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Resolution für Prädikatenlogik

Ein konkreter Algorithmus zum logischen Schließen:

(1) Logische Konsequenz auf Unerfüllbarkeit reduzieren

(2) Formeln in Klauselform umwandeln
– Formel bereinigen
– Negationsnormalform bilden
– Pränexform bilden
– Skolemform bilden
– Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden
– Unifikation zum Finden passender Klauseln
– Bilden von Resolventen bis zur Terminierung
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Konjunktive Normalform in Prädikatenlogik

Eine Formel ist in konjunktiver Normalform (KNF) wenn sie in Pränexform
Qx1. · · · Qxn.F ist, wobei F eine Konjunktion von Disjunktionen von Literalen ist, wel-

che keine Quantoren enthält. Das heißt F hat die Form:

(L1,1 ∨ . . . ∨ L1,m1 ) ∧ (L2,1 ∨ . . . ∨ L2,m2 ) ∧ . . . ∧ (Ln,1 ∨ . . . ∨ Ln,mn )

wobei Li,j Literale sind. Klauseln sind Disjunktionen von Literalen.

Wir stellen die KNF in der Prädikatenlogik wie folgt her:

(1) Formel bereinigen

(2) Bilden der Negationsnormalform

(3) Bilden der Pränexform

(4) Skolemisieren

(5) Erschöpfende Anwendung der folgenden Ersetzung auf Teilformeln im
quantorenfreien Teil der Formel:

F ∨ (G ∧ H) 7→ (F ∨ G) ∧ (F ∨ H)
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Beispiel: Konjunktive Normalform

∀x1, x2, x3, x4, x5.((
(W(x1) ∧ ¬L(x1)) ∨ (L(x1) ∧ ¬W(x1))

)
∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧
(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧
(
¬L(x5) ∨ (¬W( f6(x1, x2, x3, x4, x5)) ∧ ¬L( f7(x1, x2, x3, x4, x5)))

))
≡ ∀x1, x2, x3, x4, x5.(

(W(x1) ∨ L(x1)) ∧ (¬L(x1) ∨ L(x1))

∧ (W(x1) ∨ ¬W(x1)) ∧ (¬L(x1) ∨ ¬W(x1))
)

∧
(
¬W(x2) ∨ (W(x3) ∨ L(x4))

)
∧ (¬L(x5) ∨ ¬W( f6(x1, x2, x3, x4, x5))) ∧ (¬L(x5) ∨ ¬L( f7(x1, x2, x3, x4, x5)))

)
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Klauselform
Die Klauselform ist eine vereinfachte Schreibweise der KNF:

• Allquantoren werden weggelassen.

• Klauseln werden als Mengen von Literalen geschrieben.

• Konjunktionen von Klauseln werden als Mengen von Mengen von Literalen
geschrieben.

Beispiel: Unser Beispiel kann damit wie folgt geschrieben werden:
{ {W(x1), L(x1)},

{¬L(x1), L(x1)},

{W(x1),¬W(x1)},

{¬L(x1),¬W(x1)},

{¬W(x2), W(x3), L(x4)},

{¬L(x5),¬W( f6(x1, x2, x3, x4, x5))},

{¬L(x5),¬L( f7(x1, x2, x3, x4, x5))} }
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Unifikation
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Idee der Resolution
Aussagenlogische Resolution verallgemeinert die Verkettung von Implikationen.
Beispiel:

A→ B

{¬A, B}

B→ C

{¬B, C}

{¬A, C}

A→ C

Dies ist auch in der Prädikatenlogik ein gültiger Schluss:

∀x.(A(x)→ B(x))

{¬A(x), B(x)}

∀x.(B(x)→ C(x))

{¬B(x), C(x)}

{¬A(x), C(x)}

∀x.(A(x)→ C(x))
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Terme in Klauselform
Allerdings ist es nicht immer so einfach.

Schon die alten Griechen wussten:

∀x.(Mensch(x)→ Sterblich(x)) Mensch(sokrates)
Sterblich(sokrates)

Aber die entsprechenden Klauseln sind:

{¬Mensch(x), Sterblich(x)} {Mensch(sokrates)}

Problem: Wie kann man Resolution über unterschiedliche Atome
Mensch(x) , Mensch(sokrates) durchführen?

Lösung: Die Variable x ist universell quantifiziert und kann für beliebige Elemente
stehen, also auch für Sokrates – logisch gilt:

∀x.(Mensch(x)→ Sterblich(x))

{¬Mensch(x), Sterblich(x)}
|=

Mensch(sokrates)→ Sterblich(sokrates)

{¬Mensch(sokrates), Sterblich(sokrates)}
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Funktionsterme in Klauseln
Was passiert mit Funktionen?

∀x.(Mensch(x)→ ∃y.hatVater(x, y))

∀z, v.(hatVater(z, v)→ hatKind(v, z))

∀x.(Mensch(x)→ ∃y.hatKind(y, x))

Entsprechende Klauseln:

{¬Mensch(x), hatVater(x, f (x))}

{¬hatVater(z, v), hatKind(v, z)}

{¬Mensch(x), hatKind( f (x), x)}

Passen hatVater(x, f (x)) und ¬hatVater(z, v) zusammen?

