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Abstract
Abstract dialectical frameworks (ADFs) are a
powerful generalization of Dung’s abstract argu-
mentation frameworks. ADFs allow to model argu-
mentation scenarios such that ADF semantics then
provide interpretations of the scenarios. Among the
considerable number of ADF semantics, the naive-
based ones are built upon the fundamental concept
of conflict-freeness. Intuitively, a three-valued in-
terpretation of an ADF’s statements is conflict-free
iff all true statements can possibly be accepted, and
all false statements cannot possibly be accepted.
In this paper, we perform an exhaustive analysis
of the computational complexity of naive-based
semantics. The results are quite interesting, for
some of them involve little-known classes of the
so-called Boolean hierarchy (another hierarchy in
between classes of the polynomial hierarchy). Fur-
thermore in credulous and sceptical entailment, the
complexity can be different depending on whether
we check for truth or falsity of a specific statement.

1 Introduction
Over the last decade, argumentation theory emerged as one of
the major fields in artificial intelligence and non-monotonic
reasoning. There, abstract argumentation frameworks (AFs)
as introduced by Dung [1995] became a key formalism with
applications to a variety of non-monotonic reasoning prob-
lems such as logic programming, inconsistency handling,
legal reasoning and many others [Rahwan et al., 2009].

The basic Dung-style framework only consists of a set of
abstract arguments and a binary relation between them, de-
noted as attacks. The evaluation of such an AF is then based
on model-theoretic semantics, which allow to select sets of
arguments that can “stand together”. The need to represent
more complex relations between the abstract entities led to
a wide range of extensions, which allow to handle prefer-
ences and values on arguments [Amgoud and Cayrol, 2002;
Bench-Capon, 2003], weights [Dunne et al., 2011], probabil-
ities [Li et al., 2011] and introduce a positive relation between
arguments, so-called supports [Amgoud et al., 2008]. Re-
cently, abstract dialectical frameworks (ADFs) have been in-
troduced [Brewka and Woltran, 2010; Brewka et al., 2013]

as a powerful generalization of Dung’s framework. ADFs al-
low for more general interactions between statements, for ex-
ample support, joint attack, joint support and mixed combin-
ations. Furthermore, ADFs can also handle preferences, on
both the statements and the links [Brewka and Woltran, 2010;
Brewka et al., 2013] as well as probabilities [Polberg and
Doder, 2014]. Moreover, ADFs can not only be seen as an ex-
tension of Dung’s AFs but also as a target language for com-
pilation from more concrete and application-based languages
(e.g. Carneades [Brewka and Gordon, 2010]), and thus, serve
as “argumentation middleware” [Brewka et al., 2013].

An ADF consists of a set of statements, a set of links
between the statements and for each statement an acceptance
condition, a Boolean formula over the parents of the state-
ment. The acceptance of a statement thus only depends on the
status of its parents. As for AFs, there are many semantics for
ADFs which allow to decide on the status of the statements.
One special kind of semantics are the stage [Strass, 2013;
Gaggl and Strass, 2014] and the recently introduced nai2 se-
mantics [Gaggl and Strass, 2014]. Both are generalisations of
the respective AF semantics (stage and cf2) [Verheij, 1996;
Baroni et al., 2005] and based on three-valued conflict-free
interpretations. Semantics based on conflict-freeness are also
referred to as naive-based semantics in the literature, since
they form further refinements of the notion naive, referring to
information-maximal conflict-free interpretations. For AFs,
naive-based semantics are capable to handle cycles in a more
uniform way than admissible-based semantics (see [Gaggl
and Dvořák, 2014] for an extensive study).

Typical reasoning problems for ADFs are model verific-
ation, sceptical and credulous reasoning and existence of a
non-trivial interpretation. Analysing the computational com-
plexity of these reasoning problems is a crucial topic for the-
oretical and practical reasons. First, complexity results often
serve as an indicator for how difficult and how expressive a
reasoning task can be. Second, knowing about the complex-
ity of a reasoning problem is essential for the development
of adequate algorithms and systems. A comprehensive com-
plexity analysis of the ADF semantics defined by Brewka et
al. [2013] has been given by Strass and Wallner [2014]. How-
ever, the naive-based semantics are a more recent develop-
ment and their complexity has not received any attention yet.

