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Previously . . .
• In cooperative games, players P form explicit coalitions C ⊆ P.
• Coalitions receive payoffs, which are distributed among its members.
• We concentrate on superadditive games, where disjoint coalitions can

never decrease their payoffs by joining together.
• Of particular interest is the grand coalition {P} and whether it is stable.
• An imputation is an outcome that is efficient and individually rational.
• Various solution concepts formalise stability of the grand coalition:

– the core contains all imputations where no coalition has an incentive to leave;
– the ε-core disincentivises leaving the grand coalition via a fine of ε;
– the cost of stability subsidises staying in the grand coalition via a bonus γ.

• The core is a convex set.

Consider the game G = (P, v) with:
• P = {A,B,C},
• v(P) = 100 and v({i}) = 0 for i ∈ P,
• v({A,B}) = v({A,C}) = 50, and v({B,C}) = 30.

(100, 0, 0)

(0, 100, 0)(0, 0, 100)

(50, 0, 50)
(70, 0, 30)

(50, 50, 0)
(70, 30, 0)

(0, 50, 50)
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Solution Concept: Stable Sets
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Stable Sets
Definition [von Neumann and Morgenstern, 1941]

Let G = (P, v) be a cooperative game, and let a and b be imputations for G.
• a dominates b via a coalition C with ∅ ⊊ C ⊆ P, written a ≻C b, iff

– ai > bi for all i ∈ C, and
–

∑
i∈C ai ≤ v(C).

• a dominates b, written a ≻ b, iff a dominates b via some coalition C ⊆ P.
• A set S ⊆ Imp(G) is a stable set of G iff both of the following hold:

– Internal stability: For any two a,b ∈ S, we have a ̸≻ b.
– External stability: For every b ∈ Imp(G) \ S, there is some a ∈ S with a ≻ b.

• If ai > bi for all i ∈ C, then every member of C is better off in a than in b.
• If

∑
i∈C ai ≤ v(C), then C can plausibly threaten to leave the grand coalition.

• Internal stability: No imputations need to be removed from S.
• External stability: No imputations can be added to S.
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Stable Sets: Example and Visualisation
Recall Hospitals and X-Ray Machines with P = {1, 2, 3} and
v(P) = 6, v(C) = 5 if |C| = 2, and v(C) = 0 otherwise.

(6, 0, 0)

(0, 6, 0)(0, 0, 6)
(1, 0, 5) (1, 5, 0)

S = {(1, x, 5 – x) | x ∈ [0, 5]} is a stable set of G = (P, v):
• Internal stability:

– Consider (1, x, 5 – x) ∈ S and (1, y, 5 – y) ∈ S.
– If x > y, then 5 – x < 5 – y, thus (1, x, 5 – x) ̸≻{2,3} (1, y, 5 – y).

• External stability:
– Consider b = (b1,b2,b3) ∈ Imp(G) \ S. Then b1 + b2 + b3 = 6 and b1 ̸= 1.
– If b1 < 1, then min {b2,b3} ≤ 3 whence (1, 4, 1) ≻{1,2} b or (1, 1, 4) ≻{1,3} b.
– If b1 > 1, then b2 + b3 < 5, whence we can choose a ∈ S such that a ≻{2,3} b.
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The Core vs. Stable Sets (1)
Proposition

Let G = (P, v) be a cooperative game.
1. Core(G) is contained in every (if any) stable set of G.
2. If Core(G) is a stable set of G, then it is the only stable set of G.

Proof.
1. – Let a ∈ Core(G) and b ∈ Imp(G).

– Assume (for contradiction) that for some C ⊆ P, we have b ≻C a.
– Then ai < bi for all i ∈ C and

∑
i∈C bi ≤ v(C).

– But then
∑

i∈C ai <
∑

i∈C bi ≤ v(C).
– But a ∈ Core(G) means that

∑
i∈C ai ≥ v(C). Contradiction.

– Thus b ̸≻ a and a is contained in every (if any) stable set of G.
2. – No stable set can be a proper subset of another stable set:

– If S1 ⊊ S2 and both are stable then b ∈ S2 \ S1 is dominated by some a ∈ S1.
– But then a ∈ S2 and S2 does not satisfy internal stability, contradiction.
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The Core vs. Stable Sets (2)
Proposition

For any superadditive cooperative game G = (P, v), we have
Core(G) = {a ∈ Imp(G) | there is no b ∈ Imp(G) with b ≻ a}.

