
Don’t Repeat Yourself:
Termination of the Skolem Chase on

Disjunctive Existential Rules

Lukas Gerlach

Knowledge-Based Systems Group
Technische Universität Dresden, Germany

Abstract. Disjunctive Existential Rules are a fragment of first order
logic that is already expressive enough to capture many description log-
ics. Conjunctive Query answering is an important reasoning task over
such rules. Although this problem is undecidable, different variants of
the chase provide sound and complete algorithms that can be used as a
reasoning basis. Since it is undecidable if these algorithms terminate for
a specific rule set, sufficient conditions for termination, called acyclicity
notions, are introduced. We develop Disjunctive Model Faithful Acyclic-
ity (DMFA) as a novel acyclicity notion for the disjunctive skolem chase
variant by using ideas from Model Faithful Acyclicity (MFA) for the
non-disjunctive skolem chase and Restricted Model Faithful Acyclicity
(RMFA) for the restricted chase. Our research shows that our notion
captures MFA and is able give a better approximation for termination
on disjunctive existential rules. Acyclicity notions for the restricted chase
like RMFA still capture DMFA but these notions are not sound for the
disjunctive skolem chase. Our results encourage the use of the disjunctive
skolem chase in practical applications, which is implementable using well
optimized ASP solvers.

1 Introduction

In the field of knowledge representation and database theory, reasoning over
knowledge bases is a fundamental task. Knowledge bases consist of facts that
are given explicitly and rules the allow to infer further knowledge from existing
facts. In our setting, we formulate facts and rules using fragments of first order
logic. We consider knowledge bases featuring existential rules [4] or tuple gener-
ating dependencies as they are called in database theory [1]. More precisely, we
consider disjunctive existential rules, which are more expressive than existential
rules and are already powerful enough to capture many description logics [19].

Example 1. The following rules encode information about frozen pizza and pizza
delivery.

Pizza(x)→ InFridge(x) ∨ ∃y.(DeliveryService(y) ∧Delivers(y, x))
DeliveryService(x)→ ∃z.(Pizza(z) ∧Delivers(x, z))

InFridge(x)→ Cold(x)
Delivers(x, y) ∧ Slow(x)→ Cold(y)

Intuitively, the first rule states that each pizza is in a fridge or it is delivered
by some delivery service. The second rule states that for each delivery service
there exists a pizza that was delivered by it. By the third rule everything that
is in a fridge must be cold and by the fourth rule something is also cold if it was
delivered by something slow, e.g. a slow delivery service. N

An important reasoning task for knowledge bases is query answering. Formally,
we consider Conjunctive Queries (CQs) [1], where the answers of the query are
the possible assignments of the free variables.

Example 2. We may ask, which delivery services deliver cold pizza. This can be
formulated using the following CQ:

∃y.(DeliveryService(x) ∧Delivers(x, y) ∧ Pizza(y) ∧ Cold(y))

We consider the rules from Example 1 and two different sets of facts A and B.

A := {DeliveryService(d),Slow(d) }
B := {Pizza(c), InFridge(c) }

By using the second and the fourth rule starting on A, we can derive that there
exists a delivered pizza that is cold. Hence, delivery service d delivers cold pizza
and is therefore an answer to the query. Starting on B, there is not necessarily
a delivery service at all since the first rule is already fulfilled by Pizza(c) and
InFridge(c). We can still derive Cold(c) using the third rule but the query still
has no answer since c was arguably not delivered. Hence, there are no delivery
services that deliver cold pizza in case B. In fact, there are no delivery services
at all. N

CQ answering can also be formulated as a decision problem by checking if a
possible answer to a CQ over a certain knowledge base is indeed valid. However,
CQ answering is undecidable for knowledge bases that feature (disjunctive) ex-
istential rules [5].

There are various approaches towards CQ answering. We consider the (dis-
junctive) chase [6,17], which is a sound and complete fixed point algorithm that
can be used as a basis for reasoning over (disjunctive) existential rules. There
are different variants of the concrete chase procedure like the restricted chase
[8] and the skolem chase [9,16,18]. However, the computation of any of these
variants may not terminate, otherwise we could decide CQ answering. It is even
undecidable to check if this computation terminates [5,15]. This is also the case
for non-disjunctive existential rules.

2

Example 3. Using the rules from Example 1 and the fact Pizza(c), the chase
produces the following infinite chain of facts (Fig. 1):

c : Pizza

d : DeliveryService

c′ : Pizza

. . .

Delivers Delivers Delivers

Fig. 1. Non-terminating Chase

Intuitively, we can derive that there exists a DeliveryService(d) that delivered
Pizza(c) using the first rule. By using the second rule on d we can derive that
there exists a Pizza(c′) that d delivers and so on. Note that Fig. 1 only shows
this intuition. For a formal definition of the chase sequence, see Definition 24. N

There are differences in termination between the different chase variants. For
instance, the restricted chase terminates in more cases than the skolem chase.
Still, the latter can be implemented using optimized answer set programming
(ASP) solvers [2,3,13,12,14]. For this reason, we focus on the skolem chase in
our work. We discuss this in more detail in Section 2.5.

To resolve the issue of chase termination, sufficient conditions, called acyclic-
ity notions, are introduced. Because of the undecidability of chase termination
[5,15], this is the best we can do. For the termination of the skolem chase using
non-disjunctive existential rules, acyclicity notions like model faithful acyclicity
(MFA) [9] already provide good results. In the evaluation of [8], MFA marks
72.5% of the rule sets without disjunctions as terminating. However, acyclicity
notions for chase variants on disjunctive existential rules barely exist or often
do not provide good results, at least for the skolem chase. For the restricted
chase, restricted model faithful acyclicity (RMFA) marks 34.6% of the rule sets
with disjunctions as terminating [8], which can be considered the benchmark
for our work. Though, RMFA cannot be used as an acyclicity notion for the
skolem chase, since the skolem chase terminates in less cases than the restricted
chase. Therefore, if RMFA markes a rule set as terminating, it may still not
terminate w.r.t. the skolem chase. To obtain an acyclicity notion for the skolem
chase on rule sets with disjunctions, we can modify MFA such that disjunctions
are treated as conjunctions. However, this naive extension of MFA marks only
25.3% of the rule sets with disjunctions as terminating in [8]. We think that we
can improve upon this result and achieve a result closer to RMFA because the
modified version of MFA does not take disjunctions into account.

Our goal is to construct a new acyclicity notion, called Disjunctive Model
Faithful Acyclicity (DMFA) that guarantees termination for a disjunctive version
of the skolem chase. The concrete definition of this chase variant is based on ideas
of the disjunctive chase [6], the skolem chase [9,16,18], and the restricted chase

3

[8]. Also, our chase variant can be implemented using ASP solvers. Using this
chase variant as a foundation, our contributions are the following:

– We define DMFA based on ideas of MFA and RMFA.
– We establish relations of DMFA towards MFA and RMFA.
– We investigate complexity bounds for the DMFA check as well as for reason-

ing with rule sets that are DMFA.

We expect DMFA to improve upon the results of MFA for rule set termination
w.r.t. the disjunctive skolem chase. We also expect our notion to come close
to the results of RMFA. However, by using the disjunctive skolem chase, DMFA
necessarily marks less rule sets as terminating, since it must not mark rule sets as
terminating that only terminate w.r.t. to the restricted chase but not w.r.t. the
disjunctive skolem chase. To the best of our knowledge, this is the first approach
of defining an acyclicity notion tailored towards the disjunctive skolem chase,
which promises significant advances, especially for practical concerns.

Note that this work is purely theoretical. The practical evaluation of DMFA
against MFA and RMFA is addressed in upcoming work. We also plan to develop
cyclicity notions, i.e. sufficient conditions for non-termination, for the disjunctive
skolem chase later on.

2 Preliminaries

In this section, we introduce the basic definitions and notions used in the rest
of the thesis. We assume familiarity with standard first order logic syntax and
semantics.

2.1 Disjunctive Existential Rules

We use standard first order logic notions to describe the disjunctive existential
rule fragment. We define Var,Const,Pred, and Func to be the pairwise disjoint,
countably infinite sets of variables, constants, predicate symbols, and function
symbols, respectively. Each predicate symbol and function symbol is associated
with its arity by the function ar : Pred ∪ Func→ N. We assume that N includes
0. The set Term of terms is the smallest set such that Var ∪ Const ⊆ Term and
f(t1, . . . , tn) ∈ Term for all t1, . . . , tn ∈ Term and f ∈ Func with ar(f) = n. If
n = 0 we write f instead of f(). We abbreviate lists of terms t1, . . . , tn as ~t. We
treat ~t to be the set { t1, . . . , tn } ⊆ Term when suitable. A term t′ is called a
subterm of another term t if either t = t′ or t is of the form f(~s) and t′ is a
subterm of some term in ~s. The term t′ is a proper subterm of t if t′ is a subterm
of t and t 6= t′.

Definition 4. A term t ∈ Term is cyclic if, for some f ∈ Func and some lists
of terms ~s and ~u of length ar(f), the term f(~s) is a subterm of t and f(~u) is a
proper subterm of f(~s).

4

Example 5. The term h(g(f(a), h(b))) is cyclic, whereas h(g(f(a), f(b))) is not.
N

An atom is an expression of the form P (~t) for some P ∈ Pred and a list of terms
~t of length ar(P). As with terms, we also write P instead of P () if ar(P) = 0.
The set Atom is the set of all atoms. An atom or term is ground if it does not fea-
ture syntactic occurrences of variables. We denote the sets of ground atoms and
ground terms by GAtom and GTerm, respectively. Facts are ground atoms. For
comprehensibility, we sometimes represent fact sets featuring predicate symbols
of arity at most 2 as graphs in the following way.

Example 6. The fact set {P (a), Q(a), R(a, b) } can be represented as the follow-
ing graph (Fig. 2):

a : P,Q b

R

Fig. 2. Fact set as graph

We treat a conjunction of atoms a1 ∧ · · · ∧ an as the set that contains all of its
conjuncts { a1, . . . , an } when suitable. For a conjunction of atoms ϕ and a list of
variables ~v, we write ϕ(~v) to indicate that ϕ features occurrences of exactly the
variables in ~v. A substitution θ : Var→ GTerm is a partial mapping from variables
to ground terms. The application of a substitution θ on an expression ϕ, denoted
as ϕθ, is the expression that results from ϕ by replacing every occurrence of a
variable x in ϕ with θ(x) if θ(x) is defined.

Example 7. Given a substitution θ that maps every variable in Var to the ground
term f(a) and the expression ϕ := P (g(x), y), the application of θ on ϕ is
ϕθ = P (g(f(a)), f(a)). N

In a similar way to substitutions, we allow the remapping of constants in terms
and facts. We extend every (total) mapping µ : Const→ GTerm such that for a
term or atom t, µ(t) is the term or atom that results from t by replacing every
occurrence of a constant c in t with µ(c), respectively. The mapping µ can also
be applied to term/fact sets and sets of term/fact sets in the obvious way.

Definition 8. A (disjunctive existental) rule is an expression of the form

∀~x∀~y.[ϕ(~x, ~y)→
∨n

i=1
∃~zi.ψi(~xi, ~zi)]

where n ≥ 1; ~x, ~y, and ~zi are pairwise disjoint lists of variables;
⋃n
i=1 ~xi = ~x; and

ϕ(~x, ~y) and ψi(~xi, ~zi) are non-empty conjunctions of atoms that do not contain
occurrences of function symbols or constants.

