 1 und wird notiert
als Disjunktion von Literalen in der Form (z1 V...V ;). Die ,Einerklausel”
(z1) kann auch ohne Klammern notiert werden als z;. Die leere Klausel
wird als L notiert.

Formel Eine Formel F' ist eine Konjunktion von PB-Constraints c; A ... A ¢,
wobei ¢; PB-Constraints sind mit j € [1..m]. Sie ist in der Konjunkti-
ven Normalform, (KNF) wenn alle PB-Constraints in F' Klauseln sind.
Die leere Formel wird als T notiert. k; < Zﬁ_,wj ~x; < ko ist eine

i=j

Kurzschreibweise fiir (Z;;l wj-x; > ki) A (Z;lej-xj < k»).

Interpretation Eine Interpretation I ist eine Funktion I : L — {0,1}, die
jedem Literal den Wert 0 oder 1 zuweist, sodass fiir jede Variable v genau
dann I(v) = 1 gilt, wenn I(—v) = 0. Interpretationen stellen eine Menge
von Literalen I dar, die fiir alle Variablen v € V' genau ein Element enthalt
aus {v, —w}, mit I(v) =1 gdw. v € I und I(v) =0 gdw. —v € I.

Die Erfillungsrelation |= ist wie folgt definiert:
n n - .
IE Zi:j wj - z; <k gdw. Zizj wj - I(x;) < k erfillt ist.

I'=ci N New gdw. T = ¢ fiir j € [1..m] gilt. Wenn I |= F, dann ist
| ein Modell fur F'. Wenn kein Modell fiir F' existiert, ist F' unerfullbar,
ansonsten ist F' erfillbar.

Aquivalenzrelation ¢; = ¢ (c1 ist dquivalent zu cy) bedeutet, dass fiir jede
Interpretation I gilt, dass I = ¢; genau dann, wenn I |= cs.

Sind F und G Formeln, dann bedeutet F' = G (F ist aquivalent zu G),
dass I = F gdw. I = G fir alle Interpretationen I.

Literale eines PB-Constraints Die Funktion Lits(c) bildet ein PB-Constraint
¢ ab auf die Menge seiner Literale.

Variablen eines PB-Constraints Die Funktion Vars(c) bildet ein PB-
Constraint ¢ ab auf die Menge seiner Variablen.

2.2 Verwandte Arbeiten

Die PBLib von Peter Steinke et al. [PS15] kodiert PB-Constraints in die kon-
junktive Normalform. Sie wandelt die Komparatoren aller Constraints in Kleiner-
gleich oder Gleich um und optimiert die PB-Constraints nur teilweise. Ziel dieser
Arbeit ist es diese Optimierungen zu erweitern. Sie werden in die konjunktive
Normalform umgewandelt und kénnen anschlieBend mittels SAT-Sovler gelost
werden.

In dem wissenschaftlichen Artikel von Eén et al. [ES06] werden Normali-
sierungstechniken fiir PB-Constraints aufgelistet. Normalisierte PB-Constraints



erfiillen eine Reihe von gemeinsamen Bedingungen und kénnen daher mit ein-
heitlichen Verfahren verarbeitet werden. Ein normalisiertes PB-Constraint tragt
hier stets den Komparator GroBer-gleich. All seine Gewichte sind positiv und
jede Variable tritt nur einmal auf. Die Gewichte sind aufsteigend geordnet und
es werden bereits Tautologien und Unerfiillbare Constraints erkannt. Gewichte,
die groBer als die rechte Seite sind, werden entsprechend reduziert. Die rechte
Seite und die Gewichte werden weiterhin mit Hilfe des groBten gemeinsamen
Teilers verringert. Constraints mit genau einem Literal werden zum Propagieren
genutzt. Beim Propagieren mit einer Einheitsklausel  und einem PB-Constraint
c wird jedes Vorkommen von z in ¢ durch 1 ersetzt und T durch 0. Danach wird
entsprechend mathematischer Grundregeln ¢ wieder in die Form eines PB cons-
traints gebracht. AbschlieBend kann das PB-Constraint verkirzt werden, indem
es in einen Klausel- und einen kiirzeren PB-Teil gespaltet wird. Der Klauselteil
wird ohne weitere Umformung direkt an den SAT-Solver geleitet.

Roussel et al. erlautern das Schnittebenen-Beweissystem in [RM09]. Mit Hil-
fe der Inferenz durch Addition, Subtraktion sowie Division wird eine Methode
hergeleitet, um mit GroBer-gleich-PB-Constraints Resolventen zu erschlieBen.
Durch die erzeugten Constraints aus der Resolution kann der Lésungsraum wei-
ter eingeschrankt werden, so kann ein SAT-Solver die Lésung in manchen Féllen
schneller finden. Resolventen mit genau einem Literal kdnnen zum Propagieren
verwendet werden, um andere Constraints der Formel direkt zu verkiirzen.

In dieser Arbeit werden die bestehenden Normalisierungs- und Vereinfa-
chungstechniken auf die Komparatoren <, > und = ausgeweitet. Es wurde
auBerdem eine ganze Reihe von zusatzlichen Bedingungen ausgearbeitet, um
ein unerfiillbares oder allgemeingiiltiges PB-Constraint zu erkennen.

3 Praprozessortechniken

Durch die im Folgenden erlduterten Verfahren wird eine Formel so vorverarbeitet,
dass ein SAT-Sovler auf hochst effiziente Weise ein Modell suchen kann.

3.1 Normalisierung

Bevor die Vereinfachungen auf ein Constraint angewendet werden kénnen, muss
es normalisiert werden. Die Normalisierungsschritte werden im folgenden erlau-
tert.

3.1.1 Andern des Komparators

In allen weiteren Kapiteln wird vorausgesetzt, dass der Komparator <1 Element
von {<, >, =} ist. Um ein Kleiner-als-Constraint in ein Kleiner-gleich-Constraint
umzuwandeln, subtrahiere 1 von der rechten Seite und dndere den Komparator in
<. Um ein GroBer-als-Constraint in ein GroBer-gleich-Constraint umzuwandeln,
addiere 1 zu der rechten Seite und dndere den Komparator in > [RM09].
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Proposition 3.1. Jedes GréBer-als-Constraint kann in ein GréBer-gleich-
Constraint umgeformt werden, denn
Wy X1+ ..t Wy Ty >k gdw. wy -z + .o wy Ty > k41

Beweis.

I Fwy -2+ .. +wy -y >k gdw.

wy - I(xy) + ... +wy - I(x,) >k gdw.

wy - I(xy) + oo +wy, - I(xy) > k41 gdw.
ITEw x4+ .. +wy - xy >k+1

O

Proposition 3.2. Jedes Kleiner-als-Constraint kann in ein Kleiner-gleich-
Constraint umgeformt werden, denn
WL L1+ .o twy T, <k=wi-x1+...twy oz, < k-—1.

Beweis. analog zu Proposition 3.1. O

Proposition 3.3. Ein Constraint in der Form Z;_l wj - x; = k kann ersetzt
werden durch die Formel Y w; -x; < kA w;-x; > k.

Beweis. Folgt aus der Definition des Gleichheitszeichens. O

Wechsel des Komparators zwischen GroBer-gleich und Kleiner-gleich
Sollte es gewiinscht sein, den Komparator zu ,invertieren”, kann dies wie folgt
geschehen. Laut Eén et al. [ES06] kann von < auf > und umgekehrt gewech-
selt werden, wenn gleichzeitig alle Gewichte und k jeweils mit (-1) multipliziert
werden.

Proposition 3.4. Durch die Aquivalenz

WL T)+ ..+ Wy Ty <K= —w1T]— ... — Wy - Ty > —k

kann jedes GréBer-gleich-Constraint in ein Kleiner-gleich-Constraint umgeformt
werden und umgekehrt.

Beweis.
IEw o1+ ... +wy -z < k gdw.

wy - I(x1) + oo +wy - I(xy) < k gdw.
wy - I(x1) + oo +wp - I(xy) — k <0 gdw.