Proof.

• Direction ⊆ follows from the previous slide, so it remains to show ⊇.
• Let b ∈ Imp(G) \ Core(G). Then

∑
i∈P bi = v(P) and bi ≥ v({i}) for all i ∈ P.

• Since b /∈ Core(G), there is a C ⊆ P such that v(C) >
∑

i∈C bi, whence C ̸= ∅.
• Denote δ := v(C) –

∑
i∈C bi and define a ∈ Imp(G) with a ≻C b by setting

ai :=

bi + 1
|C| · δ if i ∈ C,

bi – di∑
j∈P\C dj

· δ otherwise, where dj := bj – v({ j}) for each j ∈ P \ C.

• Note that
∑

j∈P\C dj =
∑

j∈P\C bj –
∑

j∈P\C v({ j}) ≥ δ = v(C) –
∑

i∈C bi because
v is superadditive:

∑
j∈P\C bj +

∑
i∈C bi = v(P) ≥ v(C) +

∑
j∈P\C v({ j}).
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The Core vs. Stable Sets: Example
G1

P = {1, 2, 3}

v(C) =
{
1 if 1 ∈ C and |C| ≥ 2,
0 otherwise.

• The core of G1, Core(G1) = {(1, 0, 0)}, is not a stable set of G:
• We have (1, 0, 0) ̸≻ (0, 0.5, 0.5) since (1, 0, 0) ̸≻{1} (0, 0.5, 0.5).
⇝ The core does not necessarily satisfy external stability.
• One stable set of G1 is S1,2 = {(x, 1 – x, 0) | x ∈ [0, 1]}:

– If (x, 1 – x, 0), (y, 1 – y, 0) ∈ S1,2, then x > y would imply 1 – x < 1 – y.
– If (x, y, z) ∈ Imp(G1) with z > 0, then

(
x + z

2 , y +
z

2 , 0
)

≻{1,2} (x, y, z).
• Likewise, S1,3 = {(x, 0, 1 – x) | x ∈ [0, 1]} is a stable set of G1.
Exercise: Find additional stable sets, if any.
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Convex Games
Definition

1. A function v : 2P → R+ is supermodular iff for all C,D ⊆ P:

v(C ∪D) + v(C ∩D) ≥ v(C) + v(D)

2. A cooperative game G = (P, v) is convex iff v is supermodular.

Observation
Function v : 2P → R+ is supermodular iff for all C ⊆ D ⊆ P and all i ∈ P \D:

v(C ∪ {i}) – v(C) ≤ v(D∪ {i}) – v(D) (1)

where v(C ∪ {i}) – v(C) is player i’smarginal contribution to coalition C.

• A supermodular function is superadditive (via v(∅) = 0),
• but not vice versa.
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Cores of Convex Games (1)
Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (1/2).

• Given G = (P, v) with P = {1, . . . ,n}, we construct a = (a1, . . . ,an) ∈ Core(G).
• Define a1 := v({1}), a2 := v({1, 2}) – v({1}), . . . , an := v(P) – v(P \ {n}).
• Payoff vector a is efficient by construction:

a1 + a2 + . . . + an = v({1}) + v({1, 2}) – v({1}) + . . . + v(P) – v(P \ {n}) = v(P)
• a is also individually rational: For all i ∈ P, inequality (1) yields

ai = v({1, . . . , i}) – v({1, . . . , i – 1}) ≥ v({i}) – v(∅) = v({i})
• Thus a ∈ Imp(G). It remains to show a ∈ Core(G).
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Cores of Convex Games (2)
Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (2/2).

• Consider any coalition C = {i, j, . . . , k} with 1 ≤ i < j < . . . < k ≤ n.
• We have v(C) = v({i}) – v(∅) + v({i, j}) – v({i}) + . . . + v(C) – v(C \ {k}).
• Due to v being supermodular, inequality (1) yields

v({i}) – v(∅) ≤ v({1, . . . , i}) – v({1, . . . , i – 1}) = ai

v({i, j}) – v({i}) ≤ v({1, . . . , j}) – v({1, . . . , j – 1}) = aj...
v(C) – v(C \ {k}) ≤ v({1, . . . , k}) – v({1, . . . , k – 1}) = ak

• Therefore v(C) ≤ ai + aj + . . . + ak and since C was arbitrary, a ∈ Core(G).