In this paper, we address these open problems and per-
form an exhaustive study of the computational complexity



of naive-based semantics for abstract dialectical frameworks.
More precisely, we analyse all reasoning tasks mentioned
earlier (model verification, non-trivial existence, and credu-
lous and sceptical reasoning) for the conflict-free, naive, stage
and nai2 semantics. The results show that these tasks are
(sometimes considerably) more difficult than their counter-
parts in AFs. While for the standard Dung semantics (admiss-
ible, preferred, complete, stable), their ADF generalisations
are mildly more complex (one level up in the polynomial
hierarchy [Strass and Wallner, 2014]), for the naive-based
semantics, the differences can be far more significant. For
example, deciding whether an argument is true in every naive
extension can be done in logarithmic space for AFs,while it is
hard at least for the second level of the polynomial hierarchy
in the case of ADFs. The complexity becomes even higher
(completeness for the third level) if we want to check whether
a statement is false in every naive interpretation of an ADF.
In general, different complexities for entailment of truth and
entailment of falsity seems to be quite uncommon in logic-
based formalisms. We can trace the reason for this difference
in naive-based semantics for ADFs back to the definition of
a conflict-free interpretation, which basically requires differ-
ent strengths of justification depending on which truth value
is assigned to a statement: If a statement s is assigned truth
value true, then this must be justified by statement s being
possibly acceptable, that is, there must be an assignment to
the remaining statements such that the acceptance condition
of s is fulfilled. On the other hand, if a statement is assigned
truth value false, then this must be justified by statement s not
being possibly acceptable, that is, a satisfying assignment of
the acceptance condition must not exist. Quite possibly even
more interesting (and the hardest proof of all our results) is
the complexity of deciding existence of non-trivial conflict-
free interpretations. We show that the problem is complete for
the second level of the Boolean hierarchy [Wechsung, 1985].
The Boolean hierarchy consists of classes that are composed
of Boolean combinations of problems from NP and comple-
ments thereof. A somewhat better-known example is the class
DP, a logical “and” of one NP- and one coNP-problem.

The remainder of the paper is structured as follows. We in-
troduce the necessary background on ADFs and complexity
theory in Section 2. The main part of the analysis is per-
formed in Section 3, where we grouped our results according
to the four decision problems verification (Section 3.1), exist-
ence of a non-trivial interpretation (Section 3.2), and entail-
ment (Section 3.3). We conclude the paper in Section 4.

2 Background
For functions f : A→ B and g : C → D, we denote
the update of f with g by f ◦ g : A ∪ C → B ∪D with
x 7→ g(x) if x ∈ C, and x 7→ f(x) otherwise. So
even if x ∈ A ∩ C and f(x) is defined, we have
(f ◦ g)(x) = g(x). For a function f : A→ B and b ∈ B we
denote f−1(b) = {a ∈ A | f(a) = b}. For A′ ⊆ A the func-
tion f |A′ : A′ → B is the restriction of f ’s domain to A′.

We will make use of many standard concepts of classical
propositional logic in this paper, including the usual notions
of formulas, interpretations and models and satisfiability. Our

analysis will be based on three-valued interpretations, map-
pings v : S → {t, f ,u} that assign one of the truth values
true (t), false (f ) or unknown (u) to each statement. The three
truth values are partially ordered by ≤i according to their in-
formation content: we have u <i t and u <i f and no other
pair in <i, which intuitively means that the classical truth
values contain strictly more information than the truth value
unknown. The information ordering ≤i extends in a straight-
forward way to valuations v1, v2 over S in that v1 ≤i v2 if
and only if v1(s) ≤i v2(s) for all s ∈ S.

Given a three-valued interpretation v and a formula ϕ, the
partial evaluation of ϕ with v takes the two-valued part of v
and replaces the evaluated variables by their truth values.
Definition 1. Let ϕ be a propositional formula over vocabu-
lary S and for an M ⊆ S let v : M → {t, f ,u} be a three-
valued interpretation. The partial valuation of ϕ by v is the
formula ϕv = ϕ[s/t : v(s) = t][s/f : v(s) = f ].

2.1 Abstract dialectical frameworks (ADFs)
An abstract dialectical framework (ADF) is a directed graph
whose nodes represent statements or positions which can be
accepted or not. The links represent dependencies: the status
of a node s only depends on the status of its parents par(s),
that is, the nodes with a direct link to s. Each node s has an
associated acceptance condition Cs specifying the exact con-
ditions under which s is accepted. Cs is a function assigning
to each subset of par(s) one of the truth values t, f . Intu-
itively, if for some R ⊆ par(s) we have Cs(R) = t, then
s will be accepted provided the nodes in R are accepted and
those in par(s) \R are not accepted.
Definition 2. An abstract dialectical framework is a tuple
D = (S,L,C) where
• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a collection of total functions
Cs : 2par(s) → {t, f}, one for each statement s. The
function Cs is called acceptance condition of s.