— k< —wy-I(x1) — ... —wy - I(x,) gdw.
—wy - I(xzy) — . —wy - I(xy) > —k gdw.
ITE—w 21— ... —wy -y > —k

Siehe auch die effiziente Implementierungstechnik in 3.6.2.
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Vorteile des Gleichheitskomparators In vorhergehender Literatur wird die
Umwandelung aller Constraintkomparatoren in > vorgenommen, um weitere
Schritte auf einheitliche Vorgehensweisen zuschneiden zu kdénnen. So werden
einige Schritte einfacher und es muss nicht zwischen drei Fallen fir drei Kom-
paratoren unterschieden werden.

In dieser Arbeit werden allerdings die drei Komparatoren beibehalten anstatt
sie alle in > umzuwandeln, denn dies biirgt einige Vorteile fiir den Praprozessor
und dem Umwandeln in die KNF: Sollten keine Constraints mit Gleichheitskom-
parator zugelassen werden, wiirden alle Gleichheits-Constraints gemaB Proposi-
tion 3.3 durch zwei Constraints ersetzt werden. Bestimmte darauf folgende Ver-
arbeitungsschritte miissten also doppelt berechnet werden, sodass dem Prapro-
zessor redundante Arbeitsschritte entstehen. SchlieBlich wiirde an die PBLib
eine groBere Anzahl von Constraints weitergegeben werden, was bei der Um-
wandelung in eine KNF mehr Klauseln produzieren kann. Wird stattdessen der
Gleichheitskomparator beibehalten, dann muss nur jeweils ein Constraint pro
Gleichheitskomparator im folgenden Schritt verarbeitet werden. Das Gleichheits-
Constraint kann zudem auf Erfiillbarkeit getestet werden (3.2.7). Durch den
Gleichheitskomparator sind die Losungen stark beschrankt und im Fall der Un-
erfillbarkeit kann die Verarbeitung direkt abgebrochen werden. Ein Constraint
in der Form k1 < Z?:;l wj - xj < ko mit k1, ko € Z kann im Laufe der Ver-
arbeitung in ein einfaches GroBer-als- oder Kleiner-als-Constraint umgewandelt
werden, sobald festgestellt wird, dass der andere Komparator zu einer Tautolo-
gie fiihrt. So verbleibt in diesem Fall nur ein GroBer-gleich- bzw. Kleiner-gleich
Constraint, welches von der PBLib besser kodiert werden kann als ein Constraint
mit zwei Komparatoren.

3.1.2 Wiederholt vorkommende Variablen zusammenfiigen

Gegeben sei ein Constraint ¢, in dem mindestens eine Variable in mehr als einem
Summanden auftritt. Nun wird das Constraint verkiirzt, indem die Gewichte der
identischen Variablen zusammengefasst werden, sodass jede Variable hdchstens
einmal ¢ vorkommt.

Proposition 3.5. Wiederholt vorkommende Variablen in einem PB-Constraint

/
W1 T1+ .. TW - T+ W - T+ Wig1 * Ti1 + -

—l—wj~1:j+w'/-x+wj+1~xj+1+...+wn-:1:n<lk:

kénnen so zusammengefasst werden, dass folgendes &quivalentes PB-
Constraint entsteht:

wy - w o w o+ (W W) wi T +

+wj-a:j+wj+1-xj+1+...+wn-a:n<1k.

12



Beweis. Folgt aus dem Distributivgesetz. O

Sollte im Constraint ¢ eine Variable sowohl positiv als auch negativ auftre-
ten, kénnen die Gewichte dennoch zusammengefasst werden; dazu miissen sich
die Literale beider Gewichte jedoch gleichen. Zunachst wird das Constraint so
umgeformt, dass alle Variablen positiv auftreten. Dies kann erreicht werden, in-
dem das Gewicht der negierten Variable mit (-1) multipliziert und zudem von
der rechten Seite subtrahiert wird.

Proposition 3.6. Sei x ein Literal und I eine Interpretation, dann gilt I(x) =
1—I(Z).

Beweis. Folgt direkt aus der Definition einer Interpretation. O

Proposition 3.7. Ein PB-Constraint
W1 X1+ oo FWi—1 - Ti—1 + W5 - T+ Wil 'l‘i+1+...—|—wn'l‘n<k‘
ist dquivalent zu dem PB-Constraint
Wi T+ oo F Wi - Tjo] — Wi » Tj + Wit 1 - Titl + oo + Wy + Ty <k — w;.

Beweis.

I Ewy -z 4 o Fwim1 - @i + Wi - T+ Wi 1 - Tipl + e + Wy - Ty <k gdw.
wy - I(z1) + oo wimy - I(wio1) +wi - 1) +wigr - I(2i41)
+ .ot wy - I(zy) <k gdw.
w1 - I(xl) + ...+ Wi—1 I(xi_l) + wi - (1 — I(Tl)) + Wi+1 I(IZ’_H)
+ .ot wy - I(zy) <k gdw.
w1 - I(l’l) + ot wi— I(Ii_l) + w; — w; - I(TZ) + Wiy - I(xi_H)
+ .t wy - I(zy) <k gdw.
wy - L(z) + oo Fwimy - I(xi—1) —w; - 1(TG) + wigr - L(wit1)
+ .o Fwy - I(zy) <k —w; gdw.

I Ewy -z 4 o FWim1 - @i — Wi - Tj + Wi ] Tipl + eee + Wy - Ty < b — w;
O

Fiir eine effiziente Implementierung siehe auch 3.6.1.
Durch diese Umformung kdnnen negative Gewichte entstanden sein. Um ein
normalisiertes Constraint zu erhalten, miissen diese eliminiert werden.

3.1.3 Negative Gewichte eliminieren

Existiert ein w; mit j € [1..n] und w; < 0, dann muss das Constraint fiir die
weitere Verarbeitung gemal Proposition 3.7 umgeformt werden, sodass fiir alle
w; mit ¢ € [1..n] gilt w; > 0.

13



Beispiel.

l-x1—2-292>1
gdw. 1.2y —2- (1 —72) > 1
gdw. 121 —2+42-To > 1
gdw. 121 +2-To > 142
gdw. 1-214+2-7T2 >3

Im gleichen Schritt sind Summanden zu entfernen, deren Gewicht exakt
null ist, da sie irrelevant sind. Im Folgenden wird angenommen, dass fiir alle
Gewichte w; mit ¢ € [1..n] gilt: w; > 0.

Proposition 3.8. Das Constraint
wy T+ ... F W1 Tj-1 +O‘:1:j+wj+1 “Tj41 + ot w, T, <k
ist dquivalent zu
w1 T+ . F W1 Tj—1 + Wit - Tjp1 F oo+ Wy Ty < k.

Beweis. Es sei I eine Interpretation.

w21+ .o+ wjm - zj1+ 02+ wjgr - Tjgpr + ... +wp -z <k gdw.
wy - I(x1) + o+ wjor - I(zjo1) + 0 I(z5) + wigr - L(zjq1)
+ .ot wy - I(xy) < k gdw.
wy - I(z1) + oo+ wjmn - I(xjo1) +wigr - L(@jg1) + oo +wy - I(2,) <k gdw.
I=wy -2+ .o wjmr 21+ Wi - T + .+ wy oz <k

3.2 Vereinfachungen

In einem normalisierten PB-Constraint 22:1 wj-xj < k erscheint jede Variable
v € V hochstens einmal. Sein Komparator < ist Kleiner-gleich, GroBer-gleich
oder gleich. Alle Gewichte wy, ..., w, sind groBer als null.

Fir die Vereinfachungen wird angenommen, dass die Constraints zuvor nor-
malisiert wurden.

3.2.1 Aufspiiren trivialer Constraints und Einerklauseln

Unter bestimmten Bedingungen lasst sich ein PB-Constraint auf eine dquiva-
lente simplere Aussage reduzieren (sieche Abbildung 1). Die Wahl der aqui-
valenten Aussage hangt von k und <1 ab. Der Wert sum ist die Summe
der Gewichte: sum = Zn wj. Das kleinste Gewicht w,;, ist definiert als

Winin = min{wy, ..., wp }.

