Exercise 2.1. Transform the following concepts into negation normal form:

(a) \(\neg (A \cap \forall r. B) \)
(b) \(\neg \forall r. \exists s. (\neg B \sqcup \exists r. A) \)
(c) \(\neg ((\neg A \cap \exists r. \top) \sqcup 3 s. (A \sqcup \neg B)) \)

Exercise 2.2. Apply the tableau algorithm in order to check if the axiom \(A \sqsubseteq B \) is a logical consequence of the TBox \(\{ \neg C \sqsubseteq B, A \cap C \sqsubseteq \bot \} \).

Exercise 2.3. Apply the tableau algorithm in order to check satisfiability of the concept \(A \cap \forall r. B \) w.r.t. the TBox \(\{ A \sqsubseteq \exists r. A, B \sqsubseteq \exists r. C, C \sqsubseteq \forall r. \forall r. B \} \).

Exercise 2.4. Lukas wants to apply the tableau algorithm for checking the satisfiability of the concept \(B \cap \exists r. A \) w.r.t. the TBox \(\{ A \sqsubseteq \exists r. A \cap \exists r. B, \top \sqsubseteq \leq 1 r \} \). He arrives at the situation depicted below and concludes that no further rules are applicable, since \(v_2 \) is blocked by \(v_1 \). What is Lukas’ error? Continue the algorithm until its termination. (You don’t have to illustrate all intermediate steps, just provide the final state.)

\[
\begin{array}{c}
 L(v_0) = \{ B \cap \exists r^- A, B, \exists r^- A, C_T, \neg A, \leq 1 r \} \\
 L(v_1) = \{ A, C_T, \exists r^- A, \exists r B, \leq 1 r \} \\
 L(v_2) = \{ A, C_T, \exists r^- A, \exists r B, \leq 1 r \}.
\end{array}
\]

Exercise 2.5. Extend the \(\leq 1 \) rule in a way that also qualified functionality axioms of the form \(\top \sqsubseteq \leq 1 r. A \) can be treated correctly, where \(A \) is an atomic concept. Can you also treat arbitrary axioms of the form \(C \sqsubseteq \leq 1 r. D \)?