
Belegarbeit

Präprozessortechniken für
Pseudo-Boolean-Constraints

Timo Richter
22. März 2017

Technische Universität Dresden
Fakultät Informatik

Institut für Künstliche Intelligenz
Professur für Knowledge Representation and Reasoning

Betreut von:
Prof. Steffen Hölldobler
Dipl. Inf. Peter Steinke

Aufgabenstellung Belegarbeit

Name, Vorname: Richter, Timo
Studiengang: Informatik, Diplom
Matrikelnummer: 3643944
Thema: Präprozessortechniken für Pseudo-Boolean-Constraints
Zielstellung: Pseudo-Boolean (PB) Constraints bilden die Grundlage für vie-

le Formale Problembeschreibungen. Dabei wird die gewichtete
Summe von Literalen durch eine Konstante k eingeschränkt:∑n

i wixi ◦ k, mit ◦ ∈ {=, >,<,≤,≥} und wi, k sind ganze
Zahlen und xi Literale.
In dieser Belegarbeit soll die Möglichkeit untersucht werden, PB
Constraints durch Präprozessortechniken zu vereinfachen, mit
dem Ziel, dass die entstanden Constraints schneller von einem
SAT-basierten Solver gelöst werden können als ohne Präprozes-
sortechniken.

Schwerpunkte:
• Entwicklung und Implementierung verschiedener Präpro-
zessortechniken.
• Empirische Untersuchung der implementierten Algorith-
men.

Betreuer: Dipl. Inf. Peter Steinke
Verantwortlicher Hochschullehrer: Prof. Steffen Hölldobler

Institut: Künstliche Intelligenz
Lehrstuhl: Knowledge Representation and Reasoning
Beginn am: 07.11.2016
Einzureichen am: 27.03.2017

Inhaltsverzeichnis
1 Einleitung 7

2 Vorbemerkung und verwandte Arbeiten 8
2.1 Begriffe . 8
2.2 Verwandte Arbeiten . 9

3 Präprozessortechniken 10
3.1 Normalisierung . 10

3.1.1 Ändern des Komparators 10
3.1.2 Wiederholt vorkommende Variablen zusammenfügen . . 12
3.1.3 Negative Gewichte eliminieren 13

3.2 Vereinfachungen . 14
3.2.1 Aufspüren trivialer Constraints und Einerklauseln 14
3.2.2 Gewichte sättigen . 17
3.2.3 Gewichte verringern mit Hilfe des ggT 18
3.2.4 Triviale Belegung von Variablen 18
3.2.5 Constraint in PB- und Klauselpart unterteilen 19
3.2.6 Constraints mit einem oder zwei Literalen 19
3.2.7 Erfüllbarkeit von Gleichheits-Constraints prüfen 20

3.3 Propagieren . 21
3.4 Resolution . 22
3.5 Abhängigkeiten der Verarbeitungsschritte 24
3.6 Implementierungstechniken . 28

3.6.1 Wiederholt vorkommende Variablen zusammenfügen . . 28
3.6.2 Wechsel des Komparators zwischen Kleiner-gleich und

Größer-gleich . 29
3.6.3 Gewichte aufsteigend sortieren 30
3.6.4 Kleiner-gleich-Constraints sättigen 31
3.6.5 Lösungsmenge eines PB-Constraints berechnen 31

4 Empirische Untersuchung 33
4.1 PB-Constraints als Disjunktionen 35
4.2 Resolution . 35

5 Fazit und weiterführende Arbeiten 39
5.1 Ausblick . 39

Literaturverzeichnis 39

5

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig, unter Angabe
aller Zitate und nur unter Verwendung der angegebenen Literatur und
Hilfsmittel angefertigt habe.

Dresden, den 22. März 2017

Timo Richter

6

1 Einleitung

Ein Pseudo-Boolean-Constraint (PB) ist die Komparation einer konstanten Zahl
mit der Summe von gewichteten negierten oder nicht negierten booleschen Va-
riablen. Es wird in der Form

∑n

j=1
wj · xj � k notiert mit wj und k aus

der Menge der ganzen Zahlen und xj aus der Menge der booleschen Literale.
PB-Constraints bilden die Grundlage für viele Formale Problembeschreibungen.

In dieser Belegarbeit wird die Möglichkeit untersucht, PB-Constraints durch
Präprozessortechniken zu vereinfachen, mit dem Ziel, dass die entstanden Cons-
traints schneller von einem SAT-basierten Solver gelöst werden können als ohne
Präprozessortechniken. Schwerpunkte sind die Entwicklung und Implementie-
rung verschiedener Präprozessortechniken sowie die Empirische Untersuchung
der implementierten Algorithmen.

PB-Constraints enthalten ganze Zahlen und sind daher für den Menschen
besser lesbar als die KNF. Zudem ist die Inferenz auf PB-Constraints meist
einfacher möglich als in einer äquivalenten KNF. Einige sehr lange Konjunk-
tionen von Klauseln lassen sich in wenigen PB-Constraints ausdrücken. Proble-
me aus vielen Bereichen können pseudoboolesch formuliert werden, darunter
Probleme aus der Optimierungsrechnung, Graphentheorie, Kombinatorik, VLSI-
Design, Industrie und Wirtschaft [RM09]. In der Ungleichung x1 + x2 + x3 ≥ 1
können beispielsweise die Literale gewichtet werden, sodass ein PB-Constraint
entsteht: 2 ·x1 + 1 ·x2 + 1 ·x3 ≥ 2. Dieses kann in die KNF umgeformt werden:
(x1 ∨x2)∧ (x1 ∨x3). Wird bei einem Optimierungsproblem die Zielfunktion als
PB-Constraint angegeben, dann lassen sich die Gewichte in der zu minimieren-
den bzw. maximierenden linken Seite leicht erkennen.

Es ist allerdings meist schneller ein PB-Constraint in KNF umzuwandeln
und von einem SAT-Solver lösen zu lassen als ein nativer PB-SAT-Solver ein
PB-Constraint löst. Es existieren bereits höchst effiziente SAT-Solver für KNF,
gleichzeitig werden in regelmäßigen Wettbewerben stets neue entwickelt und
verbessert [Sat].

Der Präprozessor kann zu geeigneten PB-Constraints sowohl äquivalente
Klauseln finden als auch äquivalente kürzere PB-Constraints bilden. Bei kom-
plexen PB-Constraints kann die äquivalente KNF sehr viele Klauseln enthalten,
kurze PB-Constraints haben allerdings meist eine KNF mit wenig Klauseln und
diese kann ein SAT-Solver meist schneller lösen [EB05]. Der Präprozessor bildet
somit die Grundlage für eine hohe Performance des SAT-Solvers. Im folgenden
Beispiel wird ein Constraint in die KNF umgeformt, indem alle Belegungen ne-
giert werden, die das PB-Constraint nicht erfüllen.

7

Beispiel.

1 · x1 + 2 · x2 + 3 · x3 ≥ 4
gdw. (x1 ∧ x2 ∧ x3) ∧ (x1 ∧ x2 ∧ x3) ∧ (x1 ∧ x2 ∧ x3) ∧ (x1 ∧ x2 ∧ x3)∧

(x1 ∧ x2 ∧ x3)
gdw. (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)

Der Umformungsprozess lässt sich durch Präprozessortechniken so optimie-
ren, dass die resultierenden Disjunktionen in der KNF oft kürzer ausfallen und
triviale Unerfüllbarkeiten bereits früh erkannt werden.

Beispiel.

1 · x1 + 2 · x2 + 3 · x3 ≥ 4
gdw. x3 ∧ 1 · x1 + 2 · x2 ≥ 1
gdw. x3 ∧ (x1 ∨ x2)

2 Vorbemerkung und verwandte Arbeiten
Es werden Begriffe definiert, die in dieser Arbeit benutzt werden. Anschließend
wird grundlegende Literatur zu PB-Constraints und Präprozessortechniken vor-
gestellt.

2.1 Begriffe

Variablen Es sei V eine feste unendliche Menge boolescher Variablen.

Literal Es sei L die Menge aller Literale. Ein Literal ist eine positive Variable v
oder eine negative Variable ¬v.

Komplement Das Komplement eines Literals x wird notiert als x, wobei

x :=
{
¬v Falls x ein positives Literal v ist
v Falls x ein negatives Literal ¬v ist

PB-Constraint Ein PB-Constraint ist ein Ausdruck der Form∑n

j=1
wj · xj � k.

Dabei sind xj ∈ L Literale und wj ∈ Z die Gewichte der Literale xj mit
j ∈ [1..n]. Auf der linken Seite des Ausdrucks erscheint die Summe

∑n

j=1
wj ·xj .

Auf der rechten Seite wird die Konstante k ∈ Z notiert. Beide Seiten verbindet
der Komparator � ∈ {=,≤, <,>,≥}. Ein Summand eines PB-Constraints ist
ein Teilausdruck der linken Seite von der Form w · x mit w ∈ Z und x ∈ L.

8

Klausel Eine Klausel ist ein PB-Constraint 1·x1+...+1·xn ≥ 1 und wird notiert
als Disjunktion von Literalen in der Form (x1∨ ...∨xn). Die „Einerklausel“
(x1) kann auch ohne Klammern notiert werden als x1. Die leere Klausel
wird als ⊥ notiert.

Formel Eine Formel F ist eine Konjunktion von PB-Constraints c1 ∧ . . . ∧ cm,
wobei cj PB-Constraints sind mit j ∈ [1..m]. Sie ist in der Konjunkti-
ven Normalform, (KNF) wenn alle PB-Constraints in F Klauseln sind.
Die leere Formel wird als > notiert. k1 ≤

∑n

i=j
wj · xj ≤ k2 ist eine

Kurzschreibweise für (
∑n

j=1
wj · xj ≥ k1) ∧ (

∑n

j=1
wj · xj ≤ k2).