5

The universal quantifiers in rules are usually omitted. The conjunctions of atoms
ϕ(~x, ~y) and the expression

∨n
i=1 ∃~zi.ψi(~xi, ~zi) are called the body and the head of

the rule, respectively. We denote the conjunctions of atoms ϕ and ψi by Bρ and
Hi
ρ, respectively. The variables ~x that occur in the body and the head are called

the frontier of the rule. We define branch(ρ) := n. A rule ρ is called Datalog if
branch(ρ) = 1 and H1

ρ does not contain existentially quantified variables. We
denote the subset of all Datalog rules in a rule set R by Rdlog.

An instance is a set of function free facts. A knowledge base is a pair 〈R, I〉
where R is a rule set and I is an instance. We assume w.l.o.g. that existentially
quantified variables do not reoccur across rules in a given rule set. Combined
with Definition 8 we obtain that, for each existentially quantified variable v in
a rule set R, there is a unique conjunction of atoms in the head of some rule in
R that contains v (†).

Definition 9. A model of a knowledge base K := 〈R, I〉 is a fact set M such
that I ⊆M and M |= R under first order logic semantics.

Example 10. Consider a knowledge base K consisting of an instance {Pizza(c) }
and a singleton rule set containing the rule

Pizza(x)→ InFridge(x) ∨ ∃y.(Delivers(y, x) ∧DeliveryService(y))

The set of fact sets {Pizza(c), InFridge(c) } is a model of K. N

2.2 Query Answering

Definition 11. A conjunctive query (CQ) is an expression of the form σ :=
∃~z.ϕ(~x, ~z) where ~x and ~z are lists of variables and ϕ(~x, ~z) is a conjunction of
function free atoms. If the list of variables ~x is empty, σ is called a boolean
conjunctive query (BCQ).

A list of terms ~t is an answer to a CQ ∃~z.ϕ(~x, ~z) w.r.t. a knowledge base K if, for
each model M of K, there exists a substitution θ with ~xθ = ~t such that ϕθ ⊆M .
If σ is a BCQ, then σ is entailed by K if the empty list of terms is an answer to
σ. The decision problem of deciding if a certain list of terms ~t is an answer to a
CQ ∃~z.ϕ(~x, ~z) can be reduced to BCQ entailment by replacing ~x with ~t in ϕ.

Example 12. Consider the CQ ∃x.(Pizza(x) ∧ InFridge(y, x)). To decide if the
term myFridge is an answer to the CQ w.r.t. a knowledge base K, we can check
if the BCQ ∃x.(Pizza(x) ∧ InFridge(myFridge, x)) is entailed by K. N

For brevity and since CQ answering can be reduced to BCQ entailment, we only
consider BCQ entailment in the following.

6

2.3 Universal Model Sets

Formally, to check BCQ entailment for a knowledge base, we would need to
check entailment of the BCQ for every of the infinitely many, possibly infinitely
large models of the knowledge base. It suffices to consider only a universal model
set U [6] such that for every model M there exists a model in U that can be
homomorphically embedded into M . For two fact sets F and F ′, a mapping τ
over GTerm is called a homomorphism from F to F ′ if τ(t) = t for all t ∈ Const
and τ(F) ⊆ F ′ where τ(F) := {P (τ(t1), . . . , τ(tn)) | P (t1, . . . , tn) ∈ F }.

Definition 13. A set of models U of a knowledge base K is called a universal
model set if, for every model M of K, there exists a model U ∈ U such that there
exists a homomorphism from U to M .

Proposition 14. A BCQ σ := ∃~z.ϕ(~z) is entailed by a knowledge base K iff it
is entailed by each model in some universal model set U of K, that is, for each
U ∈ U , there exists a substitution θ with ϕθ ⊆ U .

Proof. We show both directions of the claim separately. Consider the BCQ σ :=
∃~z.ϕ(~z) and a knowledge base K. If σ is entailed by K, then by definition there
exists a substitution θ with ϕθ ⊆ M for every model M of K. In particular,
this holds for every model U in some universal model set U of K. For the other
direction, we show that σ is entailed by K if it is entailed by each model in some
universal model set U of K.

1. Let M be a model of K and let U be a universal model set for a knowledge
base K such that, for each model U ∈ U , there exists a substitution θ with
ϕθ ⊆ U .

2. By (1): There exists a model U ∈ U such that there exists a homomorphism
τ from U to M .

3. By (1) and (2): τ ◦ θ is a substitution with ϕ(τ ◦ θ) ⊆M .
4. By (3): σ is entailed by K.

ut

Example 15. Consider the BCQ σ := ∃x.(Pizza(x)∧InFridge(x)) and the knowl-
edge base K consisting of the instance {Pizza(c) } and a singleton rule set con-
taining the rule:

Pizza(x)→ InFridge(x) ∨ ∃y.(Delivers(y, x) ∧DeliveryService(y))

The following set of fact sets is a universal model set of K:

{ {Pizza(c), InFridge(c) }, {Pizza(c),Delivers(f(c), c),DeliveryService(f(c)) } }

By Proposition 14, σ is not entailed by K since there is no substitution θ with:

(Pizza(x) ∧ InFridge(x))θ ⊆ {Pizza(c),Delivers(f(c), c),DeliveryService(f(c)) }

N

7

2.4 Disjunctive Skolem Chase

In general, the chase is a sound and complete procedure for computing a universal
model set of a knowledge base. For our concrete definition, the chase result is
only defined if the computation terminates. Hence, technically the procedure is
only complete for terminating cases.

For the definition of the disjunctive skolem chase, we introduce a formal way
of applying rules to facts. We use ideas from existing definitions of the non-
disjunctive skolem chase [9,16,18], the disjunctive chase [6] and the restricted
chase [8]. One issue is, how to generate new facts for rules with existentially
quantified variables. We tackle this issue by skolemizing the rules first. That
means, we introduce function symbols for each existentially quantified variable.
Those function symbols are used as a naming convention, to keep track of facts
that have already been introduced by a specific rule.

Definition 16. The skolemization sk(ρ) of a rule ρ is defined as

Bρ(~x, ~y)→
∨n

i=1
ψski (~x)

where n = branch(ρ), ~x is the frontier of ρ, and for each 1 ≤ i ≤ n, ψski (~x) is
obtained from Hi

ρ(~xi, ~zi) by replacing each of the existentially quantified variables
z ∈ ~zi with fz(~x) where fz is a fresh function symbol unique for z with arity |~x|.

Note that the mapping from z to fz(~x) is well defined within a rule set because
there is a unique conjunction of atoms that contains z according to (†) and by
that, there is a unique term fz(~x) for each z. For readability, we also denote the
conjunctions of atoms in the head of sk(ρ) by sk(Hi

ρ) := ψski . To see why the
mapping from z to fz(~x) may not be well defined if (†) does not hold, regard
the following example.

Example 17. Consider the following rule set for which (†) does not hold.

ρ1 = P (x)→ ∃z.Q(x, z) sk(ρ1) = P (x)→ Q(x, fz(x))

ρ2 = Q(x, y)→ ∃z.R(x, y, z) sk(ρ2) = Q(x, y)→ R(x, y, fz(x, y))

The variable z is mapped to two different terms in this rule set, so the image of
z is not well defined. In particular, the function symbol fz itself is also not well
defined because it occurs with two different arities. N

Using skolemized rules, we define how a rule is applied to a set of facts. For rule
sets without disjunctions, these applications are usually defined for a set of facts
and they yield another set of facts [9,18]. Regarding disjunctive rules, we have to
look at the different head disjuncts individually. Thus, we use a set of fact sets
rather than just a single set of facts to store the results of the rule application
for each individual disjunct [6].

Definition 18. A pair λ := 〈ρ, θ〉 of a rule ρ and a substitution θ that is defined
exactly on the universally quantified variables in ρ is called trigger. In the context
of a fact set F :

8

– The trigger λ is active if Bρθ ⊆ F .
– The trigger λ is obsolete if sk(Hi

ρ)θ ⊆ F for some 1 ≤ i ≤ branch(ρ).
– The trigger λ is applicable to F if it is active and it is not obsolete.

If λ is applicable to F , then the application of λ on F is defined as the set of
fact sets λ(F) := {F ∪ sk(Hi

ρ)θ | 1 ≤ i ≤ branch(ρ) }.

Example 19. Consider F := {Pizza(c) }, a substitution θ with θ(x) = c and
ρ := Pizza(x)→ InFridge(x) ∨ ∃y.(Delivers(y, x) ∧DeliveryService(y)).

〈ρ, θ〉(F) = { {Pizza(c),Delivers(fy(c), c),DeliveryService(fy(c)) },
{Pizza(c), InFridge(c) }}

N

Definition 20. Let R be a rule set, F a fact set and F a set of fact sets.

– The application of R on F is defined as the set of fact sets

R(F) :=

{
{F }, if ΛFR = ∅⋃
λ∈ΛF

R
λ(F), otherwise

where ΛFR is the set of all triggers using rules in R that are applicable to F .
– The application of R on F is the set of fact sets R(F) :=

⋃
F∈F R(F).

– The saturating application of Rdlog on F , written R∗dlog(F), is defined as the
smallest superset of the fact set F such that Rdlog(R

∗
dlog(F)) = {R∗dlog(F) }.

– The saturating application of Rdlog on F is defined as the set of fact sets
R∗dlog(F) := {R∗dlog(F) | F ∈ F }.

The saturating application of Datalog rules is used in Definition 24 as this can
lead to termination of the disjunctive skolem chase in more cases. We discuss
this in detail in Section 2.5.

Remark 21. The saturating application R∗dlog(F) of Rdlog on a fact set F can be
regarded as a sequence of applications of Rdlog starting on F . Even though the
individual applications of Rdlog may yield multiple fact sets, these fact sets col-
lapse into a single fact set, namely R∗dlog(F), after a finite number of applications.
We obtain that there is a number n ∈ N such that

Rndlog(F) := Rdlog(. . . Rdlog(︸ ︷︷ ︸
n times

F) . . .) = {R∗dlog(F) }

We define R0
dlog(F) := {F }. N

A valuable insight for later considerations is that constant remappings may allow
more triggers featuring Datalog rules to be applied.

9

Example 22. Consider the fact set F := {P (a, b) } and the Datalog rule:

ρ := P (x, x)→ Q(x)

There exists no trigger featuring ρ that is applicable to F . However, if we remap
constants in F , we can map both a and b to a. Then, the trigger 〈ρ, θ〉 with θ
mapping x to a is applicable. N

In general, we obtain the following result.

Lemma 23. For each mapping µ : Const → GTerm, each rule set R, and each
fact set F , we have µ(R∗dlog(F)) ⊆ R∗dlog(µ(F)).