Jj=1

14



=2 T V X PB-Constraint ¢ A X 1
X € Lits(c) X € Lits(c)
d4=x< 1 A X PB-Constraint ¢ V X T
X € Lits(c) X € Lits(c)
» keZ
-1 0 1"Wmin sum-wmm sum sum+1
..sum-1

Abbildung 1: Aquivalente Aussagen zu einem normalisierten PB-Constraint ¢ in
Abhangigkeit von k und < fiir n > 2 und wy, > 1

Ein normalisiertes Constraint in der Form Z Wi T > —5 entspricht
J:

beispielsweise einer Tautologie, da w; > 0 fiir alle j € [1..n]. Ein normali-

siertes Constraint in der Form ) w; - x; < 0 entspricht der Aussage A\ 7.
z€Lits(c)

PB-Constraints, die in keine dquivalente, nicht pseudo-boolesche Aussage umge-

wandelt werden kénnen, heiBen ,,echte” PB-Constraints. Lediglich diese miissen

als PB-Constraint weiterverarbeitet werden.

Proposition 3.9. Die linke Seite eines normalisierten Constraints ist unter allen
Interpretationen stets gréBer oder gleich null.

Beweis. Laut Defintion gilt Vx € L : I(x) > 0.

Fiir ein normalisiertes PB-Constraint gilt Vj : w; > 0 laut 3.1.3.

Fir die Multiplikation gilt Va,b € N : a-b > 0 und fiir die Addition
Va,be N: a+b>0.

Also ist Y- w; - I(x;) stets groBer oder gleich null. O

Die folgenden Propositionen bilden die Grundlage fiir die referenzierte Ab-
bildung.

Proposition 3.10. Das Constraint ) w; - x; > k entspricht einer Tautologie
fir k <0.

Beweis. Folgt direkt aus Proposition 3.9. O
Proposition 3.11. Das Constraint  w;j - x; < k ist unerfiillbar fir k < —1.
Beweis. Folgt direkt aus Proposition 3.9. O

Proposition 3.12. Das Constraint
w1+ oWy -z, <0

ist dquivalent zu

T1 N ... NTp mitw; > 1 fiir alle i € [1..n].
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Beweis. Es sei I eine Interpretation.

IEw -z 4 ... +wy -z, <0 gdw.
wy - I(x1) + oo + wp, - I(x) <0 gdw.
I(x1) =0A ... AN I(zy) =0 gdw.

I =71 A ... ATy, per Definition (2.1)

O

Proposition 3.13. Das Constraint wy - x1 + ... + wy, - £, > k ist dquivalent zu
x1 V...V xy, firalle k € [1..wmin] und Wpyin > 1.

Beweis.

I EFwy -z 4 ... +wy -y >k gdw.

I Fwy -2+ ... +wy - xn < k gdw.

IET A ... N Ty gdw. da k € [1..wmin)
I =7 A ... ATy, gdw.

I Ex1 V.. Va,

Proposition 3.14. Das Constraint
w11+ ... Fwy Ty > SUM

ist dquivalent zu

1 A ... Ny mit w; > 1 fiir alle i € [1..n].

Beweis. Wenn der Komparator umgewandelt wird gemaB Proposition 3.4 und
dann das Constraint wieder in die normalisierte Form gebracht wird gemaB
Proposition 3.7, dann geht der Beweis hervor aus Proposition 3.12.

w1 T1+ .. + Wy Ty > SUM =
Wy - T1+ ... + Wy - Ty, < sSUM — sum gdw.

1 A ... ANz, (gemaB Proposition 3.12)

Proposition 3.15. Das Constraint

Wy X1+ e F Wy -y < k

ist dquivalent zu

T1 V...V Ty, fir alle k € [sum — wpin..sum — 1] mit w; > 1 fiiri € [1..n].

Beweis. Wenn der Komparator umgewandelt wird gemaB Proposition 3.4 und
dann das Constraint wieder in die normalisierte Form gebracht wird gemaB
Proposition 3.7, dann geht der Beweis hervor aus Proposition 3.13. O
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Proposition 3.16. Das Constraint w1 - x1 + ... +wy, - T, > k ist unerfiillbar fiir
alle k > sum.

Beweis. Folgt trivialerweise aus der Bedingung, dass sum die Summe aller Ge-
wichte ist. O

Proposition 3.17. Das Constraint wy - 1 + ... + wy, - £, < k entspricht einer
Tautologie fir alle k& > sum.

Beweis. Folgt trivialerweise aus der Bedingung, dass sum die Summe aller Ge-
wichte ist. O

Einerconstraints von der Form w-x <1k kdnnen stets in Klauseln umgewandelt
werden, siehe dazu 3.2.6.

Gleichheitsconstraints werden sowohl in die Kleiner-gleich-Zeile als auch in die
GroBer-gleich-Zeile eingeordnet. Das Constraint ist dquivalent zu der Konjunk-
tion der beiden Aussagen.

3.2.2 Gewichte sattigen

n
Zu einem Constraint Z LWy - T > k existiert ein dquivalentes Constraint
j=

Z, 1w§- -x; > k, sodass fiir alle w; gilt: w} < k. Constraints von der Form
]:

n e . .
ijl w; - x; > k werden , gesattigt” genannt, wenn fiir alle w; gilt: w; < k.

GroBer-gleich-Constraints  Angenommen das Constraint > Jwi x>k
]:

enthalt den Summanden w; - z; mit ¢ € [1..n] und w; > k. Da im Fall I(x;) =1
das Constraint mit dem Summand w; - x; unter I als erfillt gilt, gilt es ebenso
als erfiillt, wenn der Summand k - z; betragt. Laut der ,Sattigungsregel” auf
Seite 706 in [?] kann deshalb in diesem Fall w; stets durch k ersetzt werden.

Beispiel.

l-x21+5-29>3
=1l-21+3-29>3

Kleiner-gleich-Constraints kénnen in GroBer-gleich-Constraints umgeformt
werden, damit sich die Sattigungsregel anwenden lasst. Wie die Komparatorum-
formung, die Sattigung und die Rickumformung in einem Schritt ausgefiihrt
werden konnen wird in 3.6.4 erlautert.
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3.2.3 Gewichte verringern mit Hilfe des ggT

Die Gewichte in einem PB-Constraint lassen sich verringern, indem sie durch
ihren groBten gemeinsamen Teiler (ggT) geteilt werden. Die rechte Seite k wird
durch die selbe Zahl geteilt. Dieser Schritt ist insbesondere wichtig, um die
Aquivalenz zwischen einem PB-Constraint und einer Klausel zu finden, zum
Beispiel 2 21 +2-29>2=1-214+1- 290 > 1 =21V 29.

Proposition 3.18. Das Constraint Zn LW 2 < k ist dquivalent zu
j=

Z;;l w;i/g9T ({wr,...,wn}) -z < |k/ggT({wr, ..., wn})]| fiir <=< und zu
Z;f‘zl w;/ggT({wr, ooy wn}) - 25 > [k/ggT({wi, ..., wn})] fiir < =>.
Beweis. Folgt aus grundlegenden mathematischen Erkenntnissen. O
Beispiel.
12214+ 18 - 290+ 24 - 3 < 43

gdw. 12/6 - 1 + 18/6 - xo +24/6 - x3 < [43/6]

gdw. 221+ 3 20 +4-23<7
3.2.4 Triviale Belegung von Variablen
Es kénnen in PB-Constraints mit der Probing-Methode Literale belegt werden.

Proposition 3.19. Ausc=w; -1+ ...+ w; - ;+...+wy -z, <k mitw; >k
folgt c = c A T;.

Beweis. Folgt aus der Definition des Vergleichsoperators. O
Beispiel.

1l 214+9 - 294+2-23<5
=l-214+9 - 224+2-23<5AT2

Proposition 3.20. Aus ¢ = wy - 21 + ... +wj - T + ... + wy - T, > Kk mit
n
(Zizl w;) —wj < k folgt ¢ = c N xj.