Every convex game G = (P, v) also has a unique stable set S = Core(G).
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Solution Concept: Shapley Value
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Shapley Value: Motivation

• All solution concepts (for cooperative games) we have seen so far yield
sets of payoff vectors.

• For stable sets, there might even be different candidates.
• Unless the core contains only one element, there are even infinitely many

allocations in it.
• But to actually pay off players, we can only choose one allocation.
• Which one of them should we choose?

Example

In Hospitals and X-Rays,
• the core is empty, and
• no imputation is contained in all stable sets.
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Shapley Value
Main Idea: Analyse players’ marginal contributions to coalitions.
⇝ Issue: Contributions might depend on the order in which players join.
⇝ Approach: Look at all possible orders.

Definition
Let G = (P, v) be a cooperative game. For one permutation λ : P → P of
players, themarginal contribution of player i ∈ P is:

μG(λ, i) := v({ j ∈ P | λ( j) ≤ λ(i)}) – v({ j ∈ P | λ( j) < λ(i)})

We denote the set of all permutations of players P by LP; observe |LP| = |P|!.

Intuition
Players who contribute more to more coalitions should get more overall.
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Marginal Contributions: Example
Consider G4 = (P, v) with P = {1, 2, 3} and v(P) = 8, additionally

v({1}) = 1 v({2}) = 2 v({3}) = 3
v({1, 2}) = 4 v({1, 3}) = 5 v({2, 3}) = 6

The players’ marginal contributions are as follows:

λ μG4 (λ, 1) μG4 (λ, 2) μG4 (λ, 3)
1, 2, 3 1 3 4
1, 3, 2 1 3 4
2, 1, 3 2 2 4
2, 3, 1 2 2 4
3, 1, 2 2 3 3
3, 2, 1 2 3 3∑

10 16 22
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Shapley Value (2)
Definition
Let G = (P, v) be a cooperative game and i ∈ P be a player.
1. Player i’s raw Shapley value in G is

Shapley∗(G, i) :=
∑
λ∈LP

μG(λ, i)

2. Player i’s Shapley value in G is then

Shapley(G, i) := 1
|P|! · Shapley∗(G, i)

Taken together, the players’ Shapley values constitute an allocation:(
Shapley(G, 1), . . . , Shapley(G,n)

)
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Shapley Value (3)
For computational purposes, it is often better to define the Shapley value in
terms of marginal contributions to coalitions instead of permutations.
For C ⊆ P and i ∈ P, we set μG(C, i) := v(C ∪ {i}) – v(C). Thus: (2n–1 vs. n! terms)

Shapley∗(G, i) =
∑

C⊆P\{i}
|C|! · (|P| – |C| – 1)! · μG(C, i)

Example: Recall G4 from slide 16:
C ⊆ P |C|! · (|P| – |C| – 1)! · μ

G4 (C, 1) |C|! · (|P| – |C| – 1)! · μ
G4 (C, 2) |C|! · (|P| – |C| – 1)! · μ

G4 (C, 3)
∅ 1 · 2 · 1 = 2 1 · 2 · 2 = 4 1 · 2 · 3 = 6

{1} 1 · 1 · 3 = 3 1 · 1 · 4 = 4
{2} 1 · 1 · 2 = 2 1 · 1 · 4 = 4
{3} 1 · 1 · 2 = 2 1 · 1 · 3 = 3

{1, 2} 2 · 1 · 4 = 8
{1, 3} 2 · 1 · 3 = 6
{2, 3} 2 · 1 · 2 = 4

{1, 2, 3}∑
10 16 22
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Towards an Axiomatic Characterisation
Definition
Player i ∈ P is a dummy player in G = (P, v) iff for all C ⊆ P:

v(C ∪ {i}) = v(C)

Definition
Two players i, j ∈ P are symmetric in G = (P, v) iff for all C ⊆ P \ {i, j}:

v(C ∪ {i}) = v(C ∪ {j})