Proof. According to Remark 21, we show that µ(Fi) is a subset of some fact set
in Ridlog(µ(F)) for each fact set Fi ∈ Ridlog(F) via induction over i ∈ N. For the
base case i = 0, we have that F 0 ∈ R0

dlog(F) = {F } iff µ(F 0) ∈ R0
dlog(µ(F)) =

{µ(F) }. For the induction hypothesis, we assume that µ(Fk) is a subset of some
fact set in Rkdlog(µ(F)) for each fact set Fk ∈ Rkdlog(F) where k ∈ N. For the
induction step, we show that µ(Fk+1) is a subset of some fact set in Rk+1

dlog(µ(F))

for each fact set Fk+1 ∈ Rk+1
dlog(F).

1. Let Fk+1 ∈ Rk+1
dlog(F) and Fk+1 /∈ Rkdlog(F). Otherwise the result follows from

the induction hypothesis.
2. By (1): There is a fact set Fk ∈ Rkdlog(F) and a trigger 〈ρ, θ〉 with ρ ∈ Rdlog

and Fk+1 ∈ 〈ρ, θ〉(Fk).
3. By (2): µ(Fk+1) ∈ 〈ρ, µ ◦ θ〉(µ(Fk))
4. By (3) and the induction hypothesis: µ(Fk+1) is a subset of some fact set in
〈ρ, µ ◦ θ〉(F ′) for some F ′ ∈ Rkdlog(µ(F)).

5. By (4): µ(Fk+1) is a subset of some fact set in Rdlog(R
k
dlog(µ(F))).

6. By (5): µ(Fk+1) is a subset of some fact set in Rk+1
dlog(µ(F)).

ut

The formal application of rules to facts enables us to compute new facts. To
obtain the definition of the disjunctive skolem chase, we apply rules exhaustively,
until no new facts are obtained.

Definition 24. The chase sequence of a knowledge base K := 〈R, I〉 is the se-
quence of sets of fact sets F0

K,F1
K, . . . defined inductively via F0

K := { I } and
F iK := R(R∗dlog(F

i−1
K)) for all i > 0.

Recall that we use the saturating application of Rdlog in each step of the chase se-
quence since this leads to termination more often (see Section 2.5). A knowledge
base K is terminating if FkK = Fk+1

K for some k ∈ N. A rule set R is terminating
if 〈R, I〉 is terminating for every instance I. The chase of a terminating knowl-
edge base K is defined as Ch(K) := FkK, where k is the smallest number such that
FkK = Fk+1

K . If such a k does not exist, i.e. if K is not terminating, then Ch(K)
is undefined. Note that both problems of checking if a rule set is terminating
[15] and checking if a knowledge base is terminating [5,10] are undecidable, even
if the rules do not contain disjunctions.

10

Proposition 25. The chase Ch(K) of a terminating knowledge base K is a
universal model set of K.

Proof. We prove the claim in two parts. First, we show that each U ∈ Ch(K) is
a model of K = 〈R, I〉.

1. Since F0
K = { I }: I ⊆ U .

2. Suppose for a contradiction that U 6|= R.
3. By (2): There exists a rule ρ ∈ R that is not satisfied by U .
4. By (3): There exists a trigger 〈ρ, θ〉 that is applicable to U .
5. By (4): U /∈ Ch(K). �
6. By (2) and (5): U |= R.
7. By (1) and (6): U is a model of K.

Second, we show the universality of Ch(K), that is, we show that for every model
M of K there exists a model U ∈ Ch(K) such that there exists a homomorphism
τ from U to M . More precisely, we show τ(F) ⊆ M for some F ∈ F iK for all
i ∈ N by induction over i. For the base case i = 0, we have that F0

K = { I }.
Hence, we show that τ(I) ⊆M .

1. Since M is a model of K, I ⊆M .
2. By (1) and since τ(t) = t for all t ∈ Const: τ(I) ⊆M .

For the induction hypothesis, we assume that τ(F ′) ⊆ M for some F ′ ∈ Fk−1K .
For the induction step, we show that τ(F) ⊆M for some F ∈ FkK where k ≥ 1.
We do this by constructing a suitable fact set F from F ′. We either have that
F ′ ∈ FkK and the claim for the induction step follows trivially if we set F := F ′

or there exists a trigger λ := 〈ρ, θ〉 with λ(F ′) ⊆ FkK. We assume the latter in
the following and show that τ(F ′ ∪ sk(Hi

ρ)θ) ⊆ M for some 1 ≤ i ≤ branch(ρ).
The claim then follows if we set F := F ′ ∪ sk(Hi

ρ)θ, because then we obtain
F ′ ∪ sk(Hi

ρ)θ ∈ λ(F ′) ⊆ FkK.

1. By induction hypothesis, τ(F ′) ⊆M .
2. By (1) and since Bρθ ⊆ F ′: Bρ(τ ◦ θ) ⊆M .
3. By (2) and sinceM |= R: There exists a substitution θ′ with Bρ(τ ◦θ) = Bρθ

′

and Hi
ρθ
′ ⊆M for some 1 ≤ i ≤ branch(ρ).

4. By (3): The substitutions τ ◦ θ and θ′ may only differ for variables that
only occur in Hi

ρ, hence variables that are replaced by the skolemization. We
define the mapping of the newly introduced skolem terms in τ in the fash-
ion that τ(sk(Hi

ρ)θ) = Hi
ρθ
′. This is possible w.l.o.g. since sk(Hi

ρ)θ is only
introduced for the single application of λ. Otherwise λ is already obsolete.

5. By (4): τ(sk(Hi
ρ)θ) ⊆M .

6. By (1) and (5): τ(F ′ ∪ sk(Hi
ρ)θ) ⊆M .

ut

Since the chase on a terminating knowledge base K yields a universal model, we
can use its result to check BCQ entailment for K.

11

Corollary 26. A BCQ ∃~z.ϕ(~z) is entailed by a terminating knowledge base K
iff it is entailed for each F ∈ Ch(K), that is for each F ∈ Ch(K) there exists a
substitution θ with ϕθ ⊆ F .

The claim follows directly from Propositions 14 and 25.

Example 27. Based on Example 15, we present the universal model set that the
disjunctive skolem chase yields for the knowledge base consisting of the instance
I := {Pizza(c) } and the rule set containing the following two rules:

Pizza(x)→ InFridge(x) ∨ ∃y.(DeliveryService(y) ∧Delivers(y, x))
InFridge(x)→ Cold(x)

We obtain the following chase sequence:

F0
K = { I }
F1
K = {F1 = I ∪ { InFridge(c) }

F2 = I ∪ {Delivers(fy(c), c),DeliveryService(fy(c)) } }
F2
K = {F1 ∪ {Cold(c) }, F2 } = Ch(K)

The set of fact sets Ch(K) is a universal model set of K by Proposition 25. N

2.5 Discussion on some Properties of the Disjunctive Skolem Chase

We discuss some design decisions for the definition of the disjunctive skolem
chase. We look into the skolemization, the notion of applicability and the pri-
oritized application of Datalog rules in detail. After that, we discuss theoretical
and practical advantages of our chase definition over the restricted chase.

First, we consider the skolemization. Recall from Definition 16 that skolem-
ized rules are of the form

Bρ(~x, ~y)→
∨n

i=1
ψski (~x)

where n = branch(ρ), ~x is the frontier of ρ, and for each 1 ≤ i ≤ n, ψski (~x) is
obtained from Hi

ρ(~xi, ~zi) by replacing each of the existentially quantified vari-
ables z ∈ ~zi with fz(~x) where fz is a fresh function symbol unique for z with
arity |~x|. It is possible to define a correct chase procedure using fz(~x, ~y) rather
than fz(~x). But when computing the chase, less facts are introduced if we use
terms of the form fz(~x). Taking a hint from [16], we say that the use of fz(~x, ~y)
yields the oblivious version our chase definition, whereas the use of fz(~x) gives
us a semi-oblivious version. The semi-oblivious chase version leads to a better
performance in general and even to termination in more cases. In our case, the
skolem chase refers to the semi-oblivious version.

Example 28. We show that the semi-oblivious chase terminates in more cases
than the oblivious chase. Consider the instance I := {P (a, b) } and the singleton
rule set R with the rule:

P (x, y)→ ∃z.P (x, z)

12

Using the semi-oblivious skolemization we obtain the skolemized rule:

P (x, y)→ P (x, fz(x))

Whereas with the oblivious skolemization, we obtain:

P (x, y)→ P (x, fz(x, y))

The semi-oblivious chase of 〈R, I〉 is { {P (a, b), P (a, fz(a)) } } (left in Fig. 3).
The oblivious chase of 〈R, I〉 is not defined in this case, since 〈R, I〉 is not termi-
nating w.r.t. the oblivious chase. The following infinite chain of facts is derived
in the chase sequence of 〈R, I〉 (right in Fig. 3).

a b

fz(a, b)

P

P

a b

fz(a, b)

fz(a, fz(a, b))

fz(a, fz(a, fz(a, b)))

. . .

P

P

P
P

Fig. 3. Semi-Oblivious vs Oblivious Chase

N

Next, we justify our design decision for the notion of applicability. Recall Defini-
tion 18. A trigger λ is applicable to some fact set F if λ is active and not obsolete
w.r.t. F . It is possible to define a correct variant of the disjunctive skolem chase
requiring only that a trigger is active to be applicable, though other adjustments
in the definition are required as well. We demand that a trigger is not obsolete
to prevent application if the trigger has been applied before. In some cases this
even prevents some triggers from being applied at all. This not only enhances
computational performance but also leads to termination more often.

Example 29. Assume that a trigger is applicable if it is active (and possibly
obsolete). Consider the rule set R consisting of the following rules:

Pizza(x)→ Cold(x) ∨ ∃y.(NextOrder(x, y) ∧ Pizza(y))
SlowDeliveryService(x)→ ∃z.(Pizza(z) ∧ Cold(z))

Additionally, consider a slow pizza delivery service. We represent this by the
instance I := {SlowDeliveryService(s) }. Intuitively, we expect that no new pizza

13

is ordered from the slow delivery service. Although, assuming that a trigger is
applicable if it is active, the chase sequence for K := 〈R, I〉 is:

F0
K = { I }
F1
K = {F0 = (I ∪ {Pizza(fz),Cold(fz) }) }
F2
K = {F0, F1 = (F0 ∪ {NextOrder(fz, fy(fz)),Pizza(fy(fz)) }) }
F3
K = {F0, F1, F1 ∪ {Cold(fy(fz)) },

F1 ∪ {NextOrder(fy(fz), fy(fy(fz))),Pizza(fy(fy(fz))) } }
. . .

Note that besides the problem with non-termination, there is another issue,
namely that intermediate fact sets like F1 are not removed. This is a side effect
from the definition of rule set application, which relies on the fact that obsolete
triggers are not applied. Opposingly, with the original definition for applicability
that requires triggers to be active and not obsolete, we get:

F0
K = { I }
F1
K = {F0 = (I ∪ {Pizza(fz),Cold(fz) }) } = Ch(K)

N

A closely related property of our chase definition is the prioritized application
of Datalog rules, which is not part of some existing definitions of the skolem
chase as well [18]. In general, this can lead to a more efficient computation of
the chase sequence and because of our notion of applicability, this can even lead
to termination more often.