Beweis. Es sei I eine Interpretation.
n
Mit (Zi_l w;) —w; < k gilt: Aus I |= c folgt I(z;) = 1.
Daraus folgt: I = cgdw. I EcA T =z O

Beispiel.
IEl-214+1-29+5-23>6
gdW.Ii:1-$1+1-172+5‘56326/\1’3 daw; +we <k
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3.2.5 Constraint in PB- und Klauselpart unterteilen

Laut Eén et. al [ES06] lasst sich die Anzahl der Summanden eines echten PB-
Constraints verkirzen, falls ein Klauselteil extrahiert werden kann. Ein GréBer-
gleich-Constraint enthdlt einen Klauselteil, wenn es ein Gewicht w; gibt mit
J € [1..n], sodass w; = k. Das Aufteilen eines PB-Constraints c in einen reinen
Klauselteil ¢ und einen verbleibenden echten PB-Teil cpp hat den Vorteil,
dass das verbleibende PB-Constraint cpp kiirzer ausfallt als das urspriingliche
Constraint c. Dies ist allerdings nur der Fall, sofern mindestens zwei Literale
in den Klauselpart verschoben werden konnten. Denn sowohl cx als auch cpp
wird ein neues Literal hinzugefiigt. Die Aufteilung ist vorteilhaft, denn einerseits
wird cpp meist in eine kiirzere KNF transformiert als c. Andererseits liegt der
Klauselteil cx bereits in der konjunktiven Normalform vor. Zunachst wird eine
frische Variable z € V' bendtigt mit z ¢ Vars(c). Weiterhin sind cpp und cx
definiert wie folgt:
cx =\ Vz mit j € [1l.nJundw; =k

cpPB ::k-z—l—ij cx; >k mitj e [l.njundw; #k

Es gilt > w; - x; > k ist erfillbar gdw. cpp A cx erfiillbar ist. Sowohl alle
Literale von ¢ mit dem Gewicht k£ als auch Z bilden die Summanden in cg
mit jeweils dem Gewicht 1. ¢pp enthalt sowohl die Summanden aller anderen
Literale von ¢ als auch k - z.

3.2.6 Constraints mit einem oder zwei Literalen

Normalisierte PB-Constraints mit weniger als 3 Variablen konnen direkt im
Praprozessor in eine KNF transformiert werden. Ein PB-Constraint ¢ mit n = 2
ist in der Form wq - 1 + wy - 9 < k und wird nun erlautert. Es wird w; < wsy
angenommen ohne Beschrankung der Allgemeinheit.

T fir k<0
r1 Vg firke [1101}
GroBer-gleich-Constraints ¢ = ¢ x5 fur k € (wy..w2]

1 Nxg furk e (wg..wl + wg]
L fir k > wy + wo
Falls £ < 0, dann ist ¢ eine Tautologie gemaB Proposition 3.10.
Falls k € [1..w;], dann ist ¢ = 1 V x2 gemaB der Sattigungsregel (3.2.2)
und Proposition 3.18.
Falls k € (w;..ws], dann gilt gemaB Proposition 3.20:
c=axo ANwy-x1 >k —wy = x9.
Falls k € (wg2..w1 + wy], dann ist ¢ = 1 A zo gemaB Proposition 3.20.
Falls k£ > wy + ws, dann ist ¢ unerfillbar gemaB Proposition 3.16.
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1 fur £ < —1

Ty ANTo fir k € [0..w1)
Kleiner-gleich-Constraints ¢ = { 7, fur k € [wy..w2)

T VT fir k € [wy..w1 + w3)
T fur k > wi + we

Falls £ < —1, dann ist ¢ unerfiillbar gemaB Proposition 3.11.

Falls k& € [0..w1), dann ist ¢ = T; A Ty gemaB Proposition 3.19.

Falls k € [w;..w32), dann gilt gemaB Proposition 3.19:
c=ToANwy -1 < k = To.

Falls k € [wy..w1 + we), dann ist ¢ = T; V To. GemaB Proposition 3.26
und Proposition 3.18 kann das Constraint in die Form 1 -x; +1-29 < 1
gebracht werden. Der Komparator wird gemaB Proposition 3.4 in ein GroBer-
gleich umgeformt und es verbleibt eine Klausel.

Falls &k > wy + ws, dann ist ¢ eine Tautologie gemaB Proposition 3.17.

Einerconstraints Gegeben sei das Constraint ¢ = w-x <1 k. Fiir GroBer-gleich-
Constraints gilt:

T fuirk <0
c=qx furkell.w]
1L firk>w
Und fiir Kleiner-gleich-Constraints:
1 furk < -1
c={7T firke0.w-—1]
T furk > w

Einerklauseln werden an dieser Stelle fiir das Propagieren vorgemerkt.

Gleichheitsconstraints Das Constraint ) w;-x; = k ist aquivalent zu ) w; -
xj < kAY w;j-xj > k. Also kdnnen hier sowohl die Vereinfachungen fiir GréBer-
gleich-Constraints als auch die Vereinfachungen fir Kleiner-gleich-Constraints
beriicksichtigt werden. Beide Ausdriicke sind in einer Konjunktion zu vereinen.

Beispiel.
1- 1+ 2 To = 2
gdw. 121+ 2- 20 >2 A 1-214+2- 29 < 2
gdw. 22 A (Tl \/fg)
gdw. xo ATy
3.2.7 Erfiillbarkeit von Gleichheits-Constraints priifen

Unerfiillbare Gleichheitsconstraints kénnen direkt durch L ersetzt werden, ohne
sie in weiteren Schritten umformen zu missen. Es kommt vor, dass Gleichungen
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nicht erfiillbar sind: ndmlich wenn bei einem GroBer-gleich-Constraint die rechte
Seite k einen unerreichbar hohen Wert reprasentiert — oder wenn ein norma-
lisiertes Kleiner-gleich-Constraint ein & < 0 aufweist. Bei GroBer-gleich- und
bei Kleiner-gleich-Constraints wird bereits die Erfiillbarkeit im Abschnitt 3.2.1
uberprift.

Etwas komplexer ist das Testen der Erfiillbarkeit einer Gleichung ¢ mit Gleich-
heitskomparator. Hier kann mit Hilfe der Brute-Force-Methode versucht werden
eine Interpretation zu finden, die ¢ erfilllt. Wie die Losungsmenge effizient zu
berechnen ist wird in 3.6.5 erlautert.

3.3 Propagieren

Eine Klausel x kann benutzt werden, um das Literal z bzw. T in jedem anderen
Constraint der selben Formel zu eliminieren. Eine ,,Einerklausel” kann entweder
in der Formel vorkommen oder aber in anderen Schritten erzeugt worden sein
(3.2.1, 3.2.4, 3.25, 3.4).

Das Propagieren mit Klauseln wurde bereits in [ET01] von Ehrig et al. er-
lautert. Es sei k; eine Einerklausel mit dem positiven Literal x € L und ks eine
beliebige Klausel aus einer Formel F'. Enthalt k5 das Literal x positiv, dann kann
ko aus F entfernt werden. Enthalt ko das negative Literal T, dann wird jedes
Vorkommen von T in ko aus den Summanden entfernt. Dieses Verfahren kann
auf PB-Constraints ausgeweitet werden. Beim Propagieren mit k1 und einem
PB-Constraint ¢ wird jedes Vorkommen von w - x mit w € Z entfernt und w
von der rechten Seite subtrahiert.

Proposition 3.21. Die Formel
mj/\wl-x1—|—...+wj,1-xj,l—}—wj-xj+wj+1-:Ej+1+...+wn-mn<lk:
ist dquivalent zu
mj/\wl-x1—|—...+wj,1-xj,1+wj+1-:Uj+1—|—...+wn-mn<1k—wj.

Beweis.
I=xjANw 21+ . +wjm1 -z +wj - T+ Wjg1 - Tjgr + ..
+ Wy - Ty, <k gdw.
I(zj) =1Awi - I(z1)+ ... +wj—1 - I(zj—1) +wj - I(xj) + w1 - I(z41)
+ o Fwy - I(xy) < k gdw.
I(z;))=1Awi - I(z1)+ ... +wj—1 - I(zj—1) +wj - L+ wjpr - I(zj41)
+ o+ wy - I(zy) < k gdw.
I(zj) =1ANwi - I(z1)+ ... +wj—1 - I(zj—1) + wjgr - I(xj41)
+ .. twy - I(z,) <k —w; gdw.

