Exercise 6.1:
Given the program P_i, determine the stable models of P_i by applying the Gelfond-Lifschitz-Reduct.

\begin{align*}
P_1 &= \{ a \leftarrow b, \neg c, d; \} \\
c &\leftarrow \neg b, a; \\
b &\leftarrow \neg c, \neg d; \\
a &\leftarrow \\
P_2 &= \{ a \leftarrow b, \neg c; \} \\
b &\leftarrow c, \neg a; \\
c &\leftarrow a, \neg b; \\
b &\leftarrow \\
P_3 &= \{ a \leftarrow \neg b, c; \} \\
c &\leftarrow \neg a, b; \\
\end{align*}

Exercise 6.2:
Model and solve the peer-review procedure with ASP. For scientific conferences, researchers submit their papers which are reviewed by other researchers. The problem of assigning referees for submissions to a conference is typical for the area of computer science.

Part A:
Construct a program check.lp which checks, given an assignment of submissions to members of the program committee (PC), where the following conditions hold:

1. each PC-member is assigned with at most five submissions;
2. no PC-member is assigned more than three papers that he or she rated with "I don’t want to review this paper";
3. no PC-member can rate a submission with different bids;
4. no PC-member is assigned a paper that he or she rated with "I cannot review this paper";
5. each submission is assigned to at least one PC-member who rated the paper with "I am willing to review this paper" or higher;
6. If a PC-member does not bid on a certain paper, by default "I don’t want to review this paper" is assumed as the PC-member’s bid on this paper.
The bids on the papers range from 0 to 3 with the following meanings:

0: "I cannot review this paper",
1: "I don’t want to review this paper",
2: "I am willing to review this paper",
3: "I really want to review this paper".

The given assignment of submissions to referees is assumed to be stored in some input files containing:

- \(pc(M) \): \(M \) is a member of the PC;
- \(paper(P) \): \(P \) is a submitted paper;
- \(bid(M,P,B) \): PC-member \(M \)'s bid on paper \(P \), where \(B \) is a constant from \{0, 1, 2, 3\};
- \(assigned(P,M) \): the submission \(P \) is assigned to PC-member \(M \).

The program \(check.lp \) should satisfy the following condition:

- \(check.lp \), together with the input data, possesses an answer set precisely when Conditions 1.-6. are met.

Important: Do not use any aggregate functions for constructing the program \(check.lp \)!

Part B:

Now construct a program \(guess.lp \) which assigns, given a collection of submissions and a given PC, the submissions to the members of the PC in such a way that the following condition is satisfied:

(*) each submission is assigned to exactly three members to the PC.

Use the above defined predicates \(pc(M) \), \(paper(P) \) and \(assigned(P,M) \).