Example 30. Assume that we do not prioritize the application of Datalog rules.
Consider the rule set R similar to Example 29 consisting of the following rules:

Pizza(x)→ Cold(x) ∨ ∃y.(NextOrder(x, y) ∧ Pizza(y))
Pizza(x) ∧ SlowDelivery(x)→ Cold(x)

Additionally, consider that a pizza was ordered but the delivery was very slow.
We represent this by the instance I := {Pizza(c),SlowDelivery(c) }. We expect,
that no new pizza is ordered given the condition. Although, if we do not prioritize
the application of Datalog rules, the chase sequence for K := 〈R, I〉 is:

F0
K = { I }
F1
K = {F0 = (I ∪ {Cold(c) }), F1 = (I ∪ {NextOrder(o, fy(c)),Pizza(fy(c)) }) }
F2
K = {F0, F1 ∪ {Cold(c) }, F1 ∪ {Cold(fy(c)) },

F1 ∪ {NextOrder(fy(c), fy(fy(c))),Pizza(fy(fy(c))) } }
. . .

14

Whereas with the prioritized application of Datalog rules we get:

F0
K = { {Pizza(c),SlowDelivery(c) } }
F1
K = { {Pizza(c),SlowDelivery(c),Cold(c) } } = R∗dlog(F0

K) = Ch(K)

N

Despite the more complicated definition of applicability, the complexity of check-
ing applicability for a single rule is still in NP, which is the same as for skolem
chase definitions for rule sets without disjunctions [16].

Proposition 31. Let F be a fact set and ρ a rule. Deciding if there exists a
substitution θ, such that 〈ρ, θ〉 is applicable to F , is NP-complete.

Proof (Sketch). First, we show membership in NP. We guess a substitution θ
nondeterministically. The size of θ is polynomial w.r.t. the number of variables
in ρ and functions symbols in F and sk(ρ). To verify that 〈ρ, θ〉 is applicable to
F , we check that Bρθ ⊆ F and sk(Hi

ρ)θ * F for all 1 ≤ i ≤ branch(ρ). This
check is possible in polynomial time w.r.t. the size of ρ and F .

For hardness, we provide a reduction from the decision problem of checking if
there exists a substitution θ such that 〈ρ, θ〉 is active w.r.t. F , where ρ does not
contain disjunctions. This problem is NP-hard according to [16]. We construct
the rule ρ′ by replacing predicate symbols in the head of ρ by fresh predicate
symbols of the same arity (that do not occur in ρ or F). This ensures, that
no trigger featuring ρ′ is obsolete. The construction can be done in polynomial
time. There is a substitution θ such that 〈ρ, θ〉 is active w.r.t. F iff there is a
substitution θ′ such that 〈ρ′, θ′〉 is applicable to F . Hence, NP-hardness follows.

ut

Finally, we argue why we use the disjunctive skolem chase and not the restricted
chase, even though the latter terminates in more cases. This property results
from the applicability condition of the restricted chase. We briefly introduce this
condition for comparison.

Definition 32. A trigger λ := 〈ρ, θ〉 is r-obsolete w.r.t. a fact set F if F |=
∃~zi.Hi

ρ(~xi, ~zi)θ for some 1 ≤ i ≤ branch(ρ). A trigger λ is r-applicable to F if
it is active and not r-obsolete.

The r-obsolete triggers for a rule ρ form a superset of the obsolete triggers for
ρ. Thus, r-applicability is a stronger condition than our applicability condition
for the disjunctive skolem chase in Definition 18.

Example 33. Consider the fact set {Pizza(c),DeliveryService(d),Delivers(d, c)}
and the rule ρ := DeliveryService(x)→ ∃z.(Pizza(z)∧Delivers(x, z)). The trigger
〈ρ, θ〉 with θ(x) = d is r-obsolete but not obsolete.

However, the biggest advantage of using the disjunctive skolem chase over the
restricted chase is that it can be implemented using ASP solvers [13], which are

15

well optimized [2,3,12,14]. It is not surprising that rule sets can be represented
in ASP, since ASP is based on rules of a similar form. Although ASP does not
allow for existential quantifiers, function symbols are allowed so that skolemized
rule sets can be encoded. What is more crucial is the applicability condition for
a rule. ASP applies active triggers by design. Also, ASP computes ⊆-minimal
models [13], which is essentially what we achieve by requiring non-obsolete trig-
gers in our applicability condition. In general, we cannot compute the restricted
chase using ASP as r-applicability, more precisely r-obsoleteness, requires an
entailment check. Hence, using the ASP based implementation, the disjunctive
skolem chase promises to be more performant in practice.

From a more theoretical point of view, r-applicability indeed leads to a higher
computational complexity. Consider the problem of checking if for a given fact
set F and a rule ρ, there exists a substitution θ such that 〈ρ, θ〉 is applicable
to F . As seen in Proposition 31, this check is NP-complete for the disjunctive
skolem chase. For the restricted chase or standard chase, as it is also referred to
in other work, we check for r-applicability instead of applicability. This check is
ΣP

2 -complete [16].

3 Disjunctive Model Faithful Acyclicity

In this section we define Disjunctive Model Faithful Acyclicity (DMFA) as a
sufficient condition for rule set termination of the disjunctive skolem chase. If
we can verify that a rule set R is terminating, we can safely compute a universal
model set for every knowledge base featuring R using the disjunctive skolem
chase. By Corollary 26, we are therefore able to decide BCQ entailment for each
such knowledge base.

3.1 The idea behind DMFA

For rule sets without disjunctions, rule set termination can be reduced to knowl-
edge base termination. The reduction constructs a generalized knowledge base
for the rule set using a special instance.

Definition 34. The critical instance I?R of a rule set R is the instance that
contains all facts that can be constructed using predicate symbols in R and a
fresh constant ?.

According to Theorem 2 in [18], we get the anticipated result.

Theorem 35. A rule set R without disjunctions is terminating if and only if
〈R, I?R〉 is terminating.

Note that [18] uses a slightly different definition of the skolem chase but this
does not affect the result for rule sets without disjunctions in our case. The
following observations help to see why Theorem 35 holds. At first, we observe
that for a rule set R without disjunctions and a fact set F , R(F) subsumes R(F ′)

16

for every fact set F ′ ⊆ F , i.e. each fact set in R(F ′) is a subset of some fact
set in R(F). Secondly, consider the mapping σ : C → C with σ(c) := ? for all
c ∈ Const. For every instance I that uses only predicate symbols in R, we observe
σ(I) ⊆ I?R. As anticipated by the first observation, this also holds for every chase
step, i.e. F i〈R,I?R〉 subsumes σ(F i〈R,I〉) for every i ∈ N. In this sense, the chase on
〈R, I?R〉 iteratively computes a set of fact sets that subsumes all chase sequences
of all other knowledge bases featuring R (‡). Thus, R is terminating if 〈R, I?R〉 is
terminating. The other direction follows trivially.

Unfortunately, the first observation is not true anymore for rule sets that
contain disjunctions. Indeed, Theorem 35 does not hold for disjunctive rule sets
in general, as shown by the following counterexample.

Example 36. Consider the rule set R that contains only the rule:

ρ := Pizza(x)→ Cold(x) ∨ ∃y.(NextOrder(x, y) ∧ Pizza(y))

The critical instance of R is I?R = {Pizza(?),Cold(?),NextOrder(?, ?) }. Given a
substitution θ that maps x to ?, the trigger 〈ρ, θ〉 is not applicable to I?R because
Cold(?) is already part of the instance. Hence, 〈R, I?R〉 is terminating. In contrast,
the rule set R is not terminating. Consider the instance I := {Pizza(c) } and a
substitution θ′ that maps x to c. The application of 〈ρ, θ′〉 is not prevented and
thus, K := 〈R, I〉 is not terminating.

F0
K = { I }
F1
K = {F1 = (I ∪ {Cold(c) }),

F2 = (I ∪ {NextOrder(c, fy(c)),Pizza(fy(c)) }) }
F2
K = {F1, F2 ∪ {Cold(fy(c)) },

F2 ∪ {NextOrder(fy(c), fy(fy(c))),Pizza(fy(fy(c))) } }
. . .

N

We elaborate on why this example fails. The knowledge base 〈R, I?R〉 does not
fulfill the property (‡). This is because some of the disjunctive rules may already
be satisfied by the critical instance itself, so for some rules there are no applicable
triggers. Recalling Definition 18, a trigger is applicable to some fact set F if it
is active and not obsolete w.r.t. F . The main goal of obsoleteness is to prevent
application if a trigger was applied before. The introduction of new facts may
make a trigger obsolete even if this trigger has not been applied yet. In Example
36, this leads to the initial prevention of trigger applications for the critical
instance.

To address this issue, we can compute the chase for the critical instance using
a modified rule set where all disjunctions are replaced by conjunctions.

Proposition 37. Consider a rule set R and a rule set R′ that results from
R by replacing disjunctions with conjunctions. If R′ is terminating, then R is
terminating.

17

Proof. For every instance I, i ∈ N and fact set F ∈ F i〈R,I〉, we show that there
exists a fact set F ′ ∈ F i〈R′,I〉 with F ⊆ F ′. The proof is via induction over i.
For the base case i = 0, F0

〈R,I〉 = { I } = F0
〈R′,I〉, so the claim holds. For the

induction hypothesis, we assume that the claim holds for i = k. For the induction
step, we show the claim for k + 1. Consider the fact set F ∈ Fk+1

〈R,I〉.

1. For R′, we can allow w.l.o.g. that triggers featuring rules in R′ are applicable
if they are active, since the application of an obsolete trigger does not yield
any new facts.

2. By definition: There exists a trigger 〈ρ, θ〉 and a fact set Fbefore ∈ Fk〈R,I〉,
such that F ∈ 〈ρ, θ〉(R∗dlog(Fbefore)).

3. By (2) and the induction hypothesis: There exists a fact set F ′before ∈ Fk〈R′,I〉
with Fbefore ⊆ F ′before.

4. We have Rdlog ⊆ R′dlog.
5. By (1), (3), and (4): R∗dlog(Fbefore) ⊆ R′∗dlog(F

′
before).

6. Let ρ′ ∈ R′ be the rule that results from ρ by replacing disjunctions with
conjunctions and let F ′ be the single fact set in 〈ρ′, θ〉(R′∗dlog(F

′
before)).

7. By (1), (5), and (6): F ⊆ F ′.
ut

Although this approach is sufficient, it marks many terminating rule sets as
non-terminating.

Example 38. Consider the following rule set:

Pizza(x)→ LastForToday(x) ∨ ∃z.(NextOrder(x, z) ∧ Pizza(z))
NextOrder(y, x)→ LastForToday(x)

The intuition of the first rule is that new pizzas are ordered until one is declared
the last one. The second rule states that at most one follow-up order is allowed.
The rule set is terminating, since the application of Datalog rules is prioritized
and thus, the first rule is applied at most once. If the disjunction is replaced
by a conjunction, the first rule can be applied infinitely often, which leads to a
non-terminating chase sequence. N

A second possibility for fixing the issue in Example 36 is to create a set of fact
sets that acts as a critical instance, but it is unclear if such set of fact sets
even exists. For example, it is known that this approach is not possible for the
restricted chase [16].

We examine a third possibility. Instead of altering the critical instance, we
construct a fact set from it, without using the disjunctive skolem chase. By that,
we aim to obtain a fact set that subsumes all other chase sequences according
to (‡). Similar to the disjunctive skolem chase, this construction applies rules to
fact sets in a chase-like procedure. The key difference lies in the condition for a
trigger to be applied to a fact set. For this purpose, we introduce a new property
for triggers called blocking.