It is often convenient to represent acceptance conditions Cs
as propositional formulas ϕs over par(s). (We will do so in
this paper, and furthermore restrict ourselves to finite ADFs.)
Then, clearly, for M ⊆ par(s) we have Cs(M) = t iff
M |= ϕs. It might be the case that a link (r, s) ∈ L in an ADF
bears no actual significance. Formally, r is redundant in ϕs
iff for every two-valued interpretation v : par(s)→ {t, f},
the formulas ϕv◦{r 7→t}

s and ϕv◦{r 7→f}
s are equivalent. That

is, if (r, s) is redundant then v(r) has no influence on the
truth value of ϕvs whatsoever. Several semantics for ADFs
can be defined by using three-valued interpretations v to par-
tially evaluate acceptance formulas ϕs [Brewka et al., 2013;
Gaggl and Strass, 2014]. We use the following three:
Definition 3. Let D = (S,L,C) be an ADF. A three-valued
interpretation v : S → {t, f ,u} is
• conflict-free, i.e. v ∈ cfi(D), iff for all s ∈ S we have:

– v(s) = t implies that ϕvs is satisfiable,
– v(s) = f implies that ϕvs is unsatisfiable;



• naive, i.e. v ∈ nai(D), iff v is≤i-maximal conflict-free;
• stage, i.e. v ∈ stg(D), iff the set vu = v−1(u) is
⊆-minimal with respect to v being conflict-free.

The following definitions are from [Gaggl and Strass, 2014].
Definition 4. Let D = (S,L,C) be an ADF and p, s ∈ S.
We say that s depends on p if there is a path from p to s in L
but no path from s to p in L. Now let M ⊆ S. A statement
s ∈ S is independent modulo M iff for each p ∈ S, if s de-
pends on p then p ∈M . A setM ⊆ S is independent iff there
is no s ∈M that depends on a p ∈ S \M . Lastly, define
indD(M) = {s ∈ S | s is independent modulo M in D}.

Note that dependence here implicitly speaks about strongly
connected components (SCCs). Given an independent sub-
set M of statements of an ADF, ignoring all other statements
again yields an ADF.
Definition 5. Let D = (S,L,C) be an ADF and M ⊆ S be
an independent set. The ADF D restricted to M is given by
D|M = (M,L ∩ (M ×M), {ϕs}s∈M ).

Note thatD|M really is an ADF since its acceptance formulas
by presumption do not mention statements not in M .
Definition 6. Let D = (S,L,C) be an ADF, M ⊆ S and
v : M → {t, f ,u}. The ADF D reduced with v on M is
given by JDKvM = (S, JLKvM , {JϕsKvM}s∈S) with

JϕsK
v
M =


t if s ∈M and v(s) = t

f if s ∈M and v(s) = f

¬s if s ∈M and v(s) = u

clean(ϕvs) otherwise, where

clean(ϕvs) = ϕvs [r/t : r is redundant in ϕvs ].

JLKvM = {(r, s) | r ∈ S and r occurs in JϕsK
v
M}

That is, clean(ϕvs) removes redundant parents of s from ϕvs .
Definition 7. Let D = (S,L,C) be an ADF. The set of nai2

interpretations of D is recursively defined as follows:

nai2(D) = nai2(indD(∅), D) where for M ⊆ S:
nai2(M,D) = nai(D) in case M = S, and otherwise:

nai2(M,D) =
⋃
w∈nai(D|M ) nai2

(
ind JDKwM (M), JDKwM

)
2.2 Complexity theory
Assume some fixed finite vocabulary Σ with |Σ| > 1. A
language L ⊆ Σ∗ is in P iff it can be recognised by a de-
terministic Turing machine in polynomial time. Complex-
ity class NP contains all problems L that have a polytime-
computable witness relation; that is, L ∈ NP iff there are
WL ∈ P and k ∈ N such that: x ∈ L iff there is a y such
that (x, y) ∈WL and |y| ≤ |x|k. For any class C of lan-
guages, its complement class is coC =

{
L
∣∣ L ∈ C}. For ex-

ample, the class coNP contains all languages L whose com-
plement L = Σ∗ \ L is in NP. These two classes give rise
to the polynomial hierarchy, that can be defined (using oracle
Turing machines) as follows: ∆P