I):wl-xl—i—...—i—wj_l-xj_1+wj+1-xj+1+...+wn-xn<k—wj
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Sofern vorhanden, wird w-Z mit w € Z aus den Summanden von c entfernt.

Proposition 3.22. Die Formel
TjANwy T+ .o+ Wj—1 - Tj—1 + W5 - T+ Wit -Ij+1+...+wn'$n<]k
ist dquivalent zu
TjAwW T+ oo +Wj—1 - Tj—1 + Wip1 - Tjpl + oo + Wy - Ty < k.

Beweis.
TiANwy-x1+ ... +Wj—1 - Tj—1 + Wj - Tj + Wjg1 - Tj41
+ o+ wy -z, <k gdw.
I(zj) =0Awy - I(x1) + ... +wj—1 - I(zj—1) +wj - I(x;) + wjgr - I(xj41)
+ .ot wy - I(zy) < k gdw,
I(zj) =0Awy - I(x1) + ... +wj—1 - I(zj—1) + wjpr - I(xj41)
+ .ot wy - I(zy) <k gdw.
TiAwy - 21+ .o FWj—1 - Tj—1 F Wi - Tjgp1 o F Wy Ty LK

Das Propagieren muss stets wiederholt werden, nachdem eine , Einerklausel*
entsteht. Dieser Fall kann auch direkt nach dem Propagieren eintreten. O

Beispiel.

ToNl-21+2 - 29>3N2-214+2-23=2 =

ToAN1l-21 > 1 AN2-x1+2 -23=2 =
To A\ X1 AN2-x1+2 -23=2 =
To N\ X1 N2 -x3=0 =

To N\ T1 N T3

3.4 Resolution

Mithilfe des Resolutionsverfahrens kann aus zwei PB-Constraints ¢; und ¢y der
selben Formel ein weiteres Constraint, die Resolvente c3, gebildet werden. Die
Resolvente enthalt alle Variablen aus ¢; und ¢y, wobei mindestens eine Varia-
ble eliminiert wird. So kann ein besonders kurzes Constraint c3 entstehen, das
die Losungsmoglichkeiten der Formel stark einschrankt oder ein Modell explizit
sichtbar werden lasst.

Nun wird erldutert, wie das Resolutionsverfahren angewendet wird. Mit
den Regeln des Schnittebenenverfahrens kénnen PB-Constraints addiert, mul-
tipliziert und dividiert werden. Zur Resolution wird eine Kombination aus der
Multiplikations- und Additionsregel verwendet [RMO09]. Es erlaubt das SchlieBen
von zwei Constraints ¢; und ¢y auf ein neues Constraint c3, sodass mindestens
ein Literal eliminiert wird. Aus der Resolvente c3 und einem anderen geeigneten
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Constraint kann ggf. wiederum eine Resolvente gebildet werden. Im Optimal-
fall wird eine Resolvente gefunden, die die Unerfiillbarkeit der Formel oder als
Einerklausel die Belegung einer Variable zeigen kann.

Es seien w,,wy, € N, k1,k2 € Z und x € L. Weiterhin sei w, -  Sum-
mand von ¢; und w, - T Summand von cy. Es werden alle Gewichte und die
rechte Seite der Gleichung ¢; multipliziert mit a = w,/g9T (wp, wgq). Ebenso
werden alle Gewichte und die rechte Seite der Gleichung co multipliziert mit
B = wp/99T (wp, wy). Kommt ein Literal nur in einem der beiden Constraints
vor, wird hier angenommen, dass es mit dem Gewicht null auch im anderen
vorkommt. c3 wird wie folgt erschlossen:

Cc1 :Zaj-xj<1k‘1
Co Zij~I‘j<]k2
cs=(-aj+P-bj) zj<a-ki+ 5k

Nun enthalt ¢3 den Summanden wy, - wy/ggT (wp, wy) - (x + T). Somit wird
x in cg eliminiert:

Proposition 3.23. Wenn x € Lits(c1) und T € Lits(ca) gilt, dann lasst sich
c3 so umformen, dass x ¢ Lits(c3) und T ¢ Lits(cs).

Beweis. Es sei I eine Interpretation. Wenn x € Lits(c1) und T € Lits(cz2) gilt,
dann ist ¢z in der Form wy-z1+...4+wp-wy /99T (wp, wq) - (x+T)+... 4wy -2, <k.

I =cs gdw.
I =wy -2 4 4wy - we /99T (wp, wy) - (x +T) + ... + wy -z, < k gdw.
wi - I(x1) + oo+ wp - we/g9T (wp, wq) - (I(x) + 1(T)) + ... +wy - < k
gdw.
Il=w -z + .+ wp - we /99T (wp, wg) - 1+ ...+ wy, -z < k gdw.
Il=w o1+ .+ wp -2y <k —wp - we /99T (wp, wg) =
Lits(wy - x1 + .. + Wy, - T <k — wp - we/g9T (wp, wq)) N{z, T} =10

O

Aus der Unerfiillbarkeit der Resolvente c3 folgt zur Unerfillbarkeit von ¢
und cy:

Proposition 3.24. Ist I ein Modell fiir c1 A co, dann ist I ein Modell fiir cs.

Beweis. Es sei F' = ¢; A ca A ... eine Formel. Dann folgt aus den Reglen der
Resolution, dass F' = F' A c¢3. Daraus folgt, dass [ Eci Aco = T =c3. O

Beispiel.

ci=1-21+1-%2+3-23>5
co=1-x4+2-20+4-25>6
c3=2-21+2-To+6-23+1-24+2-29+4-25>10+6

23



c3 gdw.
2-214+2 (x2+T2)+6-23+1-24+4-25 > 16 gdw.

2-x1+2-1 +6-23+1-24+4- 25> 16 gdw.
2-m +6-a3+1-24 +4-25 > 14.
2 +6 +1 +4 (U4 =
=1 =
citNeco =L

Es sei F' = ¢1 A ¢y eine Formel. Die normalisierten Constraints ¢; und ¢y
eignen sich zur Resolution, wenn ihre Resolvente c3 nicht in F' ist, ein Litreal in
c1 positiv und in co negativ vorkommt und sich die Komparatoren von ¢; und
co gleichen. Constraints ¢; und co mit unterschiedlichen Komparatoren kdnnen
fur dieses Verfahren umgeformt werden (3.1.1), sodass <I; und <2 identisch
sind. Die Resolvente wird gemaB Abbildung 2 (3.5) so weiterverarbeitet, dass
sie normalisiert, ggf. in eine Klausel umgewandelt, zum Propagieren genutzt
und fiir weitere Resolutionsschritte beriicksichtigt wird. Sie wird abschlieBend
der Formel F' hinzugefiigt, sodass I’ = ¢ A co A c3.

Es konnte einen Grenznutzen der Resolution geben: Die Resolvente ¢35 kann
bis zu |Lits(c1)| + |Lits(c2)| — 2 Literale enthalten und deshalb sehr lang wer-
den. Es empfiehlt sich aus praktischen Griinden eine Maximalldnge zu definie-
ren. Beim ErschlieBen der Resolvente werden auBerdem Gewichte multipliziert,
sodass sehr groBe Zahlen entstehen konnen, die das Preprocessing wiederum
verlangsamen. Bei Verarbeitung mittels Computer miissen Zahlenprodukte ver-
mieden werden, die den Arbeitsspeicher (ibersteigen.