18

3.2 Blocked Triggers

The notion of blocking for a trigger λ allows us to make statements about the
applicability of λ independent of a concrete chase sequence. The idea of blocked
triggers was originally introduced for RMFA [8], since the definition of the re-
stricted chase leads to an issue which is closely related to Example 36. The
main goal for blocked triggers and also the main result of this section is given
in Theorem 49. Although the concrete result is quite involved, the intuition is
rather simple. If a trigger λ is blocked in the context of a rule set R, then λ
is never applicable to any fact set in the chase sequence of any knowledge base
that features R (�). Once the notion of blocking is established, we are able to
construct a fact set according to (‡) by exhaustively applying all active triggers
that are not blocked starting on the critical instance. By doing so, we eliminate
the problem that too many triggers are not applied, as seen in Example 36, while
keeping the benefit of introducing only as many facts as necessary.

To obtain the desired result for blocked triggers (�), we have to introduce
a formal way of identifying facts that are involved in the derivation of new
facts. In contrast to applicability, we do not consider fact sets that may be
derived during the chase. Instead, solely based on the rule set, we compute a
set of facts that are required to derive a certain term. We do this by partially
backtracking rule applications using the function symbols that are introduced
during skolemization.

For each term t, we aim to define Ft as a set of facts that are necessarily
involved in the derivation of t. By (†), we know that, for each existentially
quantified variable z in a rule set R, there is a unique conjunction of atoms in
the head of some rule rule(z,R) in R. Furthermore, rule(z,R) is the only rule
that may introduce ground terms of the form t = fz(~s) in the chase sequence
of a knowledge base featuring R as a rule set. For brevity, we also write rule(z)
instead of rule(z,R) since R is clear from the context.

Definition 39. Let t be a ground term defined using constants in Const and
functions symbols that occur in the skolemized rules of a rule set R. We define
the fact set Ft inductively. If t ∈ Const, then Ft := ∅. Otherwise, t is of the
form fz(~s). We define the substitution θt on the variables in Brule(z)(~x, ~y) that
maps the frontier ~x to ~s and ~y to fresh constants ~cty that are unique for t and
the variables in ~y. We define Ft to be the smallest fact set such that

– Brule(z)θ
t ⊆ Ft,

– sk(Hk
rule(z)(~xk, ~zk))θ

t ⊆ Ft for the 1 ≤ k ≤ branch(rule(z)) with z ∈ ~zk, and
– Fs ⊆ Ft for every term s ∈ ~s.

Using the substitution θt, we acquire a template trigger 〈rule(z), θt〉 that poten-
tially yields facts containing the term fz(~s) when applied. The variables ~y can
be mapped to arbitrary ground terms in actual trigger applications. The fresh
constants ~cty can be considered placeholders for such ground terms.

19

Example 40. Consider the following rules and the term fy(fz(c)). The fact set
Ffy(fz(c)) is represented as a graph (Fig. 4):

Pizza(x)→ InFridge(x) ∨ ∃y.(DeliveryService(y) ∧Delivers(y, x))
PizzaFan(x)→ ∃z.(Pizza(z) ∧ InFridge(z) ∧Owns(x, z))

c : PizzaFan

fz(c) : Pizza, InFridge

fy(fz(c)) : DeliveryService

OwnsDelivers

Fig. 4. The fact set Ffy(fz(c))

N

We show a result for Ft that is important for the notion of blocking to work
as expected (�). We prove our intuition of Ft, namely that the facts in Ft are
indeed necessarily involved in the derivation of t. However, for the result to hold,
we have to allow the remapping of the freshly introduced constants to arbitrary
ground terms.

Proposition 41. Consider a knowledge base K and a fact set F in the chase
sequence of K. Then, there is a mapping µ : Const → GTerm that maps every
constant in F to itself such that µ(Ft) ⊆ F for every term t that occurs in F .

Proof. We show the claim by induction over the structure of t. Let µ be the
identity mapping over Const. In the induction, we show how µ can be modified
such that the claim holds. For the base case, we have that t ∈ Const. Then,
Ft = ∅ and ∅ ⊆ F , so the claim holds. For the induction step, t is of the form
fz(s1, . . . , sn) and for the induction hypothesis, we assume that the claim holds
for each term s1, . . . , sn.

1. By definition, Ft = Brule(z)θ
t ∪ sk(Hk

rule(z)(~xk, ~zk))θ
t ∪ Fs1 ∪ · · · ∪ Fsn , for

the 1 ≤ k ≤ branch(rule(z)) with z ∈ ~zk.
2. Since t occurs in F , some trigger 〈ρ, θ〉 has been applied in the chase se-

quence of K where θ is a substitution with ~xθt = ~xθ and thus, Brule(z)θ ∪
sk(Hk

rule(z))θ ⊆ F .
3. By (2) and since θt maps ~y to fresh constants ~cty unique for t and the variables

in ~y: We can adjust µ such that µ(~cty) = ~yθ. Moreover, we obtain θ = µ ◦ θt.
4. By (3): µ(Brule(z)θ

t) ∪ µ(sk(Hk
rulez

)θt) ⊆ F .
5. By the induction hypothesis: µ(Fs1) ∪ · · · ∪ µ(Fsn) ⊆ F .

20

6. By (1), (4), and (5):µ(Ft) ⊆ F .
ut

To see how we define blocking by using Ft, consider a trigger 〈ρ, θ〉. If some
disjunct in the head of ρ only derives facts that are already in the body of ρ
or in Ft for some term t in Bρθ, then we know that λ is always obsolete if it is
active. In this case we want λ to be blocked according to (�).

Definition 42. A trigger 〈ρ, θ〉 is weakly blocked in the context of a rule set
R if ρ /∈ Rdlog and for some 1 ≤ k ≤ branch(ρ), sk(Hk

ρ)θ ⊆ Fρ,θ where Fρ,θ :=
R∗dlog(Bρθ ∪

⋃
{Ft | t is a term in Bρθ }).

Example 43. Given the rules

ρ1 := Pizza(x)→ InFridge(x) ∨ ∃y.(DeliveryService(y) ∧Delivers(y, x))
ρ2 := PizzaFan(x)→ ∃z.(Pizza(z) ∧ InFridge(z) ∧Owns(x, z))

the trigger 〈ρ1, θ〉 is weakly blocked if θ is a substitution that maps x to fz(c),
because InFridge(fz(c)) is in Ffz(c). N

To construct a fact set according to (‡) that generalizes over the chase sequences
of all knowledge bases that feature R, weak blocking is not sufficient. Since we
are using the critical instance of R as a starting point, we have to make sure
that blocking of a trigger 〈ρ, θ〉 is independent of the concrete constants that are
used in the image of θ, especially if the same constant occurs multiple times in
the image of θ. Otherwise we may block too many triggers as in Example 36.

Example 44. Given the singleton rule set R containing the rule:

ρ := Pizza(x) ∧ IsIn(x, y) ∧Oven(y) ∧Hot(y)→ Hot(x) ∨NotFinished(x)

Then, the trigger 〈ρ, θ〉 is weakly blocked if θ is a substitution that maps x and
y to the same ground term, e.g. ?, since Hot(?) occurs in the body of the rule.
Given a substitution θ′ which maps x to myPizza and y to myOven, 〈ρ, θ′〉 is not
weakly blocked. N

To resolve this issue, we define the substitution θu for a substitution θ that names
constants in the image of θ apart, such that every constant occurs at most once
in the image of θu. Note that the following definition and the associated lemma
are quite technical. For our further considerations, the intuition that constants
occur at most once in the image of θu suffices.

Definition 45. For a substitution θ, we define the substitution θu for each vari-
able v via θu(v) := τv(θ(v), 〈〉) if θ(v) is defined, where τv : (GTerm×

⋃
i∈N Ni)→

GTerm is defined via

τv(t, l) :=

{
clv, if t ∈ Const

f(τv(s1, l · 〈1〉), . . . , τv(sn, l · 〈n〉)), if t is of the form f(s1, . . . , sn)

where · denotes tuple concatenation and clv ∈ Const are fresh constants unique
for l and v.

21

We show that θu is independent of the concrete constants in θ as anticipated.

Lemma 46. Consider a substitution θ and a mapping µ over Const. Then, θu =
θ′u for the substitution θ′ := µ ◦ θ.

Proof. According to Definition 45, we prove the claim by showing that τv(t, l) =
τv(µ(t), l) for every v ∈ Vars and every l ∈

⋃
i∈N Ni by induction over the struc-

ture of t.

– For the base case of the induction, we show the claim for the ground term
t ∈ Const. We have that τv(t, l) = clv = τv(µ(t), l).

– For the induction step we show the claim for the ground term t of the
form f(s1, . . . , sn). For the induction hypothesis we assume that τv(s, l′) =
τv(µ(s), l

′) holds for every s ∈ ~s and every l′ ∈
⋃
i∈N Ni. We have that

τv(t, l) = f(τv(s1, l · 〈1〉), . . . , τv(sn, l · 〈n〉))
= f(τv(µ(s1), l · 〈1〉), . . . , τv(µ(sn), l · 〈n〉))
= τv(f(µ(s1), . . . , µ(sn)), l)

= τv(µ(t), l)
ut

Definition 47. A trigger 〈ρ, θ〉 is blocked in the context of a rule set R if 〈ρ, θu〉
is weakly blocked in the context of R.

An anticipated consequence of this definition is that a trigger that is blocked is
also weakly blocked. Although the results seems obvious from the notions, the
proof is a little more involved.

Proposition 48. If a trigger λ := 〈ρ, θ〉 is blocked, then λ is weakly blocked.

Proof.

1. Assume that λ is blocked.
2. By (1) and the definition of blocking: sk(Hk

ρ)θu ⊆ Fρ,θu for some 1 ≤ k ≤
branch(ρ) and there exists a mapping µ : Const → Const with θ = µ ◦ θu,
which follows from Definition 45.

3. By (2): For each φ ∈ sk(Hk
ρ)θ, there exists φ′ ∈ sk(Hk

ρ)θu with φ = µ(φ′).
4. By (2) and (3):

φ ∈ µ(Fρ,θu) = µ(R∗dlog(Bρθu ∪
⋃
{Ft | t is a term in Bρθu }))

5. By (4) and Lemma 23: φ ∈ R∗dlog(µ(Bρθu ∪
⋃
{Ft | t is a term in Bρθu })).

6. By (5): φ ∈ R∗dlog(Bρθ ∪ µ(
⋃
{Ft | t is a term in Bρθu })).

7. By (6): φ ∈ R∗dlog(Bρθ∪
⋃
{Fµ(t) | t is a term in Bρθu }) follows by induction

over the structure of terms as the mapping of freshly introduced constants
in Ft can be set accordingly for µ.

8. By (7): φ ∈ Fρ,θ = R∗dlog(Bρθ ∪
⋃
{Ft | t is a term in Bρθ })

9. By (3) and (8): sk(Hk
ρ)θ ⊆ Fρ,θ.

22

10. By (9): λ is weakly blocked.
ut

We formally show the main result for blocking and prove that the intuition (�)
indeed holds for the presented definition.

