



#### Hannes Strass Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

# Cooperative Games: Stable Sets and Shapley Value

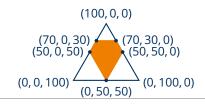
Lecture 12, 8th Jul 2024 // Algorithmic Game Theory, SS 2024

# Previously ...

- In **cooperative** games, players *P* form explicit **coalitions**  $C \subseteq P$ .
- Coalitions receive payoffs, which are distributed among its members.
- We concentrate on **superadditive** games, where disjoint coalitions can never decrease their payoffs by joining together.
- Of particular interest is the **grand coalition** {*P*} and whether it is *stable*.
- An **imputation** is an outcome that is efficient and individually rational.
- Various solution concepts formalise stability of the grand coalition:
  - the core contains all imputations where no coalition has an incentive to leave;
  - the  $\varepsilon$ -core disincentivises leaving the grand coalition via a fine of  $\varepsilon$ ;
  - the **cost of stability** subsidises staying in the grand coalition via a bonus *y*.
- The core is a convex set.

Consider the game G = (P, v) with:

- $P = \{A, B, C\},\$
- $v(P) = 100 \text{ and } v(\{i\}) = 0 \text{ for } i \in P$ ,
- $v({A, B}) = v({A, C}) = 50$ , and  $v({B, C}) = 30$ .









Solution Concept: Stable Sets

Solution Concept: Shapley Value



Cooperative Games: Stable Sets and Shapley Value (Lecture 12) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024

Slide 3 of 24



### **Solution Concept: Stable Sets**



Cooperative Games: Stable Sets and Shapley Value (Lecture 12) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024



### **Stable Sets**

#### Definition [von Neumann and Morgenstern, 1941]

Let G = (P, v) be a cooperative game, and let **a** and **b** be imputations for *G*.

- a dominates **b** via a coalition *C* with  $\emptyset \subsetneq C \subseteq P$ , written **a**  $\succ_C$  **b**, iff
  - $a_i > b_i$  for all  $i \in C$ , and
  - $\sum_{i \in C} a_i \leq v(C).$
- **a dominates b**, written  $\mathbf{a} \succ \mathbf{b}$ , iff **a** dominates **b** via some coalition  $C \subseteq P$ .
- A set  $S \subseteq Imp(G)$  is a **stable set of** G iff both of the following hold:
  - Internal stability: For any two **a**, **b**  $\in$  *S*, we have **a**  $\neq$  **b**.
  - External stability: For every  $\mathbf{b} \in Imp(G) \setminus S$ , there is some  $\mathbf{a} \in S$  with  $\mathbf{a} \succ \mathbf{b}$ .
- If  $a_i > b_i$  for all  $i \in C$ , then every member of C is better off in **a** than in **b**.
- If  $\sum_{i \in C} a_i \le v(C)$ , then C can plausibly threaten to leave the grand coalition.
- Internal stability: No imputations need to be removed from *S*.
- External stability: No imputations can be added to *S*.

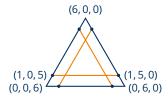






### **Stable Sets: Example and Visualisation**

Recall Hospitals and X-Ray Machines with  $P = \{1, 2, 3\}$  and v(P) = 6, v(C) = 5 if |C| = 2, and v(C) = 0 otherwise.



 $S = \{(1, x, 5 - x) \mid x \in [0, 5]\}$  is a stable set of G = (P, v):

- Internal stability:
  - Consider  $(1, x, 5 x) \in S$  and  $(1, y, 5 y) \in S$ .
  - If x > y, then 5 x < 5 y, thus  $(1, x, 5 x) \neq_{\{2,3\}} (1, y, 5 y)$ .
- External stability:
  - Consider **b** =  $(b_1, b_2, b_3) \in Imp(G) \setminus S$ . Then  $b_1 + b_2 + b_3 = 6$  and  $b_1 \neq 1$ .
  - − If  $b_1 < 1$ , then min  $\{b_2, b_3\} \le 3$  whence  $(1, 4, 1) \succ_{\{1,2\}} \mathbf{b}$  or  $(1, 1, 4) \succ_{\{1,3\}} \mathbf{b}$ .
  - If  $b_1 > 1$ , then  $b_2 + b_3 < 5$ , whence we can choose  $\mathbf{a} \in S$  such that  $\mathbf{a} \succ_{\{2,3\}} \mathbf{b}$ .





# The Core vs. Stable Sets (1)

#### Proposition

- Let G = (P, v) be a cooperative game.
- 1. *Core*(*G*) is contained in every (if any) stable set of *G*.
- 2. If *Core*(*G*) is a stable set of *G*, then it is the only stable set of *G*.