Definition
Given two games G1 = (P, v1) and G2 = (P, v2), define the game
G1 ⊕G2 := (P, v) via v(C) := v1(C) + v2(C) for all C ⊆ P.
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Shapley’s Theorem:
Axiomatic Characterisation
Theorem (Shapley)

The Shapley value is the only (single-allocation) solution concept for
cooperative games that satisfies the following four properties:
1. Dummy Player: For every game G = (P, v) it holds that if i ∈ P is a dummy

player, then Shapley(G, i) = 0.
2. Efficiency: For every game G = (P, v) it holds that

∑
i∈P Shapley(G, i) = v(P).

3. Symmetry: For every game G = (P, v) with symmetric players i, j ∈ P, it
holds that Shapley(G, i) = Shapley(G, j).

4. Additivity: For every pair of games G1 = (P, v1) and G2 = (P, v2), for every
i ∈ P it holds that Shapley(G1 ⊕G2, i) = Shapley(G1, i) + Shapley(G2, i).

If G is superadditive, then the Shapley value payoff vector is an imputation.

Cooperative Games: Stable Sets and Shapley Value (Lecture 12)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 20 of 24 Computational
Logic ∴ Group



Shapley Value vs. Core (1)
The Shapley value payoff vector is not necessarily in the core:
Example

Recall the game G1 = (P, v) with P = {1, 2, 3} and

v(C) =
{
1 if 1 ∈ C and |C| ≥ 2,
0 otherwise.

The core of G1 is {(1, 0, 0)}:
Any imputation (x, y, z) with x < 1
has y + z > 0 and is thus
dominated by (if, say, y ≥ z)(
x + y

2 , 0, z +
y

2
)
.

The Shapley value payoff vector is
given by

(
2
3 ,

1
6 ,

1
6

)
:

λ μ
G1 (λ, 1) μ

G1 (λ, 2) μ
G1 (λ, 3)

1, 2, 3 0 1 0
1, 3, 2 0 0 1
2, 1, 3 1 0 0
2, 3, 1 1 0 0
3, 1, 2 1 0 0
3, 2, 1 1 0 0
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Shapley Value vs. Core (2)
Theorem
If G = (P, v) with P = {1, . . . ,n} is a convex cooperative game, then

(Shapley(G, 1), . . . , Shapley(G,n)) ∈ Core(G).

Proof.

• For any λ ∈ LP, we obtain an allocation aλ ∈ Core(G) (see slide 11):

aλ :=
(
μG(λ, 1), . . . ,μG(λ,n)

)
• The core is a convex set, thus for any two λ1, λ2 ∈ LP and α ∈ [0, 1],

α · aλ1 + (1 – α) · aλ2 ∈ Core(G).

• Therefore by induction on |LP|, we get
∑
λ∈LP

(
1

|LP|
· aλ

)
∈ Core(G).
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Reprise: Solution Concepts
We have seen the following solution concepts for cooperative games:
• stable sets [von Neumann and Morgenstern, 1941] (called “solutions”)

– There can be zero, one, or more stable sets; every stable set is non-empty.
• Shapley value [Shapley, 1953]

– A unique payoff vector that is efficient, symmetric, and additive.
– For superadditive games, it is also individually rational (thus an imputation).

• core [Gillies, 1959]
– A unique set of imputations, but may be empty.

• ε-core [Shapley and Shubik, 1966]
– A unique set of imputations, (non-)empty depending on ε ∈ R.

There are further solution concepts for cooperative games:
• kernel [Davis and Maschler, 1965]

– A set of imputations stating that no player has “bargaining power” over another.
• nucleolus [Schmeidler, 1969]

– A unique payoff vector that is contained in both core and kernel.
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Conclusion
Summary

• A stable set is a set of imputations that do not dominate each other and
that dominate every imputation not in the set.

• The core is contained in every (if any) stable set.
• A convex game has a non-empty core that equals its unique stable set.
• The Shapley value of each player yields a single allocation;

it is also the only solution concept for cooperative games that:
– assigns a payoff of zero to dummy players,
– assigns the same payoff to symmetric players,
– yields an efficient allocation, and
– is additive.

• For convex games, the Shapley value payoff vector is in the core.
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