Theorem 49. Consider a knowledge base K := 〈R, I〉, a fact set F that occurs
in the chase sequence of K, and some trigger λ := 〈ρ, θ〉 with ρ ∈ R. If λ is
blocked, then λ is not applicable to R∗dlog(F).

Proof. We assume that λ is blocked and hence, ρ /∈ Rdlog. Suppose for a con-
tradiction that λ is applicable to R∗dlog(F). By Proposition 48, we obtain that λ
is weakly blocked and hence, sk(Hk

ρ)θ ⊆ Fρ,θ for some 1 ≤ k ≤ branch(ρ). We
show that sk(Hk

ρ)θ ⊆ R∗dlog(F).

1. By definition: Fρ,θ = R∗dlog(Bρθ ∪
⋃
{Ft | t is a term in Bρθ }).

2. Since λ is applicable to R∗dlog(F): Bρθ ⊆ R∗dlog(F).
3. By (2) and Proposition 41: There exists a mapping µ : Const→ GTerm that

maps every constant in Bρθ to itself, such that µ(Ft) ⊆ R∗dlog(F) for each
term t that occurs in Bρθ.

4. By (2) and (3): µ(Bρθ ∪
⋃
{Ft | t is a term in Bρθ }) ⊆ R∗dlog(F).

5. By (4): R∗dlog(µ(Bρθ ∪
⋃
{Ft | t is a term in Bρθ })) ⊆ R∗dlog(R

∗
dlog(F)).

6. By (5): µ(R∗dlog(Bρθ∪
⋃
{Ft | t is a term in Bρθ })) ⊆ R∗dlog(F) follows from

Lemma 23.
7. By (1) and (6): µ(Fρ,θ) ⊆ R∗dlog(F).
8. Since λ is weakly blocked: µ(sk(Hk

ρ)θ) ⊆ µ(Fρ,θ).
9. By (3): µ(Bρθ) = Bρθ and thus, µ(sk(Hk

ρ)θ) = sk(Hk
ρ)θ.

10. By (7), (8), and (9): sk(Hk
ρ)θ ⊆ R∗dlog(F).

We find that λ is not applicable to R∗dlog(F). � ut

3.3 Disjunctive Model Faithful Acyclicity (DMFA)

We define the construction of a fact set according to (‡) using the newly intro-
duced notion of blocked triggers.

Definition 50. For a rule set R, we define DMFA(R) to be the smallest fact
set such that I?R ⊆ DMFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R that is
active w.r.t. DMFA(R) and not blocked, we have sk(Hi

ρ)θ ⊆ DMFA(R) for all
1 ≤ i ≤ branch(ρ).

Note that this corresponds to a non-disjunctive version of the skolem chase where
disjunctions are treated as conjunctions and the conditions for the application
of triggers are adjusted. We prove that DMFA(R) subsumes the chase sequences
of all other knowledge bases featuring R, according to (‡). Formally, this is
described in the following lemma.

23

Lemma 51. Let σ : Const→ Const with σ(c) := ? for all c ∈ Const and let K :=
〈R, I〉 be a knowledge base. For the chase sequence of K, we obtain σ(

⋃
F iK) ⊆

DMFA(R) for every i ∈ N.

To simplify the proof, we extend the chase sequence from Definition 24 to include
individual steps for the applications of Datalog rules. We define the extended
chase sequence for K as the sequence of sets of fact sets E0K, E1K, . . . inductively
via E0K := { I } and for all i > 0:

E iK :=

{
R(E i−1K), if Rdlog(E i−1K) = E i−1K
Rdlog(E i−1K), otherwise

According to Remark 21, the extended chase sequence of K subsumes the chase
sequence of K.

Proof (of Lemma 51). We show that σ(
⋃
E iK) ⊆ DMFA(R) for every i ∈ N by

induction over i. For i = 0, we show that σ(φ) ∈ DMFA(R) for all φ ∈
⋃
E0K.

1. Since E0K = { I }, every φ ∈ I is of the form P (c1, . . . , cn) where c1, . . . , cn
are constants.

2. By (1) and the definition of σ:

σ(φ) = σ(P (c1, . . . , cn)) = P (σ(c1), . . . , σ(cn)) = P (?, . . . , ?︸ ︷︷ ︸
n times

) ∈ I?R

3. By (2) and the definition of DMFA(R): σ(φ) ∈ DMFA(R)

For the induction hypothesis, we assume that σ(φ′) ∈ DMFA(R) for all φ′ ∈⋃
Ek−1K where k ≥ 1. For the induction step, we show that σ(φ) ∈ DMFA(R) for

all φ ∈
⋃
EkK.

1. Let φ ∈
⋃
EkK with φ /∈

⋃
Ek−1K as otherwise the claim follows directly from

the induction hypothesis.
2. By (1): There exists a fact set F in Ek−1K , with φ /∈ F . Moreover, there exists

a trigger λ := 〈ρ, θ〉 with ρ ∈ R that is applicable to F with φ ∈ λ(F). In
particular, if Rdlog(F) 6= {F }, then ρ ∈ Rdlog.

3. By (2): Bρθ ⊆ F and φ is in sk(Hi
ρ)θ for some 1 ≤ i ≤ branch(ρ).

4. By (3) and the induction hypothesis: Bρθ′ ⊆ DMFA(R) for θ′ := (σ ◦ θ).
5. By (2): λ = 〈ρ, θ〉 is not blocked since either ρ ∈ Rdlog or λ is applicable to
R∗dlog(F) = F . In the latter case, the contrapositive of Theorem 49 implies
that λ is not blocked.

6. By (4), (5), and Lemma 46: 〈ρ, θ′〉 is not blocked.
7. By (4) and (6): 〈ρ, θ′〉 is active w.r.t. DMFA(R) and not blocked.
8. By (7) and the definition of DMFA(R): sk(Hi

ρ)θ
′ ⊆ DMFA(R).

9. By (3) and (8): σ(φ) ∈ DMFA(R).
ut

24

We use DMFA(R) to define a sufficient condition for the termination of R. For
this sake, regard the structure of facts in the chase sequence of non-terminating
knowledge bases. We find that some of these facts contain cyclic terms, because
there is only a finite amount of acyclic terms.

Lemma 52. Let p, c, f be the numbers of predicate symbols, constants, and func-
tion symbols and l, a the maximum arities of function symbols and predicate sym-
bols that occur in a given skolemized rule set R, respectively. The number of facts
that do not contain a cyclic term and can be constructed from predicate symbols,
constants, and function symbols from R is bound by p · ((f · c)f·lf+1)a.

Proof. 1. The maximum nesting depth of a non cyclic term is f.
2. The number of terms with a depth of 0 is c.
3. The number of terms with a depth of i ∈ [1, f] is bound by

f · (. . . f · (f︸ ︷︷ ︸
i times

·c l)l . . .)l︸ ︷︷ ︸
i times

≤ f l
i

· (. . . f l
2

· (f l︸ ︷︷ ︸
i times

·c l)l . . .)l︸ ︷︷ ︸
i times

= (fi · c)l
i

≤ (f · c)i·l
i

4. By (1), (2), and (3): The total number of terms is bound by

c+
f∑
i=1

(f · c)i·l
i

≤ f · (f · c)f·l
f

≤ (f · c)f·l
f+1

5. By (4): The total number of facts is bound by p · ((f · c)f·lf+1)a.
ut

Note that the bound is finite, because p, c, f, l, and a are finite. Hence, the absence
of cyclic terms in the chase sequence of a knowledge base K is sufficient for K
to be terminating. We use this property on the constructed fact set DMFA(R)
to define DMFA. The absence of cyclic terms is a good measure because cyclic
terms indicate that a single rule is applied multiple times. This is a strong hint
towards non-termination.

Definition 53. A rule set R is DMFA if DMFA(R) does not contain a cyclic
term.

We prove that DMFA is indeed a sufficient condition for rule set termination.

Theorem 54. If a rule set R is DMFA, then R is terminating.

Proof. We show the contrapositive; that is, we show that R is not DMFA if R is
not terminating.

1. Assume that R is not terminating.
2. By (1): There exists an instance I such that 〈R, I〉 is not terminating.
3. By (2): There are infinitely many facts in the chase sequence of 〈R, I〉.
4. By (3) and Lemma 52: The chase sequence of 〈R, I〉 contains at least one

cyclic term t.

25

5. By (4) and Lemma 51: The cyclic term σ(t) is in DMFA(R).
6. By (5): R is not DMFA.

ut

Note that there are rule sets that are not DMFA but still terminating.

Example 55. Consider the singleton rule set R:

P (y, x) ∧Q(y)→ ∃z.(P (x, z) ∧ P (z, x))

The chase of 〈R, I?R = {P (?, ?), Q(?) }〉 is (Fig. 5):

? : Q fz(?) fz(fz(?))

P
P

P

P

P

Fig. 5. Terminating rule set that is not DMFA

In particular we obtain Ch(〈R, I?R〉) = DMFA(R). As Ch(〈R, I?R〉) is finite,
we find that R is terminating but not DMFA, since DMFA(R) contains the cyclic
term fz(fz(?)). N

3.4 Relation of DMFA to MFA and RMFA

We show the relation of DMFA to the existing acyclicity notions MFA [9] and
RMFA [8]. Although MFA is originally only defined for rule sets without disjunc-
tions [9], we can also apply it to disjunctive rule sets by treating disjunctions as
conjunctions and using Proposition 37.

We briefly introduce definitions of MFA and RMFA mostly based on our
previously defined notions and compare them to DMFA. We do not use the
original definitions for MFA and RMFA. Instead, we define both notions in a
similar way to DMFA for easier comparison. Still, the definitions are mostly
equivalent. The only difference is that for MFA we provide a trivial extension
that implicitly treats disjunctions as conjunctions. This extension of MFA can
therefore also be applied to disjunctive rule sets, which is not the case for the
original MFA definition.

Definition 56. For a rule set R, we define MFA(R) to be the smallest fact set
such that I?R ⊆ MFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R that is active
w.r.t. MFA(R), we have sk(Hi

ρ)θ ⊆ MFA(R) for all 1 ≤ i ≤ branch(ρ). The rule
set R is MFA if MFA(R) does not contain a cyclic term.

For rule sets without disjunctions, MFA and DMFA exactly coincide.

Proposition 57. A rule set R without disjunctions is MFA iff it is DMFA.

26

Proof (Sketch). According to Definitions 50 and 56, MFA(R) and DMFA(R) only
differ in the sense that DMFA(R) disallows blocked triggers whereas MFA(R)
allows all active triggers including blocked ones. We observe that triggers fea-
turing rules without disjunctions can never be blocked because triggers featur-
ing Datalog rules are not blocked by definition and for triggers featuring non-
disjunctive rules with existential quantifiers, the newly introduced skolem terms
cannot occur in the rule body. Hence, we obtain MFA(R) = DMFA(R). Thus,
the disjunction-free rule set R is MFA iff it is DMFA. ut

In general, DMFA captures more rule sets than MFA.

Theorem 58. The rule sets that are MFA form a strict subset of the rule sets
that are DMFA.

Proof (Sketch). First, we show that a rule set R is DMFA if R is MFA. Since the
computation of DMFA(R) does not allow blocked triggers, we obtain DMFA(R) ⊆
MFA(R). Thus, if MFA(R) does not contain a cyclic term, then DMFA(R) does
not contain a cyclic term.