#### Proof.

- 1. Let  $\mathbf{a} \in Core(G)$  and  $\mathbf{b} \in Imp(G)$ .
  - Assume (for contradiction) that for some  $C \subseteq P$ , we have **b**  $\succ_C$  **a**.
  - Then  $a_i < b_i$  for all  $i \in C$  and  $\sum_{i \in C} b_i \le v(C)$ .
  - But then  $\sum_{i \in C} a_i < \sum_{i \in C} b_i \le v(\overline{C})$ .
  - But  $\mathbf{a} \in Core(G)$  means that  $\sum_{i \in C} a_i \ge v(C)$ . Contradiction.
  - Thus  $\mathbf{b} \neq \mathbf{a}$  and  $\mathbf{a}$  is contained in every (if any) stable set of *G*.
- 2. No stable set can be a proper subset of another stable set:
  - If  $S_1 \subsetneq S_2$  and both are stable then  $\mathbf{b} \in S_2 \setminus S_1$  is dominated by some  $\mathbf{a} \in S_1$ .
  - But then  $\mathbf{a} \in S_2$  and  $S_2$  does not satisfy internal stability, contradiction.





# The Core vs. Stable Sets (2)

Proposition

For any superadditive cooperative game G = (P, v), we have  $Core(G) = \{ \mathbf{a} \in Imp(G) \mid \text{there is no } \mathbf{b} \in Imp(G) \text{ with } \mathbf{b} \succ \mathbf{a} \}.$ 

Proof.

- Direction  $\subseteq$  follows from the previous slide, so it remains to show  $\supseteq$ .
- Let  $\mathbf{b} \in Imp(G) \setminus Core(G)$ . Then  $\sum_{i \in P} b_i = v(P)$  and  $b_i \ge v(\{i\})$  for all  $i \in P$ .
- Since **b**  $\notin$  *Core*(*G*), there is a  $C \subseteq P$  such that  $v(C) > \sum_{i \in C} b_i$ , whence  $C \neq \emptyset$ .
- Denote  $\delta := v(C) \sum_{i \in C} b_i$  and define  $\mathbf{a} \in Imp(G)$  with  $\mathbf{a} \succ_C \mathbf{b}$  by setting

 $a_{i} := \begin{cases} b_{i} + \frac{1}{|C|} \cdot \delta & \text{if } i \in C, \\ b_{i} - \frac{d_{i}}{\sum_{j \in P \setminus C} d_{j}} \cdot \delta & \text{otherwise,} \end{cases} \text{ where } d_{j} := b_{j} - v(\{j\}) \text{ for each } j \in P \setminus C.$ 

• Note that  $\sum_{j \in P \setminus C} d_j = \sum_{j \in P \setminus C} b_j - \sum_{j \in P \setminus C} v(\{j\}) \ge \delta = v(C) - \sum_{i \in C} b_i$  because v is superadditive:  $\sum_{j \in P \setminus C} b_j + \sum_{i \in C} b_i = v(P) \ge v(C) + \sum_{j \in P \setminus C} v(\{j\})$ .





### The Core vs. Stable Sets: Example

 $G^{1}$   $P = \{1, 2, 3\}$   $v(C) = \begin{cases} 1 & \text{if } 1 \in C \text{ and } |C| \ge 2, \\ 0 & \text{otherwise.} \end{cases}$ 

- The core of  $G^1$ ,  $Core(G^1) = \{(1, 0, 0)\}$ , is not a stable set of G:
- We have  $(1, 0, 0) \neq (0, 0.5, 0.5)$  since  $(1, 0, 0) \neq_{\{1\}} (0, 0.5, 0.5)$ .
- $\rightsquigarrow$  The core does not necessarily satisfy external stability.
- One stable set of  $G^1$  is  $S_{1,2} = \{(x, 1 x, 0) \mid x \in [0, 1]\}$ :
  - If (x, 1-x, 0),  $(y, 1-y, 0) \in S_{1,2}$ , then x > y would imply 1 x < 1 y.
  - If  $(x, y, z) \in Imp(G^1)$  with z > 0, then  $(x + \frac{z}{2}, y + \frac{z}{2}, 0) >_{\{1,2\}} (x, y, z)$ .
- Likewise,  $S_{1,3} = \{(x, 0, 1 x) \mid x \in [0, 1]\}$  is a stable set of  $G^1$ .

Exercise: Find additional stable sets, if any.