3.5 Abhadngigkeiten der Verarbeitungsschritte

Die Reihenfolge der Verarbeitungsschritte ist so zu wahlen, dass jeder Schritt
mindestens einmal, aber moglichst selten durchgefiihrt wird. Einige Verarbei-
tungsschritte kénnen jedoch das Ziel eines anderen Schritts riickgdngig machen
oder sogar verbessern. Nachdem in den PB-Constraints Literalen konkrete Wer-
te zugewiesen wurden — wie in 3.3 oder 3.2.1 — wird die rechte Seite k& geandert
und die Anzahl der Literale im Constraint verandert sich. Somit lassen sich
moglicherweise durch den Schritt , Aufspiiren trivialer Constraints und Einer-
klauseln* weitere Literale festlegen. Sollte sich der groBte gemeinsame Teiler
(ggT) aller Literale nach dem Entfernen eines Literals vergroBern, dann sollte
der Schritt ,Gewichte verringern mit Hilfe des ggT" wiederholt werden. Eben-
falls ist es moglich, dass nach dem Entfernen bzw. Propagieren von Literalen
ein Teil im PB-Constraint entsteht, der sich als Klausel formulieren lasst. Der
Schritt ,,Constraint in PB- und Klauselpart unterteilen* sollte nun durchgefiihrt
werden, um einen Klausel- vom PB-Part zu trennen.
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Die gewahlte Reihenfolge der Schritte im Text von Eén ([ES06], Seite 3f)
ist folgende:

1. Alle Komparatoren in GroBer-gleich umwandeln

2. Negative Gewichte eliminieren

3. Wiederholt vorkommende Variablen zusammenfiigen
4. Gewichte aufsteigend sortieren

5. Aufsplren trivialer Constraints

6. Gewichte sattigen

7. Gewichte verringern mit Hilfe des ggT

8. Propagieren

9. Constraint in PB- und Klauselpart unterteilen

Allerdings ist es moglich, dass nach Schritt 9 die Ausfilhrung von Schritt 5
und anschlieBend Schritt 8 sinnvoll ist. Ebenso kénnte nach Schritt 8 wiederum
Schritt 7 erforderlich sein. Sollte sich ndmlich nach dem Propagieren der ggT
einer Gleichung andern, ist das Ziel von Schritt 7 nicht mehr erfiillt. Sollte der
PB-Teil nach Schritt 9 nur ein Literal enthalten, kénnte dies in Schritt 5 in
eine Einerklausel umgewandelt werden. Somit ist Propagieren sinnvoll (Schritt
8). AbschlieBend wird eine neu entwickelte Reihenfolge vorgestellt. Zusatzlich
wurden in dieser Arbeit folgende Schritte hinzugefiigt:

e Constraints mit einem oder zwei Literalen
e Triviale Belegung von Variablen

e Erfiillbarkeit von Gleichheits-Constraints priifen

Die Abhangigkeiten der Verarbeitungsschritte werden nun aufgezahlt.
Nach dem Andern des Komparators:

e Negative Gewichte eliminieren
Nach dem Zusammenfiigen wiederholt vorkommender Variablen:
e Negative Gewichte eliminieren
e Gewichte sattigen
e Aufspiiren trivialer Constraints und Einerklauseln

Nach dem Eliminieren negativer Gewichte:
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Abbildung 2: Verarbeitungsschritte des Praprozessors

( Wiederholt vorkommende Variablen zusammenfiigen )

Andern des Komparators

(Negative Gewichte eIimineren)

H Geuwichte sortieren (optional) )
H Aufsplren trivialer Constraints und Einerklauseln )

[Einerklauseln vorhanden :| [Sonst:|

{ Propagieren Resolution

|:Neue Resolventen entdeckt :| [Sonst:|

{ Gewichte sattigen

(Gewichle verringern mit Hilfe des ggT )

(Aufspuren trivialer Constraints und Einerklauseln )

(Constraint in PB- und Klauselpart unterteilen )

|:Neue Klauseln entstanden :| [Sonst:|

(Aufspﬁren trivialer Constraints und Einerklauseln )

(Triviale Belegung von Variablen )

[Einerklauseln vorhanden :| [Sonst:'
( N ) Erfiillbarkeit von Aquivalenz-
Propagieren [Constraims prifen (optional) ]
(Aufspuren trivialer Constraints und Einerklauseln )
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e Gewichte aufsteigend sortieren
e Aufspiiren trivialer Constraints und Einerklauseln
e Triviale Belegung von Variablen
Nach dem Séattigen der Gewichte:
e Aufspiiren trivialer Constraints und Einerklauseln
e Constraint in PB- und Klauselpart unterteilen
Nach dem Gewichte verringern mit Hilfe des ggT:
e Aufspiiren trivialer Constraints und Einerklauseln
Nach der trivialen Belegung von Variablen:
e Propagieren
Nach dem Propagieren, falls Constraints verandert wurden:
e Aufspiiren trivialer Constraints und Einerklauseln
e Gewichte sattigen
e Gewichte verringern mit Hilfe des ggT
e Constraint in PB- und Klauselpart unterteilen
Nach dem Klauselpart Extrahieren, falls Constraints verandert wurden:
e Aufspiiren trivialer Constraints und Einerklauseln
e Triviale Belegung von Variablen
Nach dem Auffinden oder Erzeugen von Einerklauseln:

e Propagieren

Fir den Schritt ,Erfiillbarkeit von Gleichheits-Constraints priifen” sind kurze
Constraints giinstig. Sie sollten deshalb am Schluss ausgefiihrt werden. Die Re-
solution sollte aus Performancegriinden vor dem ,,Constraint in PB- und Klau-
selpart unterteilen* durchgefiihrt werden. Mittels Resolution wiirde andernfalls
aus dem aufgespalteten Klausel- und PB-Teil eines Constraints ¢ eine Resolvente
erstellt werden, die dem urspriinglichen Constraint ¢ gleicht. Um die Resolution
mit allen Constraints durchzufiihren, wiirden mehr Schritte benétigt, denn es
wirde eine neue Resolvente erstellt werden aus dem PB-Teil von ¢ mit jeder
Resolventen, die aus dem Klauselteil und einem weiteren Constraint generiert

wurde.
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Vor dem Sattigen der Gewichte (3.2.2) ist das , Aufspiiren trivialer Cons-
traints und Einerklauseln” nétig. Bei einem GroBer-gleich-Constraint mit ne-
gativem k wiirden alle Gewichte durch das negative k ersetzt werden. Dieses
Constraint ware im Schritt ,, Aufspiiren trivialer Constraints und Einerklauseln
zuvor allerdings als Tautologie erkannt worden.

Die demzufolge sinnvolle Reihenfolge ist in Abbildung 2 veranschaulicht.
Alle Schritte beziehen sich auf PB-Constraints. Klauseln miissen nur in den
Schritten ,,Propagieren” und , Resolution" beriicksichtigt werden. Zudem wird
die Verarbeitung fiir ein PB-Constraint abgebrochen, sobald es vollstandig in
eine Klausel umgewandelt werden konnte. Dies tritt u.a. ein, wenn nach dem
Schritt , Triviale Belegung von Variablen* alle Variablen belegt werden konnten
oder bei der Unterteilung in Klausel- und PB-Teil der verbleibende PB-Teil leer
ist.

Fiir jeden Schritt gilt: Wird die Unerfiillbarkeit festgestellt, dann endet der
Praprozessor. Dies kann geschehen, wenn , triviale Constraints” aufgespiirt wer-
den. Im Schritt ,Andern des Komparators" wird entschieden, welchen Kompara-
tor die Ausgabeconstraints aufweisen sollen. Der Schritt , Gewichte aufsteigend
sortieren (3.6.3) ist fiir diese Arbeit nicht notwendig, fiihrt aber in der Im-
plementierung dazu, dass das groBte bzw. kleinste Gewicht schneller gefunden
werden kann. Ist die Verarbeitung am Endzustand angekommen, werden die
Constraints der PBLib (ibergeben.

3.6 Implementierungstechniken

Es wurde bereits gezeigt wie die Vereinfachungen auszufiihren sind. Hier wird
nun erldutert, wie sie ressourcensparend angewendet werden kdnnen mit Hilfe
zusatzlicher Propositionen.