Interpretation Eine Interpretation I ist eine Funktion I : L → {0, 1}, die
jedem Literal den Wert 0 oder 1 zuweist, sodass für jede Variable v genau
dann I(v) = 1 gilt, wenn I(¬v) = 0. Interpretationen stellen eine Menge
von Literalen I dar, die für alle Variablen v ∈ V genau ein Element enthält
aus {v,¬v}, mit I(v) = 1 gdw. v ∈ I und I(v) = 0 gdw. ¬v ∈ I.
Die Erfüllungsrelation |= ist wie folgt definiert:

I |=
∑n

i=j
wj · xj � k gdw.

∑n

i=j
wj · I(xj)� k erfüllt ist.

I |= c1 ∧ ... ∧ cm gdw. I |= cj für j ∈ [1..m] gilt. Wenn I |= F , dann ist
I ein Modell für F . Wenn kein Modell für F existiert, ist F unerfüllbar,
ansonsten ist F erfüllbar.

Äquivalenzrelation c1 ≡ c2 (c1 ist äquivalent zu c2) bedeutet, dass für jede
Interpretation I gilt, dass I |= c1 genau dann, wenn I |= c2.
Sind F und G Formeln, dann bedeutet F ≡ G (F ist äquivalent zu G),
dass I |= F gdw. I |= G für alle Interpretationen I.

Literale eines PB-Constraints Die Funktion Lits(c) bildet ein PB-Constraint
c ab auf die Menge seiner Literale.

Variablen eines PB-Constraints Die Funktion V ars(c) bildet ein PB-
Constraint c ab auf die Menge seiner Variablen.

2.2 Verwandte Arbeiten

Die PBLib von Peter Steinke et al. [PS15] kodiert PB-Constraints in die kon-
junktive Normalform. Sie wandelt die Komparatoren aller Constraints in Kleiner-
gleich oder Gleich um und optimiert die PB-Constraints nur teilweise. Ziel dieser
Arbeit ist es diese Optimierungen zu erweitern. Sie werden in die konjunktive
Normalform umgewandelt und können anschließend mittels SAT-Sovler gelöst
werden.

In dem wissenschaftlichen Artikel von Eén et al. [ES06] werden Normali-
sierungstechniken für PB-Constraints aufgelistet. Normalisierte PB-Constraints

9

erfüllen eine Reihe von gemeinsamen Bedingungen und können daher mit ein-
heitlichen Verfahren verarbeitet werden. Ein normalisiertes PB-Constraint trägt
hier stets den Komparator Größer-gleich. All seine Gewichte sind positiv und
jede Variable tritt nur einmal auf. Die Gewichte sind aufsteigend geordnet und
es werden bereits Tautologien und Unerfüllbare Constraints erkannt. Gewichte,
die größer als die rechte Seite sind, werden entsprechend reduziert. Die rechte
Seite und die Gewichte werden weiterhin mit Hilfe des größten gemeinsamen
Teilers verringert. Constraints mit genau einem Literal werden zum Propagieren
genutzt. Beim Propagieren mit einer Einheitsklausel x und einem PB-Constraint
c wird jedes Vorkommen von x in c durch 1 ersetzt und x durch 0. Danach wird
entsprechend mathematischer Grundregeln c wieder in die Form eines PB cons-
traints gebracht. Abschließend kann das PB-Constraint verkürzt werden, indem
es in einen Klausel- und einen kürzeren PB-Teil gespaltet wird. Der Klauselteil
wird ohne weitere Umformung direkt an den SAT-Solver geleitet.

Roussel et al. erläutern das Schnittebenen-Beweissystem in [RM09]. Mit Hil-
fe der Inferenz durch Addition, Subtraktion sowie Division wird eine Methode
hergeleitet, um mit Größer-gleich-PB-Constraints Resolventen zu erschließen.
Durch die erzeugten Constraints aus der Resolution kann der Lösungsraum wei-
ter eingeschränkt werden, so kann ein SAT-Solver die Lösung in manchen Fällen
schneller finden. Resolventen mit genau einem Literal können zum Propagieren
verwendet werden, um andere Constraints der Formel direkt zu verkürzen.

In dieser Arbeit werden die bestehenden Normalisierungs- und Vereinfa-
chungstechniken auf die Komparatoren ≤, ≥ und = ausgeweitet. Es wurde
außerdem eine ganze Reihe von zusätzlichen Bedingungen ausgearbeitet, um
ein unerfüllbares oder allgemeingültiges PB-Constraint zu erkennen.

3 Präprozessortechniken
Durch die im Folgenden erläuterten Verfahren wird eine Formel so vorverarbeitet,
dass ein SAT-Sovler auf höchst effiziente Weise ein Modell suchen kann.

3.1 Normalisierung

Bevor die Vereinfachungen auf ein Constraint angewendet werden können, muss
es normalisiert werden. Die Normalisierungsschritte werden im folgenden erläu-
tert.

3.1.1 Ändern des Komparators

In allen weiteren Kapiteln wird vorausgesetzt, dass der Komparator � Element
von {≤,≥,=} ist. Um ein Kleiner-als-Constraint in ein Kleiner-gleich-Constraint
umzuwandeln, subtrahiere 1 von der rechten Seite und ändere den Komparator in
≤. Um ein Größer-als-Constraint in ein Größer-gleich-Constraint umzuwandeln,
addiere 1 zu der rechten Seite und ändere den Komparator in ≥ [RM09].

10

Proposition 3.1. Jedes Größer-als-Constraint kann in ein Größer-gleich-
Constraint umgeformt werden, denn
w1 · x1 + ...+ wn · xn > k gdw. w1 · x1 + ...+ wn · xn ≥ k + 1.

Beweis.

I |=w1 · x1 + ...+ wn · xn > k gdw.
w1 · I(x1) + ...+ wn · I(xn) > k gdw.
w1 · I(x1) + ...+ wn · I(xn) ≥ k + 1 gdw.

I |=w1 · x1 + ...+ wn · xn ≥ k + 1

Proposition 3.2. Jedes Kleiner-als-Constraint kann in ein Kleiner-gleich-
Constraint umgeformt werden, denn
w1 · x1 + ...+ wn · xn < k ≡ w1 · x1 + ...+ wn · xn ≤ k − 1.

Beweis. analog zu Proposition 3.1.

Proposition 3.3. Ein Constraint in der Form
∑n

j=1
wj · xj = k kann ersetzt

werden durch die Formel
∑
wj · xj ≤ k ∧

∑
wj · xj ≥ k.

Beweis. Folgt aus der Definition des Gleichheitszeichens.

Wechsel des Komparators zwischen Größer-gleich und Kleiner-gleich
Sollte es gewünscht sein, den Komparator zu „invertieren”, kann dies wie folgt
geschehen. Laut Eén et al. [ES06] kann von ≤ auf ≥ und umgekehrt gewech-
selt werden, wenn gleichzeitig alle Gewichte und k jeweils mit (-1) multipliziert
werden.

Proposition 3.4. Durch die Äquivalenz
w1 · x1 + ...+ wn · xn ≤ k ≡ −w1 · x1 − ...− wn · xn ≥ −k
kann jedes Größer-gleich-Constraint in ein Kleiner-gleich-Constraint umgeformt
werden und umgekehrt.

Beweis.

I |=w1 · x1 + ...+ wn · xn ≤ k gdw.
w1 · I(x1) + ...+ wn · I(xn) ≤ k gdw.
w1 · I(x1) + ...+ wn · I(xn)− k ≤ 0 gdw.
− k ≤ −w1 · I(x1)− ...− wn · I(xn) gdw.
− w1 · I(x1)− ...− wn · I(xn) ≥ −k gdw.

I |=− w1 · x1 − ...− wn · xn ≥ −k

Siehe auch die effiziente Implementierungstechnik in 3.6.2.

11

Vorteile des Gleichheitskomparators In vorhergehender Literatur wird die
Umwandelung aller Constraintkomparatoren in ≥ vorgenommen, um weitere
Schritte auf einheitliche Vorgehensweisen zuschneiden zu können. So werden
einige Schritte einfacher und es muss nicht zwischen drei Fällen für drei Kom-
paratoren unterschieden werden.

In dieser Arbeit werden allerdings die drei Komparatoren beibehalten anstatt
sie alle in ≥ umzuwandeln, denn dies bürgt einige Vorteile für den Präprozessor
und dem Umwandeln in die KNF: Sollten keine Constraints mit Gleichheitskom-
parator zugelassen werden, würden alle Gleichheits-Constraints gemäß Proposi-
tion 3.3 durch zwei Constraints ersetzt werden. Bestimmte darauf folgende Ver-
arbeitungsschritte müssten also doppelt berechnet werden, sodass dem Präpro-
zessor redundante Arbeitsschritte entstehen. Schließlich würde an die PBLib
eine größere Anzahl von Constraints weitergegeben werden, was bei der Um-
wandelung in eine KNF mehr Klauseln produzieren kann. Wird stattdessen der
Gleichheitskomparator beibehalten, dann muss nur jeweils ein Constraint pro
Gleichheitskomparator im folgenden Schritt verarbeitet werden. Das Gleichheits-
Constraint kann zudem auf Erfüllbarkeit getestet werden (3.2.7). Durch den
Gleichheitskomparator sind die Lösungen stark beschränkt und im Fall der Un-
erfüllbarkeit kann die Verarbeitung direkt abgebrochen werden. Ein Constraint
in der Form k1 ≤

∑n

j=1
wj · xj ≤ k2 mit k1, k2 ∈ Z kann im Laufe der Ver-

arbeitung in ein einfaches Größer-als- oder Kleiner-als-Constraint umgewandelt
werden, sobald festgestellt wird, dass der andere Komparator zu einer Tautolo-
gie führt. So verbleibt in diesem Fall nur ein Größer-gleich- bzw. Kleiner-gleich
Constraint, welches von der PBLib besser kodiert werden kann als ein Constraint
mit zwei Komparatoren.

3.1.2 Wiederholt vorkommende Variablen zusammenfügen

Gegeben sei ein Constraint c, in dem mindestens eine Variable in mehr als einem
Summanden auftritt. Nun wird das Constraint verkürzt, indem die Gewichte der
identischen Variablen zusammengefasst werden, sodass jede Variable höchstens
einmal c vorkommt.

Proposition 3.5. Wiederholt vorkommende Variablen in einem PB-Constraint

w1 · x1 + ...+ wi · xi + w′ · x+ wi+1 · xi+1 + ...

+ wj · xj + w′′ · x+ wj+1 · xj+1 + ...+ wn · xn � k

können so zusammengefasst werden, dass folgendes äquivalentes PB-
Constraint entsteht:

w1 · x1 + ...+ wi · xi + (w′ + w′′) · x+ wi+1 · xi+1 + ...

+ wj · xj + wj+1 · xj+1 + ...+ wn · xn � k.

12

Beweis. Folgt aus dem Distributivgesetz.

Sollte im Constraint c eine Variable sowohl positiv als auch negativ auftre-
ten, können die Gewichte dennoch zusammengefasst werden; dazu müssen sich
die Literale beider Gewichte jedoch gleichen. Zunächst wird das Constraint so
umgeformt, dass alle Variablen positiv auftreten. Dies kann erreicht werden, in-
dem das Gewicht der negierten Variable mit (-1) multipliziert und zudem von
der rechten Seite subtrahiert wird.

Proposition 3.6. Sei x ein Literal und I eine Interpretation, dann gilt I(x) =
1− I(x).

Beweis. Folgt direkt aus der Definition einer Interpretation.

Proposition 3.7. Ein PB-Constraint
w1 · x1 + ...+ wi−1 · xi−1 + wi · xi + wi+1 · xi+1 + ...+ wn · xn � k
ist äquivalent zu dem PB-Constraint
w1 · x1 + ...+ wi−1 · xi−1 − wi · xi + wi+1 · xi+1 + ...+ wn · xn � k − wi.

Beweis.

I |=w1 · x1 + ...+ wi−1 · xi−1 + wi · xi + wi+1 · xi+1 + ...+ wn · xn � k gdw.
w1 · I(x1) + ...+ wi−1 · I(xi−1) + wi · I(xi) + wi+1 · I(xi+1)

+ ...+ wn · I(xn)� k gdw.
w1 · I(x1) + ...+ wi−1 · I(xi−1) + wi · (1− I(xi)) + wi+1 · I(xi+1)

+ ...+ wn · I(xn)� k gdw.
w1 · I(x1) + ...+ wi−1 · I(xi−1) + wi − wi · I(xi) + wi+1 · I(xi+1)

+ ...+ wn · I(xn)� k gdw.
w1 · I(x1) + ...+ wi−1 · I(xi−1)− wi · I(xi) + wi+1 · I(xi+1)

+ ...+ wn · I(xn)� k − wi gdw.
I |=w1 · x1 + ...+ wi−1 · xi−1 − wi · xi + wi+1 · xi+1 + ...+ wn · xn � k − wi

Für eine effiziente Implementierung siehe auch 3.6.1.
Durch diese Umformung können negative Gewichte entstanden sein. Um ein

normalisiertes Constraint zu erhalten, müssen diese eliminiert werden.

3.1.3 Negative Gewichte eliminieren

Existiert ein wj mit j ∈ [1..n] und wj < 0, dann muss das Constraint für die
weitere Verarbeitung gemäß Proposition 3.7 umgeformt werden, sodass für alle
wi mit i ∈ [1..n] gilt wi > 0.

13

Beispiel.

1 · x1 − 2 · x2 ≥ 1
gdw. 1 · x1 − 2 · (1− x2) ≥ 1
gdw. 1 · x1 − 2 + 2 · x2 ≥ 1
gdw. 1 · x1 + 2 · x2 ≥ 1 + 2
gdw. 1 · x1 + 2 · x2 ≥ 3

Im gleichen Schritt sind Summanden zu entfernen, deren Gewicht exakt
null ist, da sie irrelevant sind. Im Folgenden wird angenommen, dass für alle
Gewichte wi mit i ∈ [1..n] gilt: wi > 0.

Proposition 3.8. Das Constraint
w1 · x1 + ...+ wj−1 · xj−1 + 0 · xj + wj+1 · xj+1 + ...+ wn · xn � k
ist äquivalent zu
w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k.

Beweis. Es sei I eine Interpretation.

I |=w1 · x1 + ...+ wj−1 · xj−1 + 0 · xj + wj+1 · xj+1 + ...+ wn · xn � k gdw.
w1 · I(x1) + ...+ wj−1 · I(xj−1) + 0 · I(xj) + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k gdw.
w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj+1 · I(xj+1) + ...+ wn · I(xn)� k gdw.

I |=w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k

3.2 Vereinfachungen

In einem normalisierten PB-Constraint
∑n

j=1
wj ·xj � k erscheint jede Variable

v ∈ V höchstens einmal. Sein Komparator � ist Kleiner-gleich, Größer-gleich
oder gleich. Alle Gewichte w1, ..., wn sind größer als null.

Für die Vereinfachungen wird angenommen, dass die Constraints zuvor nor-
malisiert wurden.

3.2.1 Aufspüren trivialer Constraints und Einerklauseln

Unter bestimmten Bedingungen lässt sich ein PB-Constraint auf eine äquiva-
lente simplere Aussage reduzieren (siehe Abbildung 1). Die Wahl der äqui-
valenten Aussage hängt von k und � ab. Der Wert sum ist die Summe
der Gewichte: sum =

∑n

j=1
wj . Das kleinste Gewicht wmin ist definiert als

wmin = min{w1, ..., wn}.

14

⟙

k∈ℤ

PB-Constraint c ⟘⊲ = ≥

⟘ PB-Constraint c∧x
x ∊ Lits(c)

⟙⊲ = ≤ ∨x
x ∊ Lits(c)

∨x
x ∊ Lits(c)

∧x
x ∊ Lits(c)

-1 0 1..w
min

 … sum-w
min

sum sum+1

..sum-1

Abbildung 1: Äquivalente Aussagen zu einem normalisierten PB-Constraint c in
Abhängigkeit von k und � für n ≥ 2 und wmin ≥ 1

Ein normalisiertes Constraint in der Form
∑n

j=1
wj · xj ≥ −5 entspricht

beispielsweise einer Tautologie, da wj > 0 für alle j ∈ [1..n]. Ein normali-
siertes Constraint in der Form

∑
wj · xj ≤ 0 entspricht der Aussage

∧
x∈Lits(c)

x.

PB-Constraints, die in keine äquivalente, nicht pseudo-boolesche Aussage umge-
wandelt werden können, heißen „echte“ PB-Constraints. Lediglich diese müssen
als PB-Constraint weiterverarbeitet werden.

Proposition 3.9. Die linke Seite eines normalisierten Constraints ist unter allen
Interpretationen stets größer oder gleich null.

Beweis. Laut Defintion gilt ∀x ∈ L : I(x) ≥ 0.
Für ein normalisiertes PB-Constraint gilt ∀j : wj > 0 laut 3.1.3.
Für die Multiplikation gilt ∀a, b ∈ N : a · b ≥ 0 und für die Addition

∀a, b ∈ N : a+ b ≥ 0.
Also ist

∑
wj · I(xj) stets größer oder gleich null.

Die folgenden Propositionen bilden die Grundlage für die referenzierte Ab-
bildung.

Proposition 3.10. Das Constraint
∑
wj · xj ≥ k entspricht einer Tautologie

für k ≤ 0.

Beweis. Folgt direkt aus Proposition 3.9.

Proposition 3.11. Das Constraint
∑
wj · xj ≤ k ist unerfüllbar für k ≤ −1.

Beweis. Folgt direkt aus Proposition 3.9.

Proposition 3.12. Das Constraint
w1 · x1 + ...+ wn · xn ≤ 0
ist äquivalent zu
x1 ∧ ... ∧ xn mit wi ≥ 1 für alle i ∈ [1..n].

15

Beweis. Es sei I eine Interpretation.

I |=w1 · x1 + ...+ wn · xn ≤ 0 gdw.
w1 · I(x1) + ...+ wn · I(xn) ≤ 0 gdw.
I(x1) = 0 ∧ ... ∧ I(xn) = 0 gdw.

I |=x1 ∧ ... ∧ xn per Definition (2.1)

Proposition 3.13. Das Constraint w1 · x1 + ...+wn · xn ≥ k ist äquivalent zu
x1 ∨ ... ∨ xn für alle k ∈ [1..wmin] und wmin ≥ 1.

Beweis.

I |=w1 · x1 + ...+ wn · xn ≥ k gdw.
I 2w1 · x1 + ...+ wn · xn < k gdw.
I 2x1 ∧ ... ∧ xn gdw. da k ∈ [1..wmin]
I |=x1 ∧ ... ∧ xn gdw.
I |=x1 ∨ ... ∨ xn

Proposition 3.14. Das Constraint
w1 · x1 + ...+ wn · xn ≥ sum
ist äquivalent zu
x1 ∧ ... ∧ xn mit wi ≥ 1 für alle i ∈ [1..n].

Beweis. Wenn der Komparator umgewandelt wird gemäß Proposition 3.4 und
dann das Constraint wieder in die normalisierte Form gebracht wird gemäß
Proposition 3.7, dann geht der Beweis hervor aus Proposition 3.12.

w1 · x1 + ...+ wn · xn ≥ sum ≡
w1 · x1 + ...+ wn · xn ≤ sum− sum gdw.
x1 ∧ ... ∧ xn (gemäß Proposition 3.12)

Proposition 3.15. Das Constraint
w1 · x1 + ...+ wn · xn ≤ k
ist äquivalent zu
x1 ∨ ... ∨ xn für alle k ∈ [sum− wmin..sum− 1] mit wi ≥ 1 für i ∈ [1..n].

Beweis. Wenn der Komparator umgewandelt wird gemäß Proposition 3.4 und
dann das Constraint wieder in die normalisierte Form gebracht wird gemäß
Proposition 3.7, dann geht der Beweis hervor aus Proposition 3.13.

16

Proposition 3.16. Das Constraint w1 ·x1 + ...+wn ·xn ≥ k ist unerfüllbar für
alle k > sum.

Beweis. Folgt trivialerweise aus der Bedingung, dass sum die Summe aller Ge-
wichte ist.

Proposition 3.17. Das Constraint w1 · x1 + ...+ wn · xn ≤ k entspricht einer
Tautologie für alle k ≥ sum.

Beweis. Folgt trivialerweise aus der Bedingung, dass sum die Summe aller Ge-
wichte ist.

Einerconstraints von der Form w ·x�k können stets in Klauseln umgewandelt
werden, siehe dazu 3.2.6.

Gleichheitsconstraints werden sowohl in die Kleiner-gleich-Zeile als auch in die
Größer-gleich-Zeile eingeordnet. Das Constraint ist äquivalent zu der Konjunk-
tion der beiden Aussagen.

3.2.2 Gewichte sättigen

Zu einem Constraint
∑n

j=1
wj · xj ≥ k existiert ein äquivalentes Constraint∑n

j=1
w′j · xj ≥ k, sodass für alle w′j gilt: w′j ≤ k. Constraints von der Form∑n

j=1
wj · xj ≥ k werden „gesättigt“ genannt, wenn für alle wj gilt: wj ≤ k.

Größer-gleich-Constraints Angenommen das Constraint
∑n

j=1
wj · xj ≥ k

enthält den Summanden wi ·xi mit i ∈ [1..n] und wi > k. Da im Fall I(xi) = 1
das Constraint mit dem Summand wi · xi unter I als erfüllt gilt, gilt es ebenso
als erfüllt, wenn der Summand k · xi beträgt. Laut der „Sättigungsregel“ auf
Seite 706 in [?] kann deshalb in diesem Fall wi stets durch k ersetzt werden.

Beispiel.

1 · x1 + 5 · x2 ≥ 3
≡1 · x1 + 3 · x2 ≥ 3

Kleiner-gleich-Constraints können in Größer-gleich-Constraints umgeformt
werden, damit sich die Sättigungsregel anwenden lässt. Wie die Komparatorum-
formung, die Sättigung und die Rückumformung in einem Schritt ausgeführt
werden können wird in 3.6.4 erläutert.

17

3.2.3 Gewichte verringern mit Hilfe des ggT

Die Gewichte in einem PB-Constraint lassen sich verringern, indem sie durch
ihren größten gemeinsamen Teiler (ggT) geteilt werden. Die rechte Seite k wird
durch die selbe Zahl geteilt. Dieser Schritt ist insbesondere wichtig, um die
Äquivalenz zwischen einem PB-Constraint und einer Klausel zu finden, zum
Beispiel 2 · x1 + 2 · x2 ≥ 2 ≡ 1 · x1 + 1 · x2 ≥ 1 ≡ x1 ∨ x2.

Proposition 3.18. Das Constraint
∑n

j=1
wj · xj � k ist äquivalent zu

∑n

j=1
wj/ggT ({w1, ..., wn}) · xj ≤ bk/ggT ({w1, ..., wn})c für � =≤ und zu∑n

j=1
wj/ggT ({w1, ..., wn}) · xj ≥ dk/ggT ({w1, ..., wn})e für � =≥.

Beweis. Folgt aus grundlegenden mathematischen Erkenntnissen.

Beispiel.

12 · x1 + 18 · x2 + 24 · x3 ≤ 43
gdw. 12/6 · x1 + 18/6 · x2 + 24/6 · x3 ≤ b43/6c
gdw. 2 · x1 + 3 · x2 + 4 · x3 ≤ 7

3.2.4 Triviale Belegung von Variablen

Es können in PB-Constraints mit der Probing-Methode Literale belegt werden.

Proposition 3.19. Aus c = w1 ·x1 + ...+wj ·xj + ...+wn ·xn ≤ k mit wj > k
folgt c ≡ c ∧ xj .

Beweis. Folgt aus der Definition des Vergleichsoperators.

Beispiel.

1 · x1 + 9 · x2 + 2 · x3 ≤ 5
≡1 · x1 + 9 · x2 + 2 · x3 ≤ 5 ∧ x2

Proposition 3.20. Aus c = w1 · x1 + ... + wj · xj + ... + wn · xn ≥ k mit
(

∑n

i=1
wi)− wj < k folgt c ≡ c ∧ xj .

Beweis. Es sei I eine Interpretation.
Mit (

∑n

i=1
wi)− wj < k gilt: Aus I |= c folgt I(xj) = 1.

Daraus folgt: I |= c gdw. I |= c ∧ I |= xj

Beispiel.

I |= 1 · x1 + 1 · x2 + 5 · x3 ≥ 6
gdw. I |= 1 · x1 + 1 · x2 + 5 · x3 ≥ 6 ∧ x3 da w1 + w2 < k

18

3.2.5 Constraint in PB- und Klauselpart unterteilen

Laut Eén et. al [ES06] lässt sich die Anzahl der Summanden eines echten PB-
Constraints verkürzen, falls ein Klauselteil extrahiert werden kann. Ein Größer-
gleich-Constraint enthält einen Klauselteil, wenn es ein Gewicht wj gibt mit
j ∈ [1..n], sodass wj = k. Das Aufteilen eines PB-Constraints c in einen reinen
Klauselteil cK und einen verbleibenden echten PB-Teil cP B hat den Vorteil,
dass das verbleibende PB-Constraint cP B kürzer ausfällt als das ursprüngliche
Constraint c. Dies ist allerdings nur der Fall, sofern mindestens zwei Literale
in den Klauselpart verschoben werden konnten. Denn sowohl cK als auch cP B

wird ein neues Literal hinzugefügt. Die Aufteilung ist vorteilhaft, denn einerseits
wird cP B meist in eine kürzere KNF transformiert als c. Andererseits liegt der
Klauselteil cK bereits in der konjunktiven Normalform vor. Zunächst wird eine
frische Variable z ∈ V benötigt mit z /∈ V ars(c). Weiterhin sind cP B und cK

definiert wie folgt:
cK :=

∨
xj ∨ z mit j ∈ [1..n] undwj = k

cP B := k · z +
∑

wj · xj ≥ k mit j ∈ [1..n] undwj 6= k

Es gilt
∑
wj · xj ≥ k ist erfüllbar gdw. cP B ∧ cK erfüllbar ist. Sowohl alle

Literale von c mit dem Gewicht k als auch z bilden die Summanden in cK

mit jeweils dem Gewicht 1. cP B enthält sowohl die Summanden aller anderen
Literale von c als auch k · z.

3.2.6 Constraints mit einem oder zwei Literalen

Normalisierte PB-Constraints mit weniger als 3 Variablen können direkt im
Präprozessor in eine KNF transformiert werden. Ein PB-Constraint c mit n = 2
ist in der Form w1 · x1 + w2 · x2 � k und wird nun erläutert. Es wird w1 ≤ w2
angenommen ohne Beschränkung der Allgemeinheit.

Größer-gleich-Constraints c ≡



> für k ≤ 0
x1 ∨ x2 für k ∈ [1..w1]
x2 für k ∈ (w1..w2]
x1 ∧ x2 für k ∈ (w2..w1 + w2]
⊥ für k > w1 + w2

Falls k ≤ 0, dann ist c eine Tautologie gemäß Proposition 3.10.
Falls k ∈ [1..w1], dann ist c ≡ x1 ∨ x2 gemäß der Sättigungsregel (3.2.2)

und Proposition 3.18.
Falls k ∈ (w1..w2], dann gilt gemäß Proposition 3.20:

c ≡ x2 ∧ w1 · x1 ≥ k − w2 ≡ x2.
Falls k ∈ (w2..w1 + w2], dann ist c ≡ x1 ∧ x2 gemäß Proposition 3.20.
Falls k > w1 + w2, dann ist c unerfüllbar gemäß Proposition 3.16.

19

Kleiner-gleich-Constraints c ≡



⊥ für k ≤ −1
x1 ∧ x2 für k ∈ [0..w1)
x2 für k ∈ [w1..w2)
x1 ∨ x2 für k ∈ [w2..w1 + w2)
> für k ≥ w1 + w2

Falls k ≤ −1, dann ist c unerfüllbar gemäß Proposition 3.11.
Falls k ∈ [0..w1), dann ist c ≡ x1 ∧ x2 gemäß Proposition 3.19.
Falls k ∈ [w1..w2), dann gilt gemäß Proposition 3.19:

c ≡ x2 ∧ w1 · x1 ≤ k ≡ x2.
Falls k ∈ [w2..w1 + w2), dann ist c ≡ x1 ∨ x2. Gemäß Proposition 3.26

und Proposition 3.18 kann das Constraint in die Form 1 · x1 + 1 · x2 ≤ 1
gebracht werden. Der Komparator wird gemäß Proposition 3.4 in ein Größer-
gleich umgeformt und es verbleibt eine Klausel.

Falls k ≥ w1 + w2, dann ist c eine Tautologie gemäß Proposition 3.17.

Einerconstraints Gegeben sei das Constraint c = w ·x�k. Für Größer-gleich-
Constraints gilt:

c ≡


> für k ≤ 0
x für k ∈ [1..w]
⊥ für k > w

Und für Kleiner-gleich-Constraints:

c ≡


⊥ für k ≤ −1
x für k ∈ [0..w − 1]
> für k ≥ w

Einerklauseln werden an dieser Stelle für das Propagieren vorgemerkt.

Gleichheitsconstraints Das Constraint
∑
wj ·xj = k ist äquivalent zu

∑
wj ·

xj ≤ k∧
∑
wj ·xj ≥ k. Also können hier sowohl die Vereinfachungen für Größer-

gleich-Constraints als auch die Vereinfachungen für Kleiner-gleich-Constraints
berücksichtigt werden. Beide Ausdrücke sind in einer Konjunktion zu vereinen.

Beispiel.

1 · x1 + 2 · x2 = 2
gdw. 1 · x1 + 2 · x2 ≥ 2 ∧ 1 · x1 + 2 · x2 ≤ 2
gdw. x2 ∧ (x1 ∨ x2)
gdw. x2 ∧ x1

3.2.7 Erfüllbarkeit von Gleichheits-Constraints prüfen

Unerfüllbare Gleichheitsconstraints können direkt durch ⊥ ersetzt werden, ohne
sie in weiteren Schritten umformen zu müssen. Es kommt vor, dass Gleichungen

20

nicht erfüllbar sind: nämlich wenn bei einem Größer-gleich-Constraint die rechte
Seite k einen unerreichbar hohen Wert repräsentiert — oder wenn ein norma-
lisiertes Kleiner-gleich-Constraint ein k < 0 aufweist. Bei Größer-gleich- und
bei Kleiner-gleich-Constraints wird bereits die Erfüllbarkeit im Abschnitt 3.2.1
überprüft.

Etwas komplexer ist das Testen der Erfüllbarkeit einer Gleichung c mit Gleich-
heitskomparator. Hier kann mit Hilfe der Brute-Force-Methode versucht werden
eine Interpretation zu finden, die c erfüllt. Wie die Lösungsmenge effizient zu
berechnen ist wird in 3.6.5 erläutert.

3.3 Propagieren

Eine Klausel x kann benutzt werden, um das Literal x bzw. x in jedem anderen
Constraint der selben Formel zu eliminieren. Eine „Einerklausel“ kann entweder
in der Formel vorkommen oder aber in anderen Schritten erzeugt worden sein
(3.2.1, 3.2.4, 3.2.5, 3.4).

Das Propagieren mit Klauseln wurde bereits in [E+01] von Ehrig et al. er-
läutert. Es sei k1 eine Einerklausel mit dem positiven Literal x ∈ L und k2 eine
beliebige Klausel aus einer Formel F . Enthält k2 das Literal x positiv, dann kann
k2 aus F entfernt werden. Enthält k2 das negative Literal x, dann wird jedes
Vorkommen von x in k2 aus den Summanden entfernt. Dieses Verfahren kann
auf PB-Constraints ausgeweitet werden. Beim Propagieren mit k1 und einem
PB-Constraint c wird jedes Vorkommen von w · x mit w ∈ Z entfernt und w
von der rechten Seite subtrahiert.

Proposition 3.21. Die Formel
xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj · xj + wj+1 · xj+1 + ...+ wn · xn � k
ist äquivalent zu
xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k − wj .

Beweis.

I |= xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj · xj + wj+1 · xj+1 + ...

+ wn · xn � k gdw.
I(xj) = 1 ∧ w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj · I(xj) + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k gdw.
I(xj) = 1 ∧ w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj · 1 + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k gdw.
I(xj) = 1 ∧ w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k − wj gdw.
I |= w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k − wj

21

Sofern vorhanden, wird w ·x mit w ∈ Z aus den Summanden von c entfernt.

Proposition 3.22. Die Formel
xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj · xj + wj+1 · xj+1 + ...+ wn · xn � k
ist äquivalent zu
xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k.

Beweis.

xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj · xj + wj+1 · xj+1

+ ...+ wn · xn � k gdw.
I(xj) = 0 ∧ w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj · I(xj) + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k gdw.
I(xj) = 0 ∧ w1 · I(x1) + ...+ wj−1 · I(xj−1) + wj+1 · I(xj+1)

+ ...+ wn · I(xn)� k gdw.
xj ∧ w1 · x1 + ...+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k

Das Propagieren muss stets wiederholt werden, nachdem eine „Einerklausel“
entsteht. Dieser Fall kann auch direkt nach dem Propagieren eintreten.

Beispiel.

x2 ∧ 1 · x1 + 2 · x2 ≥ 3 ∧ 2 · x1 + 2 · x3 = 2 ≡
x2 ∧ 1 · x1 ≥ 1 ∧ 2 · x1 + 2 · x3 = 2 ≡
x2 ∧ x1 ∧ 2 · x1 + 2 · x3 = 2 ≡
x2 ∧ x1 ∧ 2 · x3 = 0 ≡
x2 ∧ x1 ∧ x3

3.4 Resolution

Mithilfe des Resolutionsverfahrens kann aus zwei PB-Constraints c1 und c2 der
selben Formel ein weiteres Constraint, die Resolvente c3, gebildet werden. Die
Resolvente enthält alle Variablen aus c1 und c2, wobei mindestens eine Varia-
ble eliminiert wird. So kann ein besonders kurzes Constraint c3 entstehen, das
die Lösungsmöglichkeiten der Formel stark einschränkt oder ein Modell explizit
sichtbar werden lässt.

Nun wird erläutert, wie das Resolutionsverfahren angewendet wird. Mit
den Regeln des Schnittebenenverfahrens können PB-Constraints addiert, mul-
tipliziert und dividiert werden. Zur Resolution wird eine Kombination aus der
Multiplikations- und Additionsregel verwendet [RM09]. Es erlaubt das Schließen
von zwei Constraints c1 und c2 auf ein neues Constraint c3, sodass mindestens
ein Literal eliminiert wird. Aus der Resolvente c3 und einem anderen geeigneten

22

Constraint kann ggf. wiederum eine Resolvente gebildet werden. Im Optimal-
fall wird eine Resolvente gefunden, die die Unerfüllbarkeit der Formel oder als
Einerklausel die Belegung einer Variable zeigen kann.

Es seien wp, wq ∈ N, k1, k2 ∈ Z und x ∈ L. Weiterhin sei wp · x Sum-
mand von c1 und wq · x Summand von c2. Es werden alle Gewichte und die
rechte Seite der Gleichung c1 multipliziert mit α = wq/ggT (wp, wq). Ebenso
werden alle Gewichte und die rechte Seite der Gleichung c2 multipliziert mit
β = wp/ggT (wp, wq). Kommt ein Literal nur in einem der beiden Constraints
vor, wird hier angenommen, dass es mit dem Gewicht null auch im anderen
vorkommt. c3 wird wie folgt erschlossen:

c1 =
∑
aj · xj � k1

c2 =
∑
bj · xj � k2

c3 =
∑

(α · aj + β · bj) · xj � α · k1 + β · k2
Nun enthält c3 den Summanden wp ·wq/ggT (wp, wq) · (x+ x). Somit wird

x in c3 eliminiert:

Proposition 3.23. Wenn x ∈ Lits(c1) und x ∈ Lits(c2) gilt, dann lässt sich
c3 so umformen, dass x /∈ Lits(c3) und x /∈ Lits(c3).

Beweis. Es sei I eine Interpretation. Wenn x ∈ Lits(c1) und x ∈ Lits(c2) gilt,
dann ist c3 in der Form w1 ·x1+...+wp ·wq/ggT (wp, wq)·(x+x)+...+wn ·xn�k.

I |=c3 gdw.
I |=w1 · x1 + ...+ wp · wq/ggT (wp, wq) · (x+ x) + ...+ wn · xn � k gdw.

w1 · I(x1) + ...+ wp · wq/ggT (wp, wq) · (I(x) + I(x)) + ...+ wn · xn � k

gdw.
I |=w1 · x1 + ...+ wp · wq/ggT (wp, wq) · 1 + ...+ wn · xn � k gdw.
I |=w1 · x1 + ...+ wn · xn � k − wp · wq/ggT (wp, wq) =⇒
Lits(w1 · x1 + ...+ wn · xn � k − wp · wq/ggT (wp, wq)) ∩ {x, x} = ∅

Aus der Unerfüllbarkeit der Resolvente c3 folgt zur Unerfüllbarkeit von c1
und c2:

Proposition 3.24. Ist I ein Modell für c1 ∧ c2, dann ist I ein Modell für c3.

Beweis. Es sei F = c1 ∧ c2 ∧ ... eine Formel. Dann folgt aus den Reglen der
Resolution, dass F ≡ F ∧ c3. Daraus folgt, dass I |= c1 ∧ c2 =⇒ I |= c3.

Beispiel.

c1 = 1 · x1 + 1 · x2 + 3 · x3 ≥ 5
c2 = 1 · x4 + 2 · x2 + 4 · x5 ≥ 6

c3 = 2 · x1 + 2 · x2 + 6 · x3 + 1 · x4 + 2 · x2 + 4 · x5 ≥ 10 + 6

23

c3 gdw.
2 · x1 + 2 · (x2 + x2) + 6 · x3 + 1 · x4 + 4 · x5 ≥ 16 gdw.
2 · x1 + 2 · 1 + 6 · x3 + 1 · x4 + 4 · x5 ≥ 16 gdw.
2 · x1 + 6 · x3 + 1 · x4 + 4 · x5 ≥ 14.
2 + 6 + 1 + 4 � 14 =⇒
c3 ≡ ⊥ =⇒
c1 ∧ c2 ≡ ⊥

Es sei F = c1 ∧ c2 eine Formel. Die normalisierten Constraints c1 und c2
eignen sich zur Resolution, wenn ihre Resolvente c3 nicht in F ist, ein Litreal in
c1 positiv und in c2 negativ vorkommt und sich die Komparatoren von c1 und
c2 gleichen. Constraints c1 und c2 mit unterschiedlichen Komparatoren können
für dieses Verfahren umgeformt werden (3.1.1), sodass �1 und �2 identisch
sind. Die Resolvente wird gemäß Abbildung 2 (3.5) so weiterverarbeitet, dass
sie normalisiert, ggf. in eine Klausel umgewandelt, zum Propagieren genutzt
und für weitere Resolutionsschritte berücksichtigt wird. Sie wird abschließend
der Formel F hinzugefügt, sodass F ′ = c1 ∧ c2 ∧ c3.

Es könnte einen Grenznutzen der Resolution geben: Die Resolvente c3 kann
bis zu |Lits(c1)|+ |Lits(c2)| − 2 Literale enthalten und deshalb sehr lang wer-
den. Es empfiehlt sich aus praktischen Gründen eine Maximallänge zu definie-
ren. Beim Erschließen der Resolvente werden außerdem Gewichte multipliziert,
sodass sehr große Zahlen entstehen können, die das Preprocessing wiederum
verlangsamen. Bei Verarbeitung mittels Computer müssen Zahlenprodukte ver-
mieden werden, die den Arbeitsspeicher übersteigen.

3.5 Abhängigkeiten der Verarbeitungsschritte

Die Reihenfolge der Verarbeitungsschritte ist so zu wählen, dass jeder Schritt
mindestens einmal, aber möglichst selten durchgeführt wird. Einige Verarbei-
tungsschritte können jedoch das Ziel eines anderen Schritts rückgängig machen
oder sogar verbessern. Nachdem in den PB-Constraints Literalen konkrete Wer-
te zugewiesen wurden – wie in 3.3 oder 3.2.1 – wird die rechte Seite k geändert
und die Anzahl der Literale im Constraint verändert sich. Somit lassen sich
möglicherweise durch den Schritt „Aufspüren trivialer Constraints und Einer-
klauseln“ weitere Literale festlegen. Sollte sich der größte gemeinsame Teiler
(ggT) aller Literale nach dem Entfernen eines Literals vergrößern, dann sollte
der Schritt „Gewichte verringern mit Hilfe des ggT“ wiederholt werden. Eben-
falls ist es möglich, dass nach dem Entfernen bzw. Propagieren von Literalen
ein Teil im PB-Constraint entsteht, der sich als Klausel formulieren lässt. Der
Schritt „Constraint in PB- und Klauselpart unterteilen“ sollte nun durchgeführt
werden, um einen Klausel- vom PB-Part zu trennen.

24

Die gewählte Reihenfolge der Schritte im Text von Eén ([ES06], Seite 3f)
ist folgende:

1. Alle Komparatoren in Größer-gleich umwandeln

2. Negative Gewichte eliminieren

3. Wiederholt vorkommende Variablen zusammenfügen

4. Gewichte aufsteigend sortieren

5. Aufspüren trivialer Constraints

6. Gewichte sättigen

7. Gewichte verringern mit Hilfe des ggT

8. Propagieren

9. Constraint in PB- und Klauselpart unterteilen

Allerdings ist es möglich, dass nach Schritt 9 die Ausführung von Schritt 5
und anschließend Schritt 8 sinnvoll ist. Ebenso könnte nach Schritt 8 wiederum
Schritt 7 erforderlich sein. Sollte sich nämlich nach dem Propagieren der ggT
einer Gleichung ändern, ist das Ziel von Schritt 7 nicht mehr erfüllt. Sollte der
PB-Teil nach Schritt 9 nur ein Literal enthalten, könnte dies in Schritt 5 in
eine Einerklausel umgewandelt werden. Somit ist Propagieren sinnvoll (Schritt
8). Abschließend wird eine neu entwickelte Reihenfolge vorgestellt. Zusätzlich
wurden in dieser Arbeit folgende Schritte hinzugefügt:

• Constraints mit einem oder zwei Literalen

• Triviale Belegung von Variablen

• Erfüllbarkeit von Gleichheits-Constraints prüfen

Die Abhängigkeiten der Verarbeitungsschritte werden nun aufgezählt.
Nach dem Ändern des Komparators:

• Negative Gewichte eliminieren

Nach dem Zusammenfügen wiederholt vorkommender Variablen:

• Negative Gewichte eliminieren

• Gewichte sättigen

• Aufspüren trivialer Constraints und Einerklauseln

Nach dem Eliminieren negativer Gewichte:

25

Abbildung 2: Verarbeitungsschritte des Präprozessors

Wiederholt vorkommende Variablen zusammenfügen

Ändern des Komparators

Negative Gewichte elimineren

Gewichte sortieren (optional)

Aufspüren trivialer Constraints und Einerklauseln

Einerklauseln vorhanden

Propagieren

Sonst

Resolution

Neue Resolventen entdeckt Sonst

Gewichte sättigen

Gewichte verringern mit Hilfe des ggT

Aufspüren trivialer Constraints und Einerklauseln

Constraint in PB- und Klauselpart unterteilen

Neue Klauseln entstanden

Aufspüren trivialer Constraints und Einerklauseln

Sonst

Triviale Belegung von Variablen

Einerklauseln vorhanden

Propagieren

Aufspüren trivialer Constraints und Einerklauseln

Sonst

Erfüllbarkeit von Äquivalenz-
Constraints prüfen (optional)

26

• Gewichte aufsteigend sortieren

• Aufspüren trivialer Constraints und Einerklauseln

• Triviale Belegung von Variablen

Nach dem Sättigen der Gewichte:

• Aufspüren trivialer Constraints und Einerklauseln

• Constraint in PB- und Klauselpart unterteilen

Nach dem Gewichte verringern mit Hilfe des ggT:

• Aufspüren trivialer Constraints und Einerklauseln

Nach der trivialen Belegung von Variablen:

• Propagieren

Nach dem Propagieren, falls Constraints verändert wurden:

• Aufspüren trivialer Constraints und Einerklauseln

• Gewichte sättigen

• Gewichte verringern mit Hilfe des ggT

• Constraint in PB- und Klauselpart unterteilen

Nach dem Klauselpart Extrahieren, falls Constraints verändert wurden:

• Aufspüren trivialer Constraints und Einerklauseln

• Triviale Belegung von Variablen

Nach dem Auffinden oder Erzeugen von Einerklauseln:

• Propagieren

Für den Schritt „Erfüllbarkeit von Gleichheits-Constraints prüfen“ sind kurze
Constraints günstig. Sie sollten deshalb am Schluss ausgeführt werden. Die Re-
solution sollte aus Performancegründen vor dem „Constraint in PB- und Klau-
selpart unterteilen“ durchgeführt werden. Mittels Resolution würde andernfalls
aus dem aufgespalteten Klausel- und PB-Teil eines Constraints c eine Resolvente
erstellt werden, die dem ursprünglichen Constraint c gleicht. Um die Resolution
mit allen Constraints durchzuführen, würden mehr Schritte benötigt, denn es
würde eine neue Resolvente erstellt werden aus dem PB-Teil von c mit jeder
Resolventen, die aus dem Klauselteil und einem weiteren Constraint generiert
wurde.

27

Vor dem Sättigen der Gewichte (3.2.2) ist das „Aufspüren trivialer Cons-
traints und Einerklauseln“ nötig. Bei einem Größer-gleich-Constraint mit ne-
gativem k würden alle Gewichte durch das negative k ersetzt werden. Dieses
Constraint wäre im Schritt „Aufspüren trivialer Constraints und Einerklauseln“
zuvor allerdings als Tautologie erkannt worden.

Die demzufolge sinnvolle Reihenfolge ist in Abbildung 2 veranschaulicht.
Alle Schritte beziehen sich auf PB-Constraints. Klauseln müssen nur in den
Schritten „Propagieren“ und „Resolution“ berücksichtigt werden. Zudem wird
die Verarbeitung für ein PB-Constraint abgebrochen, sobald es vollständig in
eine Klausel umgewandelt werden konnte. Dies tritt u.a. ein, wenn nach dem
Schritt „Triviale Belegung von Variablen“ alle Variablen belegt werden konnten
oder bei der Unterteilung in Klausel- und PB-Teil der verbleibende PB-Teil leer
ist.

Für jeden Schritt gilt: Wird die Unerfüllbarkeit festgestellt, dann endet der
Präprozessor. Dies kann geschehen, wenn „triviale Constraints“ aufgespürt wer-
den. Im Schritt „Ändern des Komparators“ wird entschieden, welchen Kompara-
tor die Ausgabeconstraints aufweisen sollen. Der Schritt „Gewichte aufsteigend
sortieren“ (3.6.3) ist für diese Arbeit nicht notwendig, führt aber in der Im-
plementierung dazu, dass das größte bzw. kleinste Gewicht schneller gefunden
werden kann. Ist die Verarbeitung am Endzustand angekommen, werden die
Constraints der PBLib übergeben.

3.6 Implementierungstechniken

Es wurde bereits gezeigt wie die Vereinfachungen auszuführen sind. Hier wird
nun erläutert, wie sie ressourcensparend angewendet werden können mit Hilfe
zusätzlicher Propositionen.

3.6.1 Wiederholt vorkommende Variablen zusammenfügen

Eine wiederholt vorkommende Variable v kann in einem PB-Constraint ebenso
zusammengefügt werden, falls v sowohl positiv als auch negativ im Constraint
vorkommt. Dabei kann gemäß Proposition 3.7 das Literal mit Hilfe des Komple-
ments so umgeformt werden, dass alle Variablen positiv auftreten. Anschließend
können gemäß Proposition 3.5 die Variablen zusammengefasst werden. Im Fol-
genden werden die genannten Propositionen miteinander vereint, sodass ledig-
lich ein Schritt ausgeführt werden muss.

Proposition 3.25. Das Constraint

w1 · x1 + ...+ wi−1 · xi−1 + wi · x+ wi+1 · xi+1 + ...

+ wj−1 · xj−1 + wj · x+ wj+1 · xj+1 + ...+ wn · xn � k

28

ist äquivalent zu

w1 · x1 + ...+ wi−1 · xi−1 + (wi − wj) · x+ wi+1 · xi+1 + ...

+ wj−1 · xj−1 + wj+1 · xj+1 + ...+ wn · xn � k − wj .

Beweis. Geht hervor aus Proposition 3.7 und Proposition 3.5.

Beispiel.

9 · x1 + 3 · x2 + 5 · x2 + 6 · x2 ≤ 16 gdw.
9 · x1 + (+3− 5− 6) · x2 ≤ 16− 5− 6 gdw.
9 · x1 − 8 · x2 ≤ 5

3.6.2 Wechsel des Komparators zwischen Kleiner-gleich und Größer-
gleich

Der Komparator kann gewechselt werden, sodass das umgeformte Constraint
in normalisierter Form vorliegt und für die Umformung nur ein einziges Mal
über alle Summanden iteriert werden muss. Wird der Komparator eines bereits
normalisierten Constraints geändert, dann würde hierbei ein nichtnormalisiertes
entstehen, denn durch diese Umformung entstehen negative Gewichte. Deshalb
ist es vorzuziehen den Komparator so zu invertieren, dass negative Gewichte
ebenfalls eliminiert werden. Dazu wird das Verfahren aus 3.1.1 kombiniert mit
dem Verfahren „Negative Gewichte eliminieren“ (3.1.3). Es werden dann nicht
alle Gewichte mit (−1) multipliziert, sondern nur jene, welche negativ vorkom-
men. Alle Literale mit positivem Gewicht müssen negiert werden. Aufgrund von
Proposition 3.4 muss das k negiert werden. Wegen der Umformung aus Pro-
position 3.7 müssen zu der rechten Seite alle positiv vorkommenden Gewichte
addiert werden. Der Vorteil dieser Variante gegenüber 3.1.1 und anschließendem
3.1.3 liegt darin, dass hier nur einmal über die Summanden iteriert werden muss.

Algorithmus:

1. Negiere alle Literale mit positivem Gewicht

2. Setze k′ := (
∑
wj

j∈[1..n]∧wj>0
)− k

3. �′ =
{
≤ falls � =≥
≥ falls � =≤

4. Multipliziere alle negativen Gewichte mit (−1)

Das umgeformte Constraint ist in der Form c′ =
∑n

j=1
wj ·xj �′ k′. Das Sym-

bol =⇒s mit s ∈ N bedeutet keine Folgerung, sondern lediglich die Ausführung
des Schrittes s.

29

Beispiel.

c1 =− 1 · x1 + 2 · x2 + 3 · x3 ≤ 1 ;1

− 1 · x1 + 2 · x2 + 3 · x3 ≤ 1 ;2

− 1 · x1 + 2 · x2 + 3 · x3 ≤ (2 + 3)− 1 ;3

− 1 · x1 + 2 · x2 + 3 · x3 ≥ 4 ;4

+ 1 · x1 + 2 · x2 + 3 · x3 ≥ 4 ≡ c1

3.6.3 Gewichte aufsteigend sortieren

Das Sortieren der Summanden nach Gewicht ermöglicht in den weiteren Schrit-
ten eine schnellere Verarbeitung. Ein sortiertes Constraint ist in der Form∑n

j=1
wj · xj � k, wobei wi ≤ wi+1 mit i ∈ [1..n − 1]. Bei allen Vereinfa-

chungsschritten bleibt die Sortierung erhalten. Sollen nur Gewichte verarbeitet
werden, die größer sind als ein bestimmter Wert (z. B. wi ≥ k mit i ∈ [1..n]),
müssten bei unsortierten Constraints alle Summanden überprüft werden. Bei ei-
nem sortierten Constraint kann die Iteration direkt abgebrochen werden, sobald
der Index auf ein Gewicht trifft, das den Grenzwert unterschreitet (wj < k mit
j ∈ [1..n]). Die Verarbeitung von sortierten Constraints ermöglicht daher u. a.
bei folgenden Aufgaben eine effizientere Verarbeitung:

• Gewichte sättigen

• Triviale Belegung von Variablen

• Constraint in PB- und Klauselpart unterteilen

Es lässt sich zudem besonders effizient das minimale bzw. das maximale Ge-
wicht eines Constraints bestimmen, da dies das erste bzw. letzte Gewicht des
Constraint darstellt. Das minimale Gewicht wird z. B. bei den Vereinfachungen
aus Abschnitt 3.2.1 benötigt. Zudem hilft die Sortierung beim Implementieren
der Probing-Methode. Sei c = 1 · x1 + 2 · x2 + 5 · x3 ≥ 6 ein Größer-gleich-PB-
Constraint und I eine Interpretation mit I |= c, dann ist zum Beispiel I(x3) = 1
festzulegen aufgrund des hohen Gewichts w3. Hier sollte mit der Untersuchung
der hoch gewichteten Literale begonnen werden, also bei aufsteigend sortier-
ten Gewichten mit dem letzten Element. Wird bei diesem Vorgehen auf ein
Summand mit einem geringen Gewicht gestoßen, dessen Literal nicht von allen
Modellen gleich interpretiert wird, dann werden auch „leichtere“ Literale nicht
von allen Modellen gleich interpretiert. Um die in I zu belegenden Literale effizi-
ent finden zu können, muss durch eine sortierte Summandenreihenfolge iteriert
werden. Selbst beim Propagieren bleibt die Sortierung erhalten. Wenn 5 ·x3 aus
c entfernt wird, ist aufgrund der Sortierung das letzte Gewicht (hier: w2 = 2)
immer noch das größte.

30

3.6.4 Kleiner-gleich-Constraints sättigen

Es sei
∑n

j=1
wj ·xj ≥ k ein PB-Constraint. Falls ein wj existiert mit j ∈ [1..n],

wj > w′j und w′j := −k+
∑n

i=1
wi, dann lässt sich das Gewicht wj reduzieren

auf den Wert w′j .

Proposition 3.26. Das Constraint
w1 · x1 + ... + wj−1 · xj−1 + wj · xj + wj+1 · xj+1 + ... + wn · xn ≤ k mit

wj > w′j ist äquivalent zu
w1 ·x1 + ...+wj−1 ·xj−1 +w′j ·xj +wj+1 ·xj+1 + ...+wn ·xn ≤ k+w′j−wj .

Beweis. Gemäß Proposition 3.4 kann der Komparator zu Größer-gleich umge-
wandelt werden. Nun kann wj gemäß der „Sättigungsregel“ (3.2.2) durch w′j
ersetzt werden. Beim anschließenden Umwandeln zurück in ein Kleiner-gleich-
Constraint ist k′ gemäß Proposition 3.7 so festzulegen, indem alle Gewichte von
k subtrahiert werden. Der Unterschied zwischen k vom Ausgangsconstraint und
k′ ist exakt die Differenz zwischen w′j und wj . Diese muss nun zu k addiert
werden.

3.6.5 Lösungsmenge eines PB-Constraints berechnen

Für den Schritt 3.2.7 muss die Lösungsmenge eines PB-Constraints berechnet
werden. Bei der Brute-Force-Methode werden alle möglichen Interpretationen
getestet. Dieses Vorgehen kostet jedoch viel Rechenleistung. Mit der folgenden
Methode allerdings kann eine Lösung schnell gefunden werden.

Proposition 3.27. Für jedes Größer-gleich-Constraint c gilt: Es sei wj · xj ein
Summand des Constraints c mit wj ≥ k. Alle Interpretationen I mit I(xj) = 1
sind dann ein Modell für c.

Beweis.

w1 · I(x1) + ...+ wj · I(xj) + ...+ wn · I(xn) ≥ k
gdw. w1 · I(x1) + ...+ wj · 1 + ...+ wn · I(xn) ≥ k
gdw. > da wj ≥ k

Bei dem Kleiner-gleich- oder Gleichheits-Constraint c kann die Backtracking-
Methode angewendet werden. Hierbei sollen Interpretationen a priori ausge-
schlossen werden, die dazu führen, dass die linke Seite echt größer als k wird.
Von der folgenden Proposition kann beim Backtracking Gebrauch gemacht wer-
den.

Proposition 3.28. Ist I ein Modell für c und I(xj) = 1 mit j ∈ [1..n], dann
ist I(xi) = 0 für alle i ∈ [1..n]\{j} mit wi > k − wj .

31

Beweis. Folgt aus der Definition des Vergleichsoperators.

Beispiel. Angenommen c lautet 1 · x1 + 3 · x2 + 5 · x3 = 6. Wird dann ein
Modell I gesucht und für den ersten Lösungsversuch I(x3) = 1 angenommen,
so müssen die Summanden 1 · I(x1) + 3 · I(x2) genau 1 ergeben, denn

1 · I(x1) + 3 · I(x2) + 5 · I(x3) = 6 gdw.
1 · I(x1) + 3 · I(x2) + 5 · 1 = 6 gdw.
1 · I(x1) + 3 · I(x2) = 1.

Die hier entwickelte Methode überspringt nun das Prüfen der In-
terpretationen I ′ mit (I ′(x1); I ′(x2); I ′(x3)) = (0; 1; 1) sowie I ′′ mit
(I ′′(x1); I ′′(x2); I ′′(x3)) = (1; 1; 1), da sowohl I ′ als auch I ′′ zu einer linken
Seite größer als k führen würden. Stattdessen wird I(x2) = 0 angenommen.
Die Interpretation I mit

I(x1) = 1, I(x2) = 0, I(x3) = 1 führt zur Lösung. Somit unterscheidet sich
die vorgestellte Methode von der Brute-Force-Methode. Sie kann mit gleich
vielen oder weniger Vergleichen Lösungsmengen eines Constraints finden.

Sind w1 und w2 die niedrigsten Gewichte eines Gleichheitsconstraints c mit
k ∈ [1..w1 + w2), dann lässt sich c direkt ohne Backtracking auf Erfüllbar-
keit untersuchen, da jedes Modell für c genau ein Literal aus Lits(c) auf eins
abbildet.

Proposition 3.29. Es sei c ein PB-Constraint mit Gleichheitskomparator und
k ∈ [1..w1 + w2). Dann gilt

∑
I(x)

x∈Lits(c)
= 1 für alle Interpretationen I mit I |= c.

32

Beweis.

Für
∑

I(x)
x∈Lits(c)

> 1→ I 2 c:

∑
I(x)

x∈Lits(c)
> 1 =⇒ I(xp) = 1 ∧ I(xq) = 1 mit p, q ∈ [1..n], p 6= q

k ∈ [1..w1 + w2) =⇒
wp · 1 + wq · 1 > k =⇒∑n

j=1
wj · I(xj) > k =⇒∑n

j=1
wj · I(xj) 6= k =⇒

I 2 c

Für
∑

I(x)
x∈Lits(c)

= 0→ I 2 c:

k ≥ 1 =⇒
w1 · I(x1) + ...+ wn · I(xn) ≥ 1 =⇒
w1 · 0 + ...+ wn · 0 ≥ 1 =⇒
I 2 c

Proposition 3.30. Es sei c ein PB-Constraint mit Gleichheitskomparator und
k ∈ [1..w1 + w2), dann gilt c ≡

∑
1 · xj = 1

j∈[1..n]∧wj=k

∧
∧
xj

j∈[1..n]∧wj 6=k

bzw. c ≡ ⊥, falls

kein wj existiert mit wj = k.

Beweis. Geht hervor aus Proposition 3.29.

Beispiel.

1 · x1 + 2 · x2 + 3 · x3 = 2 gdw.
1 · x2 = 1 ∧ x1 ∧ x3 gdw.
x2 ∧ x1 ∧ x3

Ist k ∈ [1..w1 + w2) und gilt wj 6= k für alle j ∈ [1..n], dann ist c ≡ ⊥
gemäß Proposition 3.30.

4 Empirische Untersuchung
Die genannten Präprozesstechniken wurden untersucht anhand der 2290 Instan-
zen der PB-Competition 2016 mit einem Zeitlimit von einer Stunde und einem
Speicherlimit von 7 GB. Die Kaktusplots zeigen zu jedem Zeitlimit t die Anzahl
der Instanzen, die in maximal t Sekunden gelöst werden konnten.

33

Abbildung 3: Propagieren

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

ja

nein

Abbildung 4: Aufteilen von PB-Constraints
∑n

j=1
wj · xj ≤ k in PB- und

Klauselteil

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

nein

ja

34

Abbildung 5: Belegen von Literalen durch Probing

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

nein

ja

Das Propagieren allgemein beschleunigt den Lösungsprozess stark (Abb. 3).
Das Aufteilen von Constraints in PB- und Klauselteil (siehe Abschnitt 3.2.5)
führt nur zu einem geringen Vorteile (Abb. 4). Diese Technik sollte auch auf
lange Constraints (n ≥ 5) angewendet werden. Die Probingmethode (Abschnitt
3.2.4) führt zu keinen deutlichen Verbesserungen (Abb. 5).

4.1 PB-Constraints als Disjunktionen

Ein PB-Constraint kann gemäß den Präpositionen 3.13 und 3.15 in eine Dis-
junktion umgewandelt werden. Diese Umwandelung ist nicht in jedem Fall hilf-
reich (Abb. 6). Es ist vorteilhaft, eventuelle Klauseln als PB-Constraint an den
PB-Solver zu übergeben (Abb. 7). Die Umwandelung von

∑n

j=1
wj · xj ≤ k

in eine Disjunktion kann an weitere Bedingungen geknüpft werden, nämlich
falls >, falls n ≤ 5 oder falls ⊥. PB-Constraints in Disjunktionen umzuwan-
deln verlangsamt den Lösungsprozess bei Erfüllbarkeitsproblemen der Familien
Elffers, Nossum und Quimper (Abb. 8). Bei gleichem Zeitlimit konnten mehr
Bigint-Optimierungsprobleme der Familie Lion9-Single-Obj gelöst werden, wenn
PB-Constraints bis zur Länge 5 in Klauseln umgewandelt wurden (Abb. 9). Die
Optimierungsprobleme mit kleinen Integers konnten mit und ohne Umwandelung
von PB-Constraints in Klauseln innerhalb von einer Sekunde gelöst werden.

4.2 Resolution

Das Erstellen von Resolventen bringt einen geringen Vorteil. Es sollte maximal
eine Resolvente

∑n

j=1
wj · xj ≤ k pro Formel erstellt werden (Abb. 10). Sie

sollte nur hinzugefügt werden, falls n ≤ 2 (Abb. 11). Ein derartiges Constraint
kann anschließend in eine Klausel umgewandelt werden (siehe Kapitel 3.2.6).

35

Abbildung 6: Umwandelung von PB-Constraints in Klauseln, wenn möglich

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

nein

ja

Abbildung 7: Weitergabe der Klauseln als ...

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
P
U

-Z
ei

tl
im

it
 i
n
 s

Klauseln

PB-Constraints

36

Abbildung 8: Umwandelung von PB-Constraints in Klauseln, wenn möglich, für
Elffers, Nossum und Quimper, wenn

200 400 600
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

⟘

n ≤ 5

⟙

Abbildung 9: Umwandelung von PB-Constraints in Klauseln, wenn möglich, für
Lion9-Single-Obj, OPT-BIGINT-LIN, wenn

600 800 1000 1200
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

⟘

n ≤ 5

⟙

37

Abbildung 10: Maximale Anzahl der erstellten Resolventen

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

0

1

∞

Abbildung 11: Maximale Länge der erstellten Resolventen

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
P
U

-Z
ei

tl
im

it
 i
n
 s

2

20

38

Abbildung 12: Performancegewinn durch den Präprozessor gegenüber Preenco-
der

1600 1800 2000
0

1000

2000

3000

Anzahl gelöster Instanzen

C
PU

-Z
ei

tl
im

it
 i
n
 s

Preencoder

Präprozessor

5 Fazit und weiterführende Arbeiten

Durch Präprozessortechniken können in der selben Zeit mehr Formeln gelöst wer-
den (Abb. 12). Sehr vorteilhaft sind Propagieren, Aufteilen von PB-Constraints
in PB- und Klauselteil, das Hinzufügen maximal einer Resolvente mit der maxi-
malen Länge 2, dabei keine Umformung von PB-Constraints in Klauseln.

5.1 Ausblick

Lange Disjunktionen als PB-Constraint zu belassen statt sie in Klauseln umzu-
wandeln führt bei 4 von 5 getesteten Instanzenfamilien zu einem Performancege-
winn (Abschnitt 4.1). Es erweist sich sogar als Vorteil, dem PB-Solver Klauseln
als PB-Constraint zu übergeben. Es stellt sich die Frage, ob sich die Performan-
ce eines SAT-Solvers ebenfalls steigert, wenn eine Klausel in ein PB-Constraint
umgewandelt und anschließend per PB-Encoding in mehrere Klauseln und Hilfs-
variablen kodiert wird.

Literaturverzeichnis

[E+01] Ehrig, Hartmut u. a.: Mathematisch-strukturelle Grundlagen der Infor-
matik. Springer, 2001. – 321 S.

[EB05] Een, Niklas ; Biere, Armin: Effective preprocessing in SAT through
variable and clause elimination. In: Lecture notes in computer science
3569 (2005), S. 61–75

39

[ES06] Eén, Niklas ; Sörensson, Niklas: Translating Pseudo-Boolean Cons-
traints into SAT. In: JSAT 2 (2006), Nr. 1-4, 1–26. http://dblp.
uni-trier.de/db/journals/jsat/jsat2.html#EenS06

[PS15] Philipp, Tobias ; Steinke, Peter: PBLib – A Library for Encoding
Pseudo-Boolean Constraints into CNF. In: Heule, Marijn (Hrsg.) ;
Weaver, Sean (Hrsg.): Theory and Applications of Satisfiability Testing
– SAT 2015 Bd. 9340. Springer International Publishing, 2015. – ISBN
978–3–319–24317–7, S. 9–16

[RM09] Roussel, Olivier ; Manquinho, Vasco M.: Pseudo-Boolean and Car-
dinality Constraints. Version: 2009. http://dblp.uni-trier.
de/db/series/faia/faia185.html#RousselM09;http:
//dx.doi.org/10.3233/978-1-58603-929-5-695. In: Biere,
Armin (Hrsg.) ; Heule, Marijn (Hrsg.) ; Maaren, Hans van (Hrsg.) ;
Walsh, Toby (Hrsg.): Handbook of Satisfiability Bd. 185. IOS Press,
2009. – ISBN 978–1–58603–929–5, 695–733

[Sat] The international SAT Competitions web page.
www.satcompetition.org, . – 14.03.2017

40

http://dblp.uni-trier.de/db/journals/jsat/jsat2.html#EenS06
http://dblp.uni-trier.de/db/journals/jsat/jsat2.html#EenS06
http://dblp.uni-trier.de/db/series/faia/faia185.html#RousselM09; http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dblp.uni-trier.de/db/series/faia/faia185.html#RousselM09; http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dblp.uni-trier.de/db/series/faia/faia185.html#RousselM09; http://dx.doi.org/10.3233/978-1-58603-929-5-695

	Einleitung
	Vorbemerkung und verwandte Arbeiten
	Begriffe
	Verwandte Arbeiten

	Präprozessortechniken
	Normalisierung
	Ändern des Komparators
	Wiederholt vorkommende Variablen zusammenfügen
	Negative Gewichte eliminieren

	Vereinfachungen
	Aufspüren trivialer Constraints und Einerklauseln
	Gewichte sättigen
	Gewichte verringern mit Hilfe des ggT
	Triviale Belegung von Variablen
	Constraint in PB- und Klauselpart unterteilen
	Constraints mit einem oder zwei Literalen
	Erfüllbarkeit von Gleichheits-Constraints prüfen

	Propagieren
	Resolution
	Abhängigkeiten der Verarbeitungsschritte
	Implementierungstechniken
	Wiederholt vorkommende Variablen zusammenfügen
	Wechsel des Komparators zwischen Kleiner-gleich und Größer-gleich
	Gewichte aufsteigend sortieren
	Kleiner-gleich-Constraints sättigen
	Lösungsmenge eines PB-Constraints berechnen

	Empirische Untersuchung
	PB-Constraints als Disjunktionen
	Resolution

	Fazit und weiterführende Arbeiten
	Ausblick

	Literaturverzeichnis