### **Convex Games**

#### Definition

1. A function  $v: 2^{P} \to \mathbb{R}^{+}$  is **supermodular** iff for all  $C, D \subseteq P$ :

 $v(C \cup D) + v(C \cap D) \ge v(C) + v(D)$ 

2. A cooperative game G = (P, v) is **convex** iff v is supermodular.

#### Observation

Function  $v: 2^{P} \to \mathbb{R}^{+}$  is supermodular iff for all  $C \subseteq D \subseteq P$  and all  $i \in P \setminus D$ :

$$v(C \cup \{i\}) - v(C) \le v(D \cup \{i\}) - v(D)$$
(1)

where  $v(C \cup \{i\}) - v(C)$  is player *i*'s **marginal contribution** to coalition *C*.

- A supermodular function is superadditive (via  $v(\emptyset) = 0$ ),
- but not vice versa.





# **Cores of Convex Games (1)**

#### Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (1/2).

- Given G = (P, v) with  $P = \{1, ..., n\}$ , we construct  $\mathbf{a} = (a_1, ..., a_n) \in Core(G)$ .
- Define  $a_1 := v(\{1\}), a_2 := v(\{1,2\}) v(\{1\}), \dots, a_n := v(P) v(P \setminus \{n\}).$
- Payoff vector **a** is efficient by construction:

 $a_1 + a_2 + \ldots + a_n = v(\{1\}) + v(\{1,2\}) - v(\{1\}) + \ldots + v(P) - v(P \setminus \{n\}) = v(P)$ 

- **a** is also individually rational: For all  $i \in P$ , inequality (1) yields  $a_i = v(\{1, \dots, i\}) - v(\{1, \dots, i-1\}) \ge v(\{i\}) - v(\emptyset) = v(\{i\})$
- Thus  $\mathbf{a} \in Imp(G)$ . It remains to show  $\mathbf{a} \in Core(G)$ .





# **Cores of Convex Games (2)**

#### Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (2/2).

- Consider any coalition  $C = \{i, j, ..., k\}$  with  $1 \le i \le j \le ... \le k \le n$ .
- We have  $v(C) = v(\{i\}) v(\emptyset) + v(\{i,j\}) v(\{i\}) + \ldots + v(C) v(C \setminus \{k\}).$
- Due to v being supermodular, inequality (1) yields  $v(\{i\}) - v(\emptyset) \le v(\{1, ..., i\}) - v(\{1, ..., i-1\}) = a_i$   $v(\{i, j\}) - v(\{i\}) \le v(\{1, ..., j\}) - v(\{1, ..., j-1\}) = a_j$   $\vdots$  $v(C) - v(C \setminus \{k\}) \le v(\{1, ..., k\}) - v(\{1, ..., k-1\}) = a_k$
- Therefore  $v(C) \le a_i + a_j + \ldots + a_k$  and since C was arbitrary,  $\mathbf{a} \in Core(G)$ .  $\Box$

#### Every convex game G = (P, v) also has a unique stable set S = Core(G).





### **Solution Concept: Shapley Value**



Cooperative Games: Stable Sets and Shapley Value (Lecture 12) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024



# **Shapley Value: Motivation**

- All solution concepts (for cooperative games) we have seen so far yield sets of payoff vectors.
- For stable sets, there might even be different candidates.
- Unless the core contains only one element, there are even infinitely many allocations in it.
- But to actually pay off players, we can only choose one allocation.
- Which one of them should we choose?

#### Example

#### In Hospitals and X-Rays,

- the core is empty, and
- no imputation is contained in all stable sets.





# **Shapley Value**

Main Idea: Analyse players' marginal contributions to coalitions. ~> Issue: Contributions might depend on the order in which players join. ~> Approach: Look at all possible orders.

#### Definition

Let G = (P, v) be a cooperative game. For one permutation  $\lambda: P \to P$  of players, the **marginal contribution of player**  $i \in P$  is:

 $\mu_G(\lambda, i) := v(\{j \in P \mid \lambda(j) \le \lambda(i)\}) - v(\{j \in P \mid \lambda(j) \le \lambda(i)\})$ 

We denote the set of all permutations of players *P* by  $L_P$ ; observe  $|L_P| = |P|!$ .

Intuition

Players who contribute more to more coalitions should get more overall.