0 = ΣP0 = ΠP
0 = P, and for

i ≥ 0, ∆P
i+1 = PΣP

i , ΣPi+1 = NPΣP
i , ΠP

i+1 = coNPΣP
i . For

any complexity class C, a Turing machine with access to a

C-oracle can be understood as having a constant-time de-
cision subroutine for problems in C. For each level i of the
polynomial hierarchy, the classes ΣPi and ΠP

i have canonical
complete problems. For ΣPi it is as follows: Given a quan-
tified Boolean formula (QBF) Φ = ∃P1∀P2∃P3 . . . QiPiψ,
determine whether Φ is true, where Qi ∈ {∀,∃} depending
on whether i is even or odd. For ΠP

i the canonical complete
problem is similar, but starts with universal quantification.

While these classes are fairly standard, NP and coNP
also give rise to the so-called Boolean hierarchy. It is
rather little-known and defined as follows [Wechsung, 1985].
Firstly, for given complexity classes C1 and C2 define
the new classes C1 C2 = {L1 ∩ L2 | L1 ∈ C1, L2 ∈ C2}
and C1 C2 = {L1 ∪ L2 | L1 ∈ C1, L2 ∈ C2}. Next, set
CBH

0 = DBH
0 = P and for i ≥ 0 define CBH

i+1 = coNP DBH
i

and DBH
i+1 = NP CBH

i .1 (Intuitively, CBH
i is for “conjunc-

tion” and DBH
i is for “disjunction”.) For example, DBH

1 = NP
and CBH

1 = coNP, while DBH
2 = NP CBH

1 = NP coNP
and CBH

2 = coNP DBH
1 = coNP NP. The class CBH

2 was
independently discovered and called DP by Papadimitriou
and Yannakakis [1982]. Its complement coDP = DBH

2 con-
tains all languages L for which there are L1 ∈ NP and
L2 ∈ coNP with L = L1 ∪ L2. The Boolean hierarchy and
the polynomial hierarchy are closely interrelated: Chang and
Kadin [1996] showed that the polynomial hierarchy collapses
(to the third level) if the Boolean hierarchy collapses.

3 Complexity Results
We will consider the following decision problems for any se-
mantics σ ∈ {cfi ,nai , stg ,nai2}.
• Verσ: Given an ADF D over S and an interpretation
v : S → {t, f ,u}, is v ∈ σ(D)?

• Existsσ: Given an ADF D over S, does there exist
a non-trivial interpretation v ∈ σ(D), that is, one with
v(S) 6= {u}?

• Credtσ /Credfσ: Given an ADF D over S and an
s ∈ S, does there exist an interpretation v ∈ σ(D) with
v(s) = t / v(s) = f?

• Sceptσ /Scepfσ: Given an ADF D over S and an s ∈ S,
is v(s) = t / v(s) = f for all v ∈ σ(D)?

In several reductions of this paper, we consider quantified
Boolean formulas over vocabularies P ]Q with their mat-
rix ψ in either DNF (a disjunction of monomials) or CNF
(a conjunction of clauses). They will be used to provide
hardness results through reducing checking whether the QBF
evaluates to true to some relevant problem at hand. Some-
times, we cannot use ψ as is, but have to replace atoms
from part of its vocabulary, say P , by new literals from
a distinct copy of P , the atoms P ′ = {p′ | p ∈ P}. We
will then denote by ψ′ the formula obtained from ψ by re-
placing all positive occurrences of an atom p ∈ P by the
literal ¬p′ for the respective p′ ∈ P ′. For example, for

1This is the Boolean hierarchy between ∆P
1 = P and ∆P

2 ; there
is a Boolean hierarchy between ∆P

i and ∆P
i+1 for all i ≥ 1 [Chang

and Kadin, 1996] (using ΣP
i and ΠP

i instead of NP and coNP).



the DNF ψ = (p1 ∧ q1 ∧ ¬p2) ∨ (¬q2 ∧ ¬p1 ∧ p3) we get
ψ′ = (¬p′1 ∧ q1 ∧ ¬p2) ∨ (¬q2 ∧ ¬p1 ∧ ¬p′3). The follow-
ing property of this replacement will be important for us.
Proposition 1. Let ψ be a DNF over P . For every interpreta-
tion v : P → {t, f}, there exists a w : P ∪ P ′ → {f ,u} such
that ψv is a tautology if and only if ψ′w is a tautology.

A similar result holds for satisfiability if ψ is in CNF.
We are now ready to present the main results of this paper,
tight complexity bounds for all semantics among conflict-
free, naive, stage and nai2 for all decision problems intro-
duced above. The results are grouped together in subsections
according to the decision problems.