3.6.1 Wiederholt vorkommende Variablen zusammenfiigen

Eine wiederholt vorkommende Variable v kann in einem PB-Constraint ebenso
zusammengefiigt werden, falls v sowohl positiv als auch negativ im Constraint
vorkommt. Dabei kann gemaB Proposition 3.7 das Literal mit Hilfe des Komple-
ments so umgeformt werden, dass alle Variablen positiv auftreten. AnschlieBend
konnen gemaB Proposition 3.5 die Variablen zusammengefasst werden. Im Fol-
genden werden die genannten Propositionen miteinander vereint, sodass ledig-
lich ein Schritt ausgefiihrt werden muss.

Proposition 3.25. Das Constraint

w1 +T1+ ..+ Wi—1 - Tj—1 + Wi - T+ Wig1 - Tig1 + -

—|—wj_1-:z;j_1+wj-§+wj+1‘:Uj+1+...+wn-xn<1k
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ist dquivalent zu

wy T+ ... W1 Ti—1 + (wi — wj) “ T+ Wiyt Tit1 + .

Fwj—1-Tj—1 +Wjt1 - Tjp1 + ... + Wy - Ty < k— wj.
Beweis. Geht hervor aus Proposition 3.7 und Proposition 3.5. ]
Beispiel.

921 +3-29+5-Tog+6-To <16 gdw.
921+ (+3—-5—-6) 22 <16 -5 — 6 gdw.
9. 21 —8-29<5H

3.6.2 Wechsel des Komparators zwischen Kleiner-gleich und GroBer-
gleich

Der Komparator kann gewechselt werden, sodass das umgeformte Constraint
in normalisierter Form vorliegt und fiir die Umformung nur ein einziges Mal
tiber alle Summanden iteriert werden muss. Wird der Komparator eines bereits
normalisierten Constraints geandert, dann wiirde hierbei ein nichtnormalisiertes
entstehen, denn durch diese Umformung entstehen negative Gewichte. Deshalb
ist es vorzuziehen den Komparator so zu invertieren, dass negative Gewichte
ebenfalls eliminiert werden. Dazu wird das Verfahren aus 3.1.1 kombiniert mit
dem Verfahren ,Negative Gewichte eliminieren” (3.1.3). Es werden dann nicht
alle Gewichte mit (—1) multipliziert, sondern nur jene, welche negativ vorkom-
men. Alle Literale mit positivem Gewicht miissen negiert werden. Aufgrund von
Proposition 3.4 muss das k negiert werden. Wegen der Umformung aus Pro-
position 3.7 miissen zu der rechten Seite alle positiv vorkommenden Gewichte
addiert werden. Der Vorteil dieser Variante gegeniiber 3.1.1 und anschlieBendem
3.1.3 liegt darin, dass hier nur einmal iiber die Summanden iteriert werden muss.
Algorithmus:

1. Negiere alle Literale mit positivem Gewicht

2. Setze k' = ( Yw; )—k

JE[l..n]Aw;>0

g g [ fallsa=>
' > falls 9 =<

4. Multipliziere alle negativen Gewichte mit (—1)

Das umgeformte Constraint ist in der Form ¢/ = Z;_l wj-xj; <' k. Das Sym-

bol =5 mit s € N bedeutet keine Folgerung, sondern lediglich die Ausfiihrung
des Schrittes s.
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Beispiel.

cir=—1-214+2 - 29+3-23<1 ~
—1-2142-To+3 - T3<1 ~
—1- 2142 T2+3-T3<(243)—1 ~3
—1-214+2-T2+3-T3>4 ~y
+1-214+2-T2+3-T32>24 =0

3.6.3 Gewichte aufsteigend sortieren

Das Sortieren der Summanden nach Gewicht ermdglicht in den weiteren Schrit-
ten eine schnellere Verarbeitung. Ein sortiertes Constraint ist in der Form
Z;L:1 wj - x; < k, wobei w; < w;t1 mit ¢ € [1.n — 1]. Bei allen Vereinfa-
chungsschritten bleibt die Sortierung erhalten. Sollen nur Gewichte verarbeitet
werden, die groBer sind als ein bestimmter Wert (z. B. w; > k mit i € [1..n]),
miissten bei unsortierten Constraints alle Summanden iberpriift werden. Bei ei-
nem sortierten Constraint kann die lteration direkt abgebrochen werden, sobald
der Index auf ein Gewicht trifft, das den Grenzwert unterschreitet (w; < k mit
j € [1..n]). Die Verarbeitung von sortierten Constraints erméglicht daher u. a.
bei folgenden Aufgaben eine effizientere Verarbeitung:

o Gewichte sattigen
e Triviale Belegung von Variablen
e Constraint in PB- und Klauselpart unterteilen

Es lasst sich zudem besonders effizient das minimale bzw. das maximale Ge-
wicht eines Constraints bestimmen, da dies das erste bzw. letzte Gewicht des
Constraint darstellt. Das minimale Gewicht wird z. B. bei den Vereinfachungen
aus Abschnitt 3.2.1 benétigt. Zudem hilft die Sortierung beim Implementieren
der Probing-Methode. Seic=1-x14+2-22+ 5 x3 > 6 ein GréBer-gleich-PB-
Constraint und I eine Interpretation mit I |= ¢, dann ist zum Beispiel I(z3) =1
festzulegen aufgrund des hohen Gewichts ws. Hier sollte mit der Untersuchung
der hoch gewichteten Literale begonnen werden, also bei aufsteigend sortier-
ten Gewichten mit dem letzten Element. Wird bei diesem Vorgehen auf ein
Summand mit einem geringen Gewicht gestoBen, dessen Literal nicht von allen
Modellen gleich interpretiert wird, dann werden auch , leichtere” Literale nicht
von allen Modellen gleich interpretiert. Um die in I zu belegenden Literale effizi-
ent finden zu kdnnen, muss durch eine sortierte Summandenreihenfolge iteriert
werden. Selbst beim Propagieren bleibt die Sortierung erhalten. Wenn 5 - z3 aus
c entfernt wird, ist aufgrund der Sortierung das letzte Gewicht (hier: wy = 2)
immer noch das groBte.
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3.6.4 Kleiner-gleich-Constraints sattigen

Es sei Z;_l wj-xj > k ein PB-Constraint. Falls ein w; existiert mit j € [1..n],

) / /
wj > wj und w’.

auf den Wert w’,.

=—k+ Zn w;, dann lasst sich das Gewicht w,; reduzieren
=1 J

<<

<

Proposition 3.26. Das Constraint

wy Ty + . FWj—1 Tl W T+ Wigl - Tjrl + .+ Wi Ty < k mit
w; > wj ist dquivalent zu

wyT1+ ... FWj—1-Tj-1 +w;~ TjF Wil Tjp1+ ..+ Wn Ty < k:+w9 —Wwj.

Beweis. GemaB Proposition 3.4 kann der Komparator zu GréBer-gleich umge-
wandelt werden. Nun kann w; gemaB der ,Sattigungsregel” (3.2.2) durch wj}
ersetzt werden. Beim anschlieBenden Umwandeln zuriick in ein Kleiner-gleich-
Constraint ist k&’ gemaB Proposition 3.7 so festzulegen, indem alle Gewichte von
k subtrahiert werden. Der Unterschied zwischen k vom Ausgangsconstraint und
k' ist exakt die Differenz zwischen w’ und w;. Diese muss nun zu k addiert

J
werden. O

3.6.5 Losungsmenge eines PB-Constraints berechnen

Fir den Schritt 3.2.7 muss die Losungsmenge eines PB-Constraints berechnet
werden. Bei der Brute-Force-Methode werden alle moglichen Interpretationen
getestet. Dieses Vorgehen kostet jedoch viel Rechenleistung. Mit der folgenden
Methode allerdings kann eine Losung schnell gefunden werden.

Proposition 3.27. Fiir jedes GréBer-gleich-Constraint c gilt: Es sei wj - x; ein
Summand des Constraints ¢ mit w; > k. Alle Interpretationen I mit I(x;) =1
sind dann ein Modell fiir c.