### **Marginal Contributions: Example**

Consider  $G^4 = (P, v)$  with  $P = \{1, 2, 3\}$  and v(P) = 8, additionally

$$v({1}) = 1$$
 $v({2}) = 2$  $v({3}) = 3$  $v({1,2}) = 4$  $v({1,3}) = 5$  $v({2,3}) = 6$ 

The players' marginal contributions are as follows:

| λ       | $\mu_{G^4}(\lambda,1)$ | $\mu_{G^4}(\lambda,2)$ | $\mu_{G^4}(\lambda,3)$ |
|---------|------------------------|------------------------|------------------------|
| 1, 2, 3 | 1                      | 3                      | 4                      |
| 1, 3, 2 | 1                      | 3                      | 4                      |
| 2, 1, 3 | 2                      | 2                      | 4                      |
| 2, 3, 1 | 2                      | 2                      | 4                      |
| 3, 1, 2 | 2                      | 3                      | 3                      |
| 3, 2, 1 | 2                      | 3                      | 3                      |
| Σ       | 10                     | 16                     | 22                     |



Cooperative Games: Stable Sets and Shapley Value (Lecture 12) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024



# Shapley Value (2)

Definition

Let G = (P, v) be a cooperative game and  $i \in P$  be a player.

1. Player *i*'s **raw Shapley value** in *G* is

Shapley<sup>\*</sup>(*G*, *i*) := 
$$\sum_{\lambda \in L_P} \mu_G(\lambda, i)$$

2. Player *i*'s **Shapley value** in *G* is then

Shapley(G, i) := 
$$\frac{1}{|P|!}$$
 · Shapley<sup>\*</sup>(G, i)

### Taken together, the players' Shapley values constitute an allocation: (Shapley(G, 1), ..., Shapley(G, n))





# **Shapley Value (3)**

For computational purposes, it is often better to define the Shapley value in terms of marginal contributions to coalitions instead of permutations. For  $C \subseteq P$  and  $i \in P$ , we set  $\mu_G(C, i) := v(C \cup \{i\}) - v(C)$ . Thus:  $(2^{n-1} \text{ vs. } n! \text{ terms})$ 

Shapley<sup>\*</sup>(G, i) = 
$$\sum_{C \subseteq P \setminus \{i\}} |C|! \cdot (|P| - |C| - 1)! \cdot \mu_G(C, i)$$

Example: Recall  $G^4$  from slide 16:

| $C \subseteq P$ | $ C ! \cdot ( P  -  C  - 1)$ | 1)! · $\mu_{G^4}(C, 1)$ | $ C ! \cdot ( P  -  C $ | $(-1)! \cdot \mu_{G^4}(C, 2)$ | $ C ! \cdot ( P  -  C $ | $-1)! \cdot \mu_{G^4}(C, 3)$ |
|-----------------|------------------------------|-------------------------|-------------------------|-------------------------------|-------------------------|------------------------------|
| Ø               | 1 · 2 · 1                    | = 2                     | $1 \cdot 2 \cdot 2$     | = 4                           | 1 · 2 · 3               | = 6                          |
| {1}             |                              |                         | $1 \cdot 1 \cdot 3$     | = 3                           | $1 \cdot 1 \cdot 4$     | = 4                          |
| {2}             | 1 · 1 · 2                    | = 2                     |                         |                               | $1 \cdot 1 \cdot 4$     | = 4                          |
| {3}             | 1 · 1 · 2                    | = 2                     | $1 \cdot 1 \cdot 3$     | = 3                           |                         |                              |
| {1,2}           |                              |                         |                         |                               | 2 · 1 · 4               | = 8                          |
| {1,3}           |                              |                         | $2 \cdot 1 \cdot 3$     | = 6                           |                         |                              |
| {2,3}           | 2 · 1 · 2                    | = 4                     |                         |                               |                         |                              |
| {1, 2, 3}       |                              |                         |                         |                               |                         |                              |
| Σ               |                              | 10                      |                         | 16                            |                         | 22                           |



Cooperative Games: Stable Sets and Shapley Value (Lecture 12) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024



# **Towards an Axiomatic Characterisation**

#### Definition

Player  $i \in P$  is a **dummy player** in G = (P, v) iff for all  $C \subseteq P$ :

 $v(C \cup \{i\}) = v(C)$ 

#### Definition

Two players  $i, j \in P$  are **symmetric** in G = (P, v) iff for all  $C \subseteq P \setminus \{i, j\}$ :

 $v(C \cup \{i\}) = v(C \cup \{j\})$ 

#### Definition

Given two games  $G_1 = (P, v_1)$  and  $G_2 = (P, v_2)$ , define the game  $G_1 \oplus G_2 := (P, v)$  via  $v(C) := v_1(C) + v_2(C)$  for all  $C \subseteq P$ .