Ja, wenn wir z durch x ersetzten und v durch f (x), denn es gilt:

∀z, v.(hatVater(z, v)→ hatKind(v, z))

{¬hatVater(z, v), hatKind(v, z)}
|=
∀x.(hatVater(x, f (x))→ hatKind( f (x), x))

{¬hatVater(x, f (x)), hatKind( f (x), x)}
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Zusammenfassung und Verallgemeinerung

Für die Anwendung von Resolution benötigt man jeweils zwei gleiche Atome
(einmal negiert und einmal nicht-negiert)

Wir erreichen das in Prädikatenlogik durch folgende Methoden:

• Wir ersetzen (universell quantifizierte) Variablen durch andere Terme:
{ Substitution

• Damit wollen wir erreichen, dass Terme (und letztlich Atome) gleich werden:
{ Unifikation
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Substitutionen

Eine Substitution ist eine endliche Menge der Form

{x1 7→ t1, . . . , xn 7→ tn},

wobei x1, . . . , xn ∈ V paarweise verschiedene Variablen und t1, . . . , tn ∈ T beliebige Ter-
me sind.

Die Anwendung einer Substitution auf einen Ausdruck A (Formel oder Term) führt zu
einem Ausdruck A{x1 7→ t1, . . . , xn 7→ tn}, der aus A entsteht, wenn man jedes freie
Vorkommen einer Variablen xi in A simultan durch ti ersetzt.

Eine Formel bzw. einen Term Aσ, der durch Anwendung einer Substitution σ auf A
entsteht, nennt man Instanz von A (unter σ).

Beispiele:
p(x, y, z){x 7→ f (y), y 7→ a} = p( f (y), a, z)(

q(x, y)→ ∀x.r(x, y)
)
{x 7→ z, y 7→ f (x)} =

(
q(z, f (x))→ ∀x.r(x, f (x))

)
Alternativ: Eine Substitution ist eine Funktion σ : V→ T, für die die Menge {v ∈ V | σ(v) , v} endlich ist.
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Quiz: Anwendung von Substitutionen

Eine Substitution ist eine endliche Menge der Form {x1 7→ t1, . . . , xn 7→ tn}, wobei x1, . . . , xn ∈ V paarweise
verschiedene Variablen und t1, . . . , tn ∈ T beliebige Terme sind.

Die Anwendung einer Substitution auf einen Ausdruck A (Formel oder Term) führt zu einem Ausdruck
A{x1 7→ t1, . . . , xn 7→ tn}, der aus A entsteht, wenn man jedes freie Vorkommen einer Variablen xi in A
simultan durch ti ersetzt.

Quiz: Welche der folgenden Anwendungen von Substitutionen sind korrekt berech-
net?. . .
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Komposition von Substitutionen

Wir können Substitutionen hintereinander ausführen:

Für Substitutionen σ = {x1 7→ t1, . . . , xn 7→ tn} und θ = {y1 7→ s1, . . . , ym 7→ sm} ist die
Komposition σ ◦ θ die folgende Substitution:

{x1 7→ t1θ, . . . , xn 7→ tnθ } ∪ {yi 7→ si | yi ∈ {y1, . . . , ym} \ {x1, . . . , xn} }

Satz: Für alle Terme oder Formeln A und Substitutionen σ und θ gilt: A(σ ◦ θ) = (Aσ)θ.

Beweis: Per struktureller Induktion über den Aufbau von Termen.

Induktionsanfang: Satz gilt für Konstanten A ∈ C und Variablen A ∈ V per Definition.

Induktionsvoraussetzung: Satz gilt für Terme t1, . . . , tℓ.

Induktionsschritt: Damit gilt für größere Funktionsterme
f (t1, . . . , tℓ)(σ ◦ θ) = f (t1(σ ◦ θ), . . . , tℓ(σ ◦ θ))

IV
= f ((t1σ)θ, . . . , (tℓσ)θ) = ( f (t1, . . . , tℓ)σ)θ.

Beweis für Formeln analog (aber mit mehr Fällen im Induktionsschritt). □
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {s1

.
= t1, . . . , sn

.
= tn}.

Eine Substitution σ ist genau dann ein Unifikator für G, wenn siσ = tiσ für alle
i ∈ {1, . . . , n} gilt.

Beispiele:

{
f (x) .
= f (sokrates)

}
hat den Unifikator {x 7→ sokrates}{

x .
= f (y), y .

= g(z)
}

hat den Unifikator {x 7→ f (g(z)), y 7→ g(z)},

aber auch z.B. {x 7→ f (g(a)), y 7→ g(a), z 7→ a}

und {x 7→ f (g( f (b))), y 7→ g( f (b)), z 7→ f (b)}{
f (x) .
= g(x)

}
hat keinen Unifikator{

x .
= f (x)

}
hat keinen Unifikator
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Unifikatoren vergleichen
Das Problem {x .

= f (y), y .
= g(z)} hat viele Unifikatoren – gibt es einen „besten“?

Eine Substitution σ ist genau dann mindestens so allgemein wie eine Substitution θ, in
Symbolen σ ⪯ θ, wenn es eine Substitution λ gibt, so dass σ ◦ λ = θ.

Ein allgemeinster Unifikator für ein Unifikationsproblem G ist ein Unifikator σ für G, so
dass σ ⪯ θ für alle Unifikatoren θ für G gilt.

(Die englische Bezeichnung des allgemeinsten Unifikators ist most general unifier (mgu).)

Beispiel: Für G = {x .
= f (y), y .

= g(z)} ist σ = {x 7→ f (g(z)), y 7→ g(z)} ein allgemeinster
Unifikator. Dagegen ist θ = {x 7→