Beweis.

wy - I(x) + .o +wj-I(xg) + ...+ wp - I(xn) >k
gdw. wy - I(z1) + ... +wj - 1+ ...+ wy - I(zp) > k
gdw. T daw; >k

O

Bei dem Kleiner-gleich- oder Gleichheits-Constraint ¢ kann die Backtracking-
Methode angewendet werden. Hierbei sollen Interpretationen a priori ausge-
schlossen werden, die dazu fiihren, dass die linke Seite echt groBer als k& wird.
Von der folgenden Proposition kann beim Backtracking Gebrauch gemacht wer-
den.

Proposition 3.28. Ist I ein Modell fiir ¢ und I(x;) =1 mit j € [1..n], dann
ist I(x;) =0 fiir alle i € [1.n)\{j} mit w; >k — wj.
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Beweis. Folgt aus der Definition des Vergleichsoperators. O

Beispiel. Angenommen c lautet 1 - 27 + 329 + 523 = 6. Wird dann ein
Modell I gesucht und fiir den ersten Losungsversuch I(x3) = 1 angenommen,
so missen die Summanden 1-I(x1) + 3 - I(x2) genau 1 ergeben, denn

1-I($1)—|—3'I(1’2)—|—5'I($3):6gdW.

Die hier entwickelte Methode iiberspringt nun das Prifen der In-
terpretationen I’ mit (I'(z1);I'(x2); I'(x3)) = (0;1;1) sowie I” mit
(I"(x1); I"(22); 1" (x3)) = (1;1;1), da sowohl I’ als auch I” zu einer linken
Seite groBer als k fithren wiirden. Stattdessen wird I(x2) = 0 angenommen.
Die Interpretation I mit

I(x1) =1, I(x2) =0, I(xz3) = 1 fuhrt zur Lésung. Somit unterscheidet sich
die vorgestellte Methode von der Brute-Force-Methode. Sie kann mit gleich
vielen oder weniger Vergleichen Losungsmengen eines Constraints finden.

Sind wy und wy die niedrigsten Gewichte eines Gleichheitsconstraints ¢ mit
k € [l..w; + we), dann lasst sich ¢ direkt ohne Backtracking auf Erfiillbar-
keit untersuchen, da jedes Modell fiir ¢ genau ein Literal aus Lits(c) auf eins
abbildet.

Proposition 3.29. Es sei ¢ ein PB-Constraint mit Gleichheitskomparator und

k € [1..w1 +w2). Dann gilt >~ I(x) =1 fiir alle Interpretationen I mit I = c.
z€Lits(c)
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Beweis.
Fir Y I(z)>1—1Fc
x€Lits(c)

ZI(:C >1=I(zp) =1ANI(zg) =1 mitp,ge€[l.n],p#q
z€Lits(c)

ke [1..w1+w2) —
wy-l14+wy-1>k =

n
ijle-f(l'j) >k =

n
ijle'f(ﬂfj) #k =
I1Fc
Far Zl(x) =0—>1Fc
x€Lits(c)
k>1 —
wy - I(xy) + oo+ wy - I(x,) > 1 =
w - 0+...4+w,-0>1 =
I1Fc
O
Proposition 3.30. Es sei ¢ ein PB-Constraint mit Gleichheitskomparator und
ke[l.w +ws), danngiltc=31-z;=1AN AT bzw. c = 1, falls
Jjell.n]Ahwij=k  je[l.n]Aw;#k
kein w; existiert mit w; = k.
Beweis. Geht hervor aus Proposition 3.29. 0
Beispiel.

1-214+2 294+ 3 23 =2 gdw.
1-20 =1A7T1 AT3 gdw.
xo NT1 N\ T3

Ist £ € [1.w1 + w2) und gilt w; # k fir alle j € [1..n], dann ist ¢ = L
gemalB Proposition 3.30.

4 Empirische Untersuchung

Die genannten Praprozesstechniken wurden untersucht anhand der 2290 Instan-
zen der PB-Competition 2016 mit einem Zeitlimit von einer Stunde und einem
Speicherlimit von 7 GB. Die Kaktusplots zeigen zu jedem Zeitlimit ¢ die Anzahl
der Instanzen, die in maximal ¢ Sekunden geldst werden konnten.
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Abbildung 3: Propagieren
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Abbildung 4: Aufteilen von PB-Constraints Z;Lzl w; - x; < k in PB- und

Klauselteil
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Abbildung 5: Belegen von Literalen durch Probing
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Das Propagieren allgemein beschleunigt den Lésungsprozess stark (Abb. 3).
Das Aufteilen von Constraints in PB- und Klauselteil (sieche Abschnitt 3.2.5)
fuhrt nur zu einem geringen Vorteile (Abb. 4). Diese Technik sollte auch auf
lange Constraints (n > 5) angewendet werden. Die Probingmethode (Abschnitt
3.2.4) fihrt zu keinen deutlichen Verbesserungen (Abb. 5).

4.1 PB-Constraints als Disjunktionen

Ein PB-Constraint kann gemaB den Prapositionen 3.13 und 3.15 in eine Dis-
junktion umgewandelt werden. Diese Umwandelung ist nicht in jedem Fall hilf-
reich (Abb. 6). Es ist vorteilhaft, eventuelle Klauseln als PB-Constraint an den
PB-Solver zu iibergeben (Abb. 7). Die Umwandelung von Z;;l wj-x; <k
in eine Disjunktion kann an weitere Bedingungen gekniipft werden, namlich
falls T, falls n < 5 oder falls L. PB-Constraints in Disjunktionen umzuwan-
deln verlangsamt den Losungsprozess bei Erfiillbarkeitsproblemen der Familien
Elffers, Nossum und Quimper (Abb. 8). Bei gleichem Zeitlimit konnten mehr
Bigint-Optimierungsprobleme der Familie Lion9-Single-Obj gelést werden, wenn
PB-Constraints bis zur Lange 5 in Klauseln umgewandelt wurden (Abb. 9). Die
Optimierungsprobleme mit kleinen Integers konnten mit und ohne Umwandelung
von PB-Constraints in Klauseln innerhalb von einer Sekunde geldst werden.

4.2 Resolution

Das Erstellen von Resolventen bringt einen geringen Vorteil. Es sollte maximal
. n .
eine Resolvente » . wj; - x; < k pro Formel erstellt werden (Abb. 10). Sie

J=1

sollte nur hinzugefiigt werden, falls n < 2 (Abb. 11). Ein derartiges Constraint
kann anschlieBend in eine Klausel umgewandelt werden (siehe Kapitel 3.2.6).
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Abbildung 6: Umwandelung von PB-Constraints in Klauseln, wenn moglich
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Abbildung 7: Weitergabe der Klauseln als ...
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Abbildung 8: Umwandelung von PB-Constraints in Klauseln, wenn moglich, fir
Elffers, Nossum und Quimper, wenn
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Abbildung 9: Umwandelung von PB-Constraints in Klauseln, wenn moglich, fir
Lion9-Single-Obj, OPT-BIGINT-LIN, wenn
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Abbildung 10: Maximale Anzahl der erstellten Resolventen
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Abbildung 11: Maximale Lange der erstellten Resolventen
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Abbildung 12: Performancegewinn durch den Praprozessor gegeniiber Preenco-
der
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5 Fazit und weiterfiihrende Arbeiten

Durch Praprozessortechniken kénnen in der selben Zeit mehr Formeln gel6st wer-
den (Abb. 12). Sehr vorteilhaft sind Propagieren, Aufteilen von PB-Constraints
in PB- und Klauselteil, das Hinzufligen maximal einer Resolvente mit der maxi-
malen Lange 2, dabei keine Umformung von PB-Constraints in Klauseln.

5.1 Ausblick

Lange Disjunktionen als PB-Constraint zu belassen statt sie in Klauseln umzu-
wandeln fiihrt bei 4 von 5 getesteten Instanzenfamilien zu einem Performancege-
winn (Abschnitt 4.1). Es erweist sich sogar als Vorteil, dem PB-Solver Klauseln
als PB-Constraint zu iibergeben. Es stellt sich die Frage, ob sich die Performan-
ce eines SAT-Solvers ebenfalls steigert, wenn eine Klausel in ein PB-Constraint
umgewandelt und anschlieBend per PB-Encoding in mehrere Klauseln und Hilfs-
variablen kodiert wird.
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