3.1 Interpretation verification
We start out with verifying if a given interpretation is conflict-
free. Roughly, this is done using one satisfiability check and
one unsatisfiability check, and the completeness result tells
us that we most likely cannot do any better.
Proposition 2. Vercfi is DP-complete.
Proof. in DP: Let D be an ADF over S and

v : S → {t, f ,u} be an interpretation. To verify
that v is conflict-free for D, we have to verify that (1)
for all s ∈ S with v(s) = t, the formula ϕvs is satis-
fiable, and (2) for all s ∈ S with v(s) = f , the formula
ϕvs is unsatisfiable. This can be done in DP by verifying
that

∧
s∈S,v(s)=t ϕ

v
s is satisfiable and

∨
s∈S,v(s)=f ϕ

v
s is

unsatisfiable. Clearly these formulas can be computed
in polynomial time.

DP-hard: Let φ and ψ be propositional formulas over dis-
joint vocabularies P1 and P2, respectively. We construct
an ADF over statements S = P1 ∪ P2 ∪ {x, y} and an
interpretation v : S → {t, f ,u} such that v is conflict-
free for D if and only if φ is satisfiable and ψ is unsatis-
fiable. Set ϕp = ¬p for all p ∈ P1 ∪ P2, furthermore set
ϕx = φ and ϕy = ψ. Finally, define v such that p 7→ u
for p ∈ P1 ∪ P2, and x 7→ t and y 7→ f . 2

To showcase the reductions used in the proofs of our res-
ults, we present one particular reduction that is used to show
the ΠP

2 -hardness of most interpretation verification problems.
Reduction 1. Let Φ = ∃P∀Qψ be a QBF with ψ in DNF.
Define an ADF DΦ over S = P ∪ P ′ ∪Q ∪ {y, z} with:

ϕp = ¬p ∧ (¬y ∨ z) for p ∈ P
ϕp′ = ¬p′ ∧ (¬y ∨ z) for p ∈ P
ϕq = ¬q for q ∈ Q

ϕy = ¬y ∨
∧
p∈P

(p ∨ p′)

ϕz = ¬z ∧ ¬ψ′

Here ψ′ is ψ where all positive occurrences of p are replaced
by ¬p′. Finally, define the interpretation v : S → {t, f ,u}
such that v(y) = t and all other statements are mapped to u.
Intuitively, p and p′ serve to guess a valuation for P where
setting p ∈ S to false encodes setting p ∈ P to false, and
setting p′ ∈ S to false encodes setting p ∈ P to true. All

p, p′ ∈ S cannot be set to true, and only be set to false if z
is false and y is true; in turn, z can only be set to false if ¬ψ′
is unsatisfiable; statement y can only be set to t or u. Setting
y to true in a conflict-free interpretation v guarantees that for
each p ∈ P at most one of p is false or p′ is false in v, but
never both. These ideas are reused and (sometimes signific-
antly) elaborated upon in later results.

Recall that an interpretation v : S → {t, f ,u} is naive
iff it is conflict-free and ≤i-maximal with respect to being
conflict-free. Thus, to verify that a given interpretation v is
not naive, we first check (using an NP oracle) whether v is
conflict-free. If v is not conflict-free, we are done; otherwise,
we can guess an interpretation v′ with v <i v′ and verify in
DP (using the NP-oracle again) that v′ is conflict-free. Once
more, this is the best we can do.
Theorem 3. Vernai is ΠP

2 -complete.
For verifying stage interpretations, membership works in

the same way as for naive. For hardness, a close look at Re-
duction 1 reveals that it also works for stage semantics.
Theorem 4. Verstg is ΠP

2 -complete.

The same hardness reduction (Reduction 1) even works for
the nai2 semantics. It is somewhat harder to show contain-
ment in ΠP

2 via a reduction to Vernai : intuitively, this is done
by parallelising the single (independent) verifications of nai
interpretations in all SCCs of a given ADF D.
Theorem 5. Vernai2 is ΠP

2 -complete.
Proof. in ΠP

2 : We show a reduction to Vernai . Let D be
an ADF over S and the interpretation v : S → {t, f ,u}
be given. We recursively compute the unique de-
composition of D with respect to v. In the follow-
ing we denote the independent sets for each recurs-
ive call by Mi for 0 ≤ i < n, that is, M0 = indD(∅)
and Mi+1 = ind JDKviMi

(Mi) with vi = v|Mi
. In each

recursive call we make a new, distinct copy Di of
the ADF D|Mi

and the respective restricted interpret-
ation vi = v|Mi

, that is, for 0 ≤ i < n define an ADF
Di = (Si, Li, Ci) with statements Si = {si | s ∈Mi},
links Li = {(si, ti) | si, ti ∈ Si, (s, t) ∈ L}, acceptance
formulas ϕsi = ϕs[s/si : s ∈Mi] and furthermore an
interpretation wi : Si → {t, f ,u} with wi(si) = vi(s)
for all s ∈Mi. Let Mk = S be the independent set for
the last recursive call. (Clearly k < n.) Now we have
that v ∈ nai2(D) if and only if w′ ∈ nai(D′), where

w′ =

k⋃
i=0

wi and D′ =

k⋃
i=0

Di

The computation of D′ can be done in at most n steps
(for |S| = n) with at most n(n+1)

2 statements in D′. 2

3.2 Existence of non-trivial interpretations
Deciding whether a given ADF D has at least one non-trivial
conflict-free interpretation turns out to be complete for the
less well-known complexity class coDP. Intuitively, a coDP-
problem allows us to choose whether we “want” to solve an
NP- or a coNP-problem, but we have to solve at least one of



them correctly. Showing coDP-hardness for Existscfi is com-
parably easy. The canonical coDP-complete problem is the
following, SAT-OR-UNSAT: Given two propositional formu-
las φ and ψ, is φ satisfiable or ψ unsatisfiable? Note that the
“or” is to be understood logically, that is, it suffices to answer
at least one of the questions correctly. The reduction from
SAT-OR-UNSAT to Existscfi now works as follows: given
two propositional formulas φ and ψ over vocabularies P1 and
P2, we construct an ADF D over S = P1 ∪ P2 ∪ {y, z} with
ϕp = ¬p for p ∈ P1 ∪ P2, ϕy = ¬y ∨ φ, and ϕz = ¬z ∧ ψ.
It is easy to see that D has a non-trivial conflict-free inter-
pretation v with v(y) = t iff φ is satisfiable, and that D has
a non-trivial conflict-free interpretation v with v(z) = f iff ψ
is unsatisfiable. In combination, D has a non-trivial conflict-
free interpretation iff φ is satisfiable or ψ is unsatisfiable.

Showing membership of Existscfi for coDP is quite tricky.
The first useful observation is that there are essentially only
two distinct types of non-trivial conflict-free interpretations:

(1) those v : S → {t, f ,u} with v−1(t) 6= ∅, that is, where
some statement is mapped to true;

(2) those with v(S) ⊆ {u, f} and v−1(f) 6= ∅, that is, all
statements are mapped to undefined or false and at least
one is mapped to false.

The proof works by showing that existence of non-trivial
conflict-free interpretations of type (1) can be decided in NP,
and that the existence of those of type (2) can be decided in
coNP. In combination, membership for coDP follows.

Showing the first part is straightforward: to decide whether
some statement s ∈ S can be set to true without violat-
ing conflict-freeness, we construct the propositional formula∨
s∈S ϕ

{s7→t}
s and check if it is satisfiable. If for some s ∈ S

the formula ϕ{s 7→t}
s is satisfiable, then v : S → {t, f ,u}with

v(s) = t and v(s′) = u for s′ ∈ S \ {s} is conflict-free. Oth-
erwise, no s ∈ S can be set to true in a conflict-free way.

Showing the second part about interpretations
v : S → {t, f ,u} with v(S) ⊆ {u, f} (we call them
uf -interpretations) constitutes the main portion of the proof.
Roughly, conflict-free uf -interpretations are closed under
the greatest lower bound operator ti associated to the in-
formation ordering ≤i on interpretations. That is, whenever
v1 and v2 are uf -interpretations that are conflict-free for D,
then the interpretation v1 ti v2 is a uf -interpretation that is
conflict-free for D as well. Since both v1 ≤i v1 ti v2 and
v2 ≤i v1 ti v2 by definition, there is a unique ≤i-greatest
conflict-free uf -interpretation vmax : S → {t, f ,u} of D.
Our task is to decide whether vmax is non-trivial. We first
show how to do this by computing vmax in polynomial time
using an NP oracle. The procedure works constructively
and begins with the interpretation v0 : S → {f}, that is,
mapping all statements to false. The computation now
stepwise (j = 0, 1, . . . , n− 1) reassigns vj+1(s) = u for
s ∈ v−1

j (f) whenever it is the case that assigning vj(s) = f

is actually not justified because ϕvjs is satisfiable (otherwise,
it keeps vj+1(s) = vj(s) = f ). To answer the satisfiability
queries, the procedure can use the NP-oracle. The proof
finally shows how to combine all the oracle queries into one
satisfiability check. This is done by encoding the whole

computation into a propositional formula φcfi of polynomial
size such that the formula is satisfiable if and only if there is
a possible computation that starts with v0(S) = {f} and ends
in the trivial vn(S) = {u}. Since such a computation would
show that vmax is trivial, there is a non-trivial conflict-free
uf -interpretation ofD if and only if the formula φcfi is unsat-
isfiable. This then shows containment in coNP for checking
whether there is a non-trivial conflict-free interpretation of
type (2), and thus concludes the coDP-containment proof.
Theorem 6. Existscfi is coDP-complete.

Fortunately, this amount of work “pays off” in that decid-
ing the existence of non-trivial conflict-free interpretations
also decides the existence of naive, stage and nai2 interpreta-
tions. The first technical result towards establishing that is the
following lemma. It shows how every conflict-free interpret-
ation v gives rise to a naive (or stage) interpretation v′ that
is “above v” with respect to some ordering. In case of naive,
the ordering is clearly the information ordering≤i. In case of
stage, the ordering is given by comparing the statements that
are assigned the truth value u by the two interpretations.
Lemma 7. LetD be an ADF over S. For every interpretation
v : S → {t, f ,u} that is conflict-free for D, there exists:

1. a naive interpretation v′ : S → {t, f ,u} with v ≤i v′;
2. a stage interpretation v′′ : S → {t, f ,u} with v′′u ⊆ vu.

The lemma can be used to show that not only do the non-
trivial existence problems coincide, but also credulous en-
tailment for conflict-free and naive semantics are equivalent.
Intuitively, if an ADF D has a conflict-free interpretation v
with, say, v(s) = t, then the lemma above guarantees the ex-
istence of a naive w with v ≤i w and thus w(s) = v(s) = t.
Proposition 8. The following decision problems coincide:

1. Existscfi , Existsnai , Existsstg , Existsnai2 ;

2. Credtcfi and Credtnai ;

3. Credfcfi and Credfnai .

3.3 Entailment
While verification is a quite basic reasoning task, and non-
trivial interpretation existence is mostly used to figure out
if a given knowledge base is sensible at all, the entailment
problem is most likely to be repeatedly used in practice. Re-
calling that ADFs are intended for modelling argumentation
scenarios, entailment queries then allow to answer questions
about these scenarios, such as, “Is it the case that there is one
possible interpretation of this scenario where statement a is
true?” For the conflict-free semantics, this problem is, while
infeasible in a conservative sense, still relatively easy.

Theorem 9. Credtcfi is NP-complete.
Astonishingly, for similar questions of the form, “Is it the

case that there is one possible (conflict-free) interpretation
of this scenario where statement a is false?”, giving an an-
swer becomes harder! This asymmetry is quite remarkable,
and has its cause in the asymmetry of the definition of a
conflict-free interpretation: v : S → {t, f ,u} is conflict-free
iff for each s ∈ S with v(s) = t the formula ϕvs is satisfiable,



and for each s ∈ S with v(s) = f the formula ϕvs is unsat-
isfiable. So in one case, there is a satisfiability check, in
the other there is an unsatisfiability check. To decide cred-
ulous entailment, we clearly have to guess an interpretation
v : S → {t, f ,u} with a desired property (such as v(s) = t
or v(s) = f ). And while the witnesses for verifying v(s) = t
can be guessed alongside v, such is not possible when having
to verify v(s) = f . Formally, the hardness part of the result
below is proved via a reduction from the problem of deciding
whether a quantified Boolean formula ∃P∀Qψ is true.

Theorem 10. Credfcfi is ΣP2 -complete.

There is a straightforward way to show that a statement
s ∈ S is not sceptically entailed as true by an ADF D over S:
guess an interpretation v : S → {t, f ,u} with v(s) 6= t and
show that v is naive. Since Vernai is in ΠP

2 , this straightfor-
ward approach yields containment of Sceptnai in ΠP

3 . For-
tunately, there is an easier way: we guess an interpretation
v : S → {t, f ,u}with v(s) = u, and verify (using the NP or-
acle) that v is conflict-free for D, while the augmented inter-
pretation v ◦ {s 7→ t} is not conflict-free for D. Intuitively,
this identifies statement s ∈ S as a “troublemaker”, as the
one reason that violates conflict-freeness in all interpretations
with at least as much information as v. Since among these in-
terpretations at least one must be naive, we have our desired
counterexample for sceptical entailment. This yields contain-
ment in ΠP

2 ; as it turns out, that is the best possible bound.

Theorem 11. Sceptnai is ΠP
2 -complete.

The straightforward approach to decide sceptical entail-
ment of truth clearly also works for sceptical entailment of
falsity. In this case, however, it turns out that there is no short-
cut. For the (quite technical) proof of the result, we adapt and
combine proof techniques from [Strass and Wallner, 2014,
Theorem 20] and Theorem 3.

Theorem 12. Scepfnai is ΠP
3 -complete.

For naive semantics, we have seen (1) an asymmetry in de-
ciding (credulous/sceptical) truth and falsity; and (2) a steady
rise in complexity from credulous truth up to sceptical falsity.
For stage semantics, surprisingly, these differences vanish:
All four decision problems are (more or less) equally hard,
namely in the third level of the polynomial hierarchy. For the
first problem, this is shown by considering QBFs ∃P∀Q∃Rψ.

Theorem 13. Credtstg is ΣP3 -complete.

For hardness of deciding credulous falsity, we can use a
simple extension of the hardness construction used above: ba-
sically, the construction relies on a statement y that can be set
to u if the given QBF ∃P∀Q∃Rψ is true, and must be set to f
otherwise (due to the inherent ⊆-minimisation of vu in stage
semantics). The actual reduction now works over a statement
z with acceptance formula ϕz = y; consequently, z can be
set to true iff y can be set to u. In the extended construc-
tion below, we now add another statement a with acceptance
formula ϕa = ¬z. Both statements will always be assigned
opposite truth values from {t, f}, thus proving the next result.

Proposition 14. Credfstg is ΣP3 -complete.

cfi nai stg nai2

Verσ DP-c ΠP
2 -c ΠP

2 -c ΠP
2 -c

Existsσ coDP-c coDP-c coDP-c coDP-c

Credtσ NP-c NP-c ΣP3 -c ΣP3 -c

Credfσ ΣP2 -c ΣP2 -c ΣP3 -c ΣP3 -c

Sceptσ trivial ΠP
2 -c ΠP

3 -c ΠP
3 -c

Scepfσ trivial ΠP
3 -c ΠP

3 -c ΠP
3 -c

Table 1: Complexity results for naive-based semantics of ab-
stract dialectical frameworks; C-c stands for C-complete.

To show that a statement s is not sceptically en-
tailed as false in an ADF D, we guess an interpretation
v : S → {t, f ,u} with v(s) 6= f and verify in ΠP

2 that v is
stage. This approach is optimal, as completeness shows.
Theorem 15. Scepfstg is ΠP

3 -complete.

In the step from Scepfstg to Sceptstg we can use the same
construction extension as in the step from Credtstg to Credfstg .

Proposition 16. Sceptstg is ΠP
3 -complete.

For the nai2 semantics, we can directly use that the relev-
ant entailment decision problems (or their complements, re-
spectively) are polynomially interreducible.
Proposition 17. The following problems can be polynomi-
ally reduced to each other:
• Credtnai2 and Credfnai2 ,

• Sceptnai2 and Scepfnai2 ,

• co-Scepfnai2 and Credtnai2 .
Together with the observation that the hardness reduction

of Theorem 12 works for the nai2 semantics as well, the pro-
position leads to the following results.
Theorem 18. Credtnai2 and Credfnai2 are ΣP3 -complete.
Sceptnai2 and Scepfnai2 are ΠP

3 -complete.

4 Discussion
We presented numerous novel results on the computational
complexity of naive-based semantics for abstract dialectical
frameworks. An overview is above in Table 1. The main
lesson learned is that naive-based semantics for ADFs are –
computationally speaking – not at all “naive”.

Our analysis paves the way for implementing naive-based
ADF semantics, for example by adding adequate ASP encod-
ings for the verification and existence problem to the DIA-
MOND system [Ellmauthaler and Strass, 2014]. For the
sceptical and credulous entailment problems in the third level
of the polynomial hierarchy, encodings based on QBFs seem
possible [Diller et al., 2014]. In future work, we also in-
tend to identify computationally more amenable fragments;
the subclass of bipolar ADFs is a promising candidate. Fur-
thermore, the recently introduced stg2 semantics [Gaggl and
Strass, 2014] is as yet unanalysed in terms of complexity.
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