Second, we show that there exists a rule set that is DMFA but not MFA.
Consider the rule set R′ from Example 38:

Pizza(x)→ LastForToday(x) ∨ ∃z.(NextOrder(x, z) ∧ Pizza(z))
NextOrder(y, x)→ LastForToday(x)

As triggers featuring the first rule are blocked for the substitution that maps x
to fz(?), we obtain

DMFA(R′) = {NextOrder(?, ?),Pizza(?),LastForToday(?),
NextOrder(?, fz(?)),Pizza(fz(?)),LastForToday(fz(?)) }

and thus, R′ is DMFA. However, R′ is not MFA, since MFA(R′) contains infinitely
many facts with at least one cyclic term, which is of the form fz(. . . fz(?) . . .).

ut

Te define RMFA, we have to use another notion of blocking.

Definition 59. A trigger 〈ρ, θ〉 is r-blocked in the context of a rule set R if ρ /∈
Rdlog and we have that Fρ,θu |= ∃~zk.Hk

ρ (~xk, ~zk)θu for some 1 ≤ k ≤ branch(ρ).

The key difference to the notion of blocked triggers is that the r-blocked check
considers an entailment relation whereas the blocked check considers a subset
relation. Indeed, blocking is subsumed by r-blocking.

Lemma 60. If a trigger 〈ρ, θ〉 is blocked, then 〈ρ, θ〉 is r-blocked.

Proof. Since 〈ρ, θ〉 is blocked, we have that sk(Hk
ρ)θu ⊆ Fρ,θu for some 1 ≤ k ≤

branch(ρ). Therefore, Fρ,θu |= ∃~zk.Hk
ρ θu by assigning each variable z ∈ ~zk the

value fz(~x)θu where ~x is the frontier of ρ. Hence, 〈ρ, θ〉 is r-blocked. ut

27

Definition 61. For a rule set R, we define RMFA(R) to be the smallest fact
set such that I?R ⊆ RMFA(R) and, for every trigger 〈ρ, θ〉 with ρ ∈ R that is
active w.r.t. RMFA(R) and not r-blocked, we have sk(Hi

ρ)θ ⊆ RMFA(R) for all
1 ≤ i ≤ branch(ρ). The rule set R is RMFA if RMFA(R) does not contain a cyclic
term.

RMFA allows the characterization of rule sets that terminate w.r.t. the restricted
chase but not necessarily w.r.t. the disjunctive skolem chase. DMFA must not
mark such rule sets as terminating as DMFA is a sufficient condition for rule set
termination w.r.t. the disjunctive skolem chase. This is a strong argument why
DMFA cannot capture RMFA. In fact, no acyclicity notion for the disjunctive
skolem chase is able to capture RMFA for this reason. In the following, we also
provide an example for a rule set that is RMFA and even terminating w.r.t. the
disjunctive skolem chase but not DMFA.

Theorem 62. The rule sets that are DMFA form a strict subset of the rule sets
that are RMFA. This even holds if we only consider rule sets that are terminating
w.r.t. the disjunctive skolem chase.

Proof (Sketch). First, we show that a rule set R is RMFA if R is DMFA by
showing the contrapositive; that is, we show that R is not DMFA if R is not
RMFA. According to Definitions 50 and 61, DMFA(R) and RMFA(R) only differ in
the sense that DMFA(R) disallows blocked triggers whereas RMFA(R) disallows
r-blocked triggers. Since every trigger that is blocked is also r-blocked by Lemma
60, we obtain RMFA(R) ⊆ DMFA(R). Thus, if RMFA(R) contains a cyclic term,
then DMFA(R) also contains a cyclic term. Therefore, if R is not RMFA, then R
is not DMFA.

Second, we show that there exists a rule set that is RMFA and terminating
w.r.t. the disjunctive skolem chase but not DMFA. Consider the singleton rule
set R′:

P (y, x) ∧Q(y)→ ∃z.(P (x, z) ∧ P (z, x))

We know from Example 55 that R′ is terminating w.r.t. the disjunctive skolem
chase but not DMFA. Still, R′ is RMFA because ρ can only applied once using the
trigger 〈ρ, θ〉 where θ maps x and y to fz(?). We obtain the new facts P (?, fz(?))
and P (fz(?), ?). However, the triggers with the substitutions that map y to ?
and x to fz(?) or vice versa are both r-blocked. ut

Regarding MFA, DMFA, and RMFA, we obtain the following picture. Note that
every represented subset is in fact non-empty.

28

MFA

DMFA

RMFATerminating w.r.t.
restricted chase

Terminating w.r.t.
disjunctive skolem chase

Disjunctive Existential Rule Sets

Fig. 6. Hierarchy of acyclicity notions

3.5 Complexity Results for DMFA Rulesets

From the comparison to MFA and RMFA, we see that DMFA exactly lies in-
between. Checking if a rule set is MFA or RMFA is each 2ExpTime-complete.
Therefore, we expect that checking if a rule set is DMFA is also 2ExpTime-
complete. At first, we prove that this is indeed the case. Beyond that, we study
complexity bounds of the disjunctive skolem chase and BCQ entailment for rule
sets that are DMFA.

Theorem 63. Checking if a rule set R is DMFA is in 2ExpTime.

Proof. We sketch an algorithm for computing DMFA(R) in 2ExpTime. We com-
pute DMFA(R) iteratively in a chase-like procedure and check for a cyclic term
in each step. If we encounter a cyclic term, we reject. If we do not encounter
a cyclic term and no new facts are derived, we accept. The number of steps in
the chase-like procedure is doubly exponentially bounded, since there are only
doubly exponentially many facts without a cyclic term, according to Lemma 52.
We show that the computation of a single step including the cyclicity check for
the newly introduced terms is in 2ExpTime.

1. The number of rules is linear.
2. The number of variables in a single rule is linear.
3. The number of acyclic terms is doubly exponentially bounded by the proof

of Lemma 52.
4. By (2) and (3): For a single rule ρ, the number of substitutions that are

defined exactly on the universally quantified variables in ρ and do not map
variables to cyclic terms is doubly exponentially bounded.

5. By (1) and (4): The number of triggers that do not map variables to cyclic
terms is doubly exponentially bounded.

6. The check if a single trigger is active is in 2ExpTime, since the number of
facts that have been derived before the current step is doubly exponentially
bounded.

29

7. The check if a single trigger 〈ρ, θ〉 is blocked is in ExpTime, since the number
of terms in the image of θ is linear and the number of subterms for each term
in the image of θ is exponentially bounded. Hence, for each term t in the
image of θ, the size of Ft is exponentially bounded. The application of R∗dlog
within the blocked check is also in ExpTime.

8. By (6) and (7): The check if a single trigger is active and not blocked is in
2ExpTime and thus, the application of the trigger is computable in 2Exp-
Time.

9. The number of new terms introduced by the application of a trigger is linear
and the cyclicity check for each of those terms is in ExpTime since the
number of subterms of a term is exponentially bounded.

10. By (5), (8), and (9): A single step of the chase-like procedure is computable
in 2ExpTime.

Since each of the doubly exponentially many steps can be computed in 2Exp-
Time, the overall chase-like procedure can be computed in 2ExpTime. ut

Theorem 64. Checking if a rule set R is DMFA is 2ExpTime-hard.

Note that 2ExpTime-hardness follows from Proposition 57 and the fact that
checking MFA for rule sets without disjunctions is 2ExpTime-complete (see
Lemma 7 and Theorem 8 in [9]). To recall the argument, we show hardness in
a similar way to the proof that is used for MFA. For this purpose, we have to
introduce another acyclicity notion called weak acyclicity [11].

Definition 65. For a rule set R, construct the dependency graph G of R as
follows. The nodes of G are defined as the set of the predicate positions of R:
{ 〈P, i〉 | P is a predicate symbol in R, 1 ≤ i ≤ ar(P) }. For every rule ρ in R
and every position 〈P, i〉 in the head of ρ that contains some variable x:

– If x is universally quantified, add an edge 〈Q, j〉 → 〈P, i〉 to G for all positions
〈Q, j〉 in the body of ρ that feature x.

– If x is existentially quantified, add a special edge 〈Q, j〉 ∗→ 〈P, i〉 to G for all
positions 〈Q, j〉 in the body of ρ.

The rule set R is weakly acyclic if G does not contain a cycle that involves a
special edge.

The main result we need for weak acyclicity is that it is subsumed by MFA and
hence also by DMFA (Theorem 58).

Proposition 66. The rule sets that are weakly acyclic form a subset of the rule
sets that are MFA.

Note that the subset relation is in fact strict but we only require the subset
relation for our matter.

Proof.

30

1. Suppose for a contradiction, that there exists a weakly acyclic rule set R
that is not MFA.

2. By (1): MFA(R) contains a cyclic term featuring nested occurrences of some
function symbol fz.

3. By (†): There is a unique rule featuring z in its head at some position 〈P, i〉.
4. By (2) and (3): There is a cycle in the dependency graph of R through 〈P, i〉

that contains a special edge.
5. By (4): R is not weakly acyclic. �

ut
We can now prove 2ExpTime-hardness for checking DMFA.

Proof (of Theorem 64). We reduce the 2ExpTime-complete problem of BCQ-
entailment for a BCQ σ := ∃~z.ϕ(~z) and a knowledge base 〈R, I〉 featuring a
weakly acyclic rule set without disjunctions [7] to the check if RDMFA is DMFA
where RDMFA is constructed from 〈R, I〉.

1. Let R′ := R ∪ {ϕ(~z)→ B) } where B is a fresh nullary predicate symbol.
2. By (1): σ is entailed by 〈R, I〉 iff B is entailed by 〈R′, I〉.
3. For each constant c that occurs in I, we introduce a fresh variable vc. Let
~vc be a list of those variables and let A be a fresh nullary predicate symbol.
We set:

R′′ := R′ ∪ {A→ ∃~vc.
∧

P (c1,...,cm)∈I
P (vc1 , . . . , vcm) }

4. By (3): B is entailed by 〈R′, I〉 iff B is entailed by 〈R′′, {A }〉.
5. For every n-ary predicate symbol P , we introduce a fresh n+1-ary predicate

symbol P̂ . We define

R′′′ :=
⋃
{ ϕ̂(~x, ~y, w)→ ∃~z.ψ̂(~x, ~z, w) | ϕ(~x, ~y)→ ∃~z.ψ(~x, ~z) ∈ R′′ }

where w is a fresh variable and for every conjunction of atoms ϕ, we set
ϕ̂ :=

∧
P (~x)∈ϕ P̂ (~x,w).

6. By (5):B is entailed by 〈R′′, {A }〉 iff B̂(a) is entailed by 〈R′′′, { Â(a) }〉 where
a is a fresh constant. This follows by induction over both chase sequences.

7. By (1), (3), (5), and since R is weakly acyclic: R′′′ is weakly acyclic.
8. Let Q be a fresh binary predicate symbol and let RDMFA := R′′′ ∪ { ρcycle },

where
ρcycle := B̂(x) ∧Q(y, x)→ ∃z.(Q(x, z) ∧ Â(z))

9. By (7) and (8): We claim that RDMFA is not DMFA iff B̂(a) is entailed by
〈R′′′, { Â(a) }〉. Note that { B̂(?), Q(?, ?) } ⊆ I?RDMFA

and thus, we have that
{ B̂(?), Q(?, ?), Q(?, fz(?)), Â(fz(?)) } ⊆ DMFA(RDMFA). We now sketch a
proof for both directions of the claim separately.
– If B̂(a) is not entailed by 〈R′′′, { Â(a) }〉, then no cyclic term is introduced

by ρcycle since each trigger of the form 〈ρcycle, θ〉 is only active (and not
blocked) if θ maps x and y to ?. Hence, RDMFA is DMFA if R′′′ is DMFA.
Since R′′′ is weakly acylic, R′′′ is indeed DMFA by Theorem 58 and
Proposition 66.

31

– Assume that B̂(a) is entailed by 〈R′′′, { Â(a) }〉. If for some substitution
θ, 〈ρcycle, θ〉 is active and not blocked, then 〈ρcycle, θ

′〉 is active and not
blocked at some point, where θ′ is defined via θ′(x) := fz(θ(x)) and
θ′(y) := θ(x). Since the trigger 〈ρcycle, θ

?〉, where θ? maps x and y to ?,
is active and not blocked, DMFA(RDMFA) contains a cyclic term of the
form fz(. . . fz(?) . . .) and thus, RDMFA is not DMFA.

10. By (2), (4), (6), and (9): σ is entailed by 〈R, I〉 iff RDMFA is not DMFA.

Since the construction of RDMFA is possible in polynomial time, 2ExpTime-
hardness follows. ut

From Theorems 63 and 64, we immediately obtain the following result.

Corollary 67. Checking if a rule set R is DMFA is 2ExpTime-complete.

The complexity for the DMFA check drops if we restrict rule sets to only contain
at most one frontier variable per rule.

Theorem 68. Checking DMFA for rule set R where every non-datalog rule in
R has at most one frontier variable is ExpTime-complete.

Proof (Sketch). We show membership as follows: If all non-datalog rules in R
feature at most one frontier variable, then every function symbol used in the
skolemization of R has arity at most 1. In this case, according to the proof of
Lemma 52, the number of facts that do not contain a cyclic term and can be
constructed from predicate symbols, constants and function symbols from R is
(singly) exponentially bounded. Hence, every 2ExpTime bound in the proof of
Theorem 63 becomes an ExpTime bound and thus, checking DMFA for R is in
ExpTime in this case.

Hardness follows from the fact that the MFA check for a rule set without
disjunctions where every non-datalog rule has at most one frontier variable is
ExpTime-hard (see Theorem 10 in [9]). Proposition 57 yields the claim. ut

Next, we consider the computation of the disjunctive skolem chase for rule sets
that are DMFA.

Theorem 69. Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. The chase of K can be computed in 3ExpTime.

Proof. By Lemma 51, the chase sequence of K does not contain a cyclic term. The
number of steps in the chase sequence of K is doubly exponentially bounded,
since there are only doubly exponentially many facts without a cyclic term,
according to Lemma 52 and every step introduces at least one new fact unless
a fixed point is reached. We show that the computation of a single step is in
3ExpTime.

1. The number of rules is linear.
2. The number of variables in a single rule is linear.

32

3. The number of acyclic terms is doubly exponentially bounded by the proof
of Lemma 52.

4. By (2) and (3): For a single rule ρ, the number of substitutions that are
defined exactly on the universally quantified variables in ρ and do not map
variables to cyclic terms is doubly exponentially bounded.

5. By (1) and (4): The number of triggers that do not map variables to cyclic
terms is doubly exponentially bounded.

6. The check if a single trigger is active and not obsolete w.r.t. a single fact set
is in 2ExpTime, since the number of facts that have been derived before the
current step is doubly exponentially bounded.

7. The number of different fact sets is the size of the power set of all facts which
is triply exponentially bounded.

8. By (5), (6), and (7): A single step can be computed in 3ExpTime.

Since each of the doubly exponentially many steps can be computed in 3Exp-
Time, the overall chase-like procedure can be computed in 3ExpTime. ut

In the following we consider BCQ entailment. It is possible to compute the chase
of K in 3ExpTime and check the entailment of a BCQ for each of the fact sets,
which is in 3ExpTime in total, but we can get a tighter bound.

Theorem 70. Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is in coN2ExpTime.

Proof. We modify the application of triggers in a way, that we guess one of
the resulting fact sets nondeterministically. The upper bound of 3ExpTime in
Theorem 69 results only from the fact that there are possibly triply exponentially
many fact sets to consider. By picking only one fact set non-deterministically in
each step, we obtain an upper bound of N2ExpTime.

1. A single fact set in Ch(K) can be computed in N2ExpTime.
2. A BCQ ∃~z.ϕ(~z) is entailed by K according to Corollary 26 if for each F ∈
Ch(K) there exists a substitution θ with ϕθ ⊆ F .

3. By (2): a BCQ ∃~z.ϕ(~z) is not entailed by K if there exists a fact set F in
Ch(K) such that ϕθ * F for all substitutions θ.

4. By (1) and (3): we can check if a BCQ is not entailed by K in N2ExpTime.
5. By (4): BCQ entailment for K is in coN2ExpTime.

ut

Theorem 71. Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-hard.

Proof (Sketch). As for RMFA (see Theorem 7 in [8]) we can modify the reduc-
tion from the word problem of 2ExpTime-bounded turing machines to BCQ
entailment for weakly acyclic rule sets without disjunctions [7], such that non-
determinism is represented by allowing disjunctions in rules. Since every rule
set that is weakly acyclic is also DMFA by Theorem 58 and Proposition 66, the
claim follows. ut

33

From Theorems 70 and 71 we immediately obtain the following result.

Corollary 72. Let R be a rule set that is DMFA and let K be a knowledge base
featuring R. BCQ entailment for K is coN2ExpTime-complete.

4 Conclusion

We have shown the construction of DMFA as a novel acyclicity notion tailored
towards the disjunctive skolem chase. Based on the idea of r-blocked triggers in
[8], our main contribution is the notion of blocked triggers that generalizes trigger
obsoleteness for the disjunctive skolem chase by considering solely rule sets and
not concrete fact sets. We have proven that DMFA is able to mark more rule sets
as terminating than a trivial disjunctive version of MFA. We have also seen that
RMFA subsumes DMFA but we expect DMFA not to be able to capture RMFA
because RMFA guarantees termination for the restricted chase, which generally
terminates in more cases than the disjunctive skolem chase. However, Theorem
62 provides an example for a rule set that is RMFA but not DMFA and does in
fact terminate with respect to the disjunctive skolem chase. We have shown that
the complexity results for checking DMFA and reasoning with rule sets that are
DMFA are essentially the same as for MFA and RMFA.

Our work enables and encourages further research towards acyclicity and
cyclicity notions for the disjunctive skolem chase. Up to this point our contribu-
tions are purely theoretical. In upcoming work, we will provide a reference im-
plementation of DMFA and evaluate how DMFA performs in practice compared
to MFA and RMFA. As for [8], this evaluation will be based on real world descrip-
tion logic ontologies that are transformed into disjunctive existential rules. We
also plan to develop and evaluate cyclicity notions, i.e. sufficient conditions for
non-termination, for the disjunctive skokem chase. By that, we aim to mark the
majority of rule sets either as terminating or non-terminating w.r.t. the disjunc-
tive skolem chase. Depending on the results, we may tweak the used (a)cyclicity
notions. For instance, based on DMFA(R), other conditions beside the occurrence
of a cyclic term can be evaluated. A simple adjustment would be to require a
cyclic term of order at least k, meaning that there are at least k nesting levels
with the same function symbol.

Furthermore, our results motivate the usage of ASP solvers for reasoning
with disjunctive existential rules. Since ASP solvers are well optimized and many
description logics are captured by disjunctive existential rules [19], an ASP based
implementation of the disjunctive skolem chase promises to provide the basis for
more efficient reasoning for such logics. We can use the same transformation
from description logics to disjunctive existential rules as we will use for the
evaluation of DMFA. We believe that this allows for significant improvements in
the practical applications of description logics and reasoning w.r.t. knowledge
bases in general.

34

Acknowledgements

Many thanks to Prof. Dr. Markus Krötzsch for the possibility of conducting this
thesis in the Knowledge-Based Systems Research Group at the TU Dresden.
Special thanks to David Carral, Ph.D. for supervising this thesis, providing a lot
of helpful ideas and remarks, and very fruitful discussions.

35

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Adrian, W.T., Alviano, M., Calimeri, F., Cuteri, B., Dodaro, C., Faber, W., Fuscà,
D., Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., Zangari, J.: The ASP
system DLV: advancements and applications. Künstliche Intell. 32(2-3), 177–179
(2018)

3. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Eval-
uation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran,
S. (eds.) Logic Programming and Nonmonotonic Reasoning - 15th International
Conference, LPNMR 2019. Lecture Notes in Computer Science, vol. 11481, pp.
241–255. Springer (2019)

4. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables:
Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

5. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) Automata, Languages and Programming, 8th Colloquium.
Lecture Notes in Computer Science, vol. 115, pp. 73–85. Springer (1981)

6. Bourhis, P., Manna, M., Morak, M., Pieris, A.: Guarded-based disjunctive tuple-
generating dependencies. ACM Trans. Database Syst. 41(4), 27:1–27:45 (2016)

7. Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) Web Reasoning and Rule Systems
- Fourth International Conference, RR 2010. Lecture Notes in Computer Science,
vol. 6333, pp. 1–17. Springer (2010)

8. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for exis-
tential rules with disjunctions. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017. pp. 922–928.
ijcai.org (2017)

9. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity notions for existential rules and their application to query
answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)

10. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo,
D. (eds.) Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2008. pp. 149–158. ACM
(2008)

11. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N.,
Vos, M.D. (eds.) Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs. OASICS, vol. 52, pp. 2:1–2:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

14. Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp.
Theory Pract. Log. Program. 12(4-5), 525–545 (2012)

15. Gogacz, T., Marcinkowski, J.: All-instances termination of chase is undecidable. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014. Lecture
Notes in Computer Science, vol. 8573, pp. 293–304. Springer (2014)

36

16. Grahne, G., Onet, A.: Anatomy of the chase. Fundam. Inform. 157(3), 221–270
(2018)

17. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

18. Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
Paredaens, J., Su, J. (eds.) Proceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009.
pp. 13–22. ACM (2009)

19. Rudolph, S., Krötzsch, M., Hitzler, P.: Type-elimination-based reasoning for the
description logic shiqbs using decision diagrams and disjunctive datalog. Logical
Methods in Computer Science 8(1) (2012)

37

	Don't Repeat Yourself:Termination of the Skolem Chase onDisjunctive Existential Rules
	Introduction
	Preliminaries
	Disjunctive Existential Rules
	Query Answering
	Universal Model Sets
	Disjunctive Skolem Chase
	Discussion on some Properties of the Disjunctive Skolem Chase

	Disjunctive Model Faithful Acyclicity
	The idea behind DMFA
	Blocked Triggers
	Disjunctive Model Faithful Acyclicity (DMFA)
	Relation of DMFA to MFA and RMFA
	Complexity Results for DMFA Rulesets

	Conclusion