### Shapley's Theorem: Axiomatic Characterisation

Theorem (Shapley)

The Shapley value is the only (single-allocation) solution concept for cooperative games that satisfies the following four properties:

- 1. *Dummy Player:* For every game G = (P, v) it holds that if  $i \in P$  is a dummy player, then Shapley(G, i) = 0.
- 2. *Efficiency:* For every game G = (P, v) it holds that  $\sum_{i \in P} \text{Shapley}(G, i) = v(P)$ .
- 3. *Symmetry:* For every game G = (P, v) with symmetric players  $i, j \in P$ , it holds that Shapley(G, i) = Shapley(G, j).
- 4. Additivity: For every pair of games  $G_1 = (P, v_1)$  and  $G_2 = (P, v_2)$ , for every  $i \in P$  it holds that Shapley $(G_1 \oplus G_2, i) =$  Shapley $(G_1, i)$  + Shapley $(G_2, i)$ .

#### If *G* is superadditive, then the Shapley value payoff vector is an imputation.





# Shapley Value vs. Core (1)

The Shapley value payoff vector is not necessarily in the core:

Example

Recall the game 
$$G^1 = (P, v)$$
 with  $P = \{1, 2, 3\}$  and  
 $v(C) = \begin{cases} 1 & \text{if } 1 \in C \text{ and } |C| \ge 2\\ 0 & \text{otherwise.} \end{cases}$   
The core of  $G^1$  is  $\{(1, 0, 0)\}$ :  
Any imputation  $(x, v, z)$  with  $x < 1$  given by  $\left(\frac{2}{3}\right)$ 

has y + z > 0 and is thus dominated by (if, say,  $y \ge z$ )  $(x + \frac{y}{2}, 0, z + \frac{y}{2}).$ 

y value payoff vector is  $\left(\frac{2}{3},\frac{1}{6},\frac{1}{6}\right)$ :

| λ       | $\mu_{G^1}(\lambda, 1)$ | $\mu_{G^1}(\lambda, 2)$ | $\mu_{G^1}(\lambda,3)$ |
|---------|-------------------------|-------------------------|------------------------|
| 1, 2, 3 | 0                       | 1                       | 0                      |
| 1, 3, 2 | 0                       | 0                       | 1                      |
| 2, 1, 3 | 1                       | 0                       | 0                      |
| 2, 3, 1 | 1                       | 0                       | 0                      |
| 3, 1, 2 | 1                       | 0                       | 0                      |
| 3, 2, 1 | 1                       | 0                       | 0                      |





# Shapley Value vs. Core (2)

#### Theorem

If G = (P, v) with  $P = \{1, ..., n\}$  is a convex cooperative game, then (Shapley(G, 1), ..., Shapley(G, n))  $\in Core(G)$ .

Proof.

• For any  $\lambda \in L_P$ , we obtain an allocation  $\mathbf{a}_{\lambda} \in Core(G)$  (see slide 11):

$$\mathbf{a}_{\lambda} := \left( \mu_G(\lambda, 1), \dots, \mu_G(\lambda, n) 
ight)$$

- The core is a convex set, thus for any two  $\lambda_1, \lambda_2 \in L_P$  and  $\alpha \in [0, 1]$ ,  $\alpha \cdot \mathbf{a}_{\lambda_1} + (1 - \alpha) \cdot \mathbf{a}_{\lambda_2} \in Core(G)$ .
- Therefore by induction on  $|L_P|$ , we get  $\sum_{\lambda \in L_P} \left( \frac{1}{|L_P|} \cdot \mathbf{a}_{\lambda} \right) \in Core(G)$ .





# **Reprise: Solution Concepts**

We have seen the following solution concepts for cooperative games:

- stable sets [von Neumann and Morgenstern, 1941] (called "solutions")
  - There can be zero, one, or more stable sets; every stable set is non-empty.
- Shapley value [Shapley, 1953]
  - A unique payoff vector that is efficient, symmetric, and additive.
  - For superadditive games, it is also individually rational (thus an imputation).
- core [Gillies, 1959]
  - A unique set of imputations, but may be empty.
- ε-core [Shapley and Shubik, 1966]
  - A unique set of imputations, (non-)empty depending on  $\varepsilon \in \mathbb{R}.$
- There are further solution concepts for cooperative games:
- kernel [Davis and Maschler, 1965]
  - A set of imputations stating that no player has "bargaining power" over another.
- nucleolus [Schmeidler, 1969]
  - A unique payoff vector that is contained in both core and kernel.





### Conclusion

#### Summary

- A **stable set** is a set of imputations that do not dominate each other and that dominate every imputation not in the set.
- The core is contained in every (if any) stable set.
- A **convex** game has a non-empty core that equals its unique stable set.
- The **Shapley value** of each player yields a single allocation; it is also the only solution concept for cooperative games that:
  - assigns a payoff of zero to dummy players,
  - assigns the same payoff to symmetric players,
  - yields an efficient allocation, and
  - is additive.
- For convex games, the Shapley value payoff vector is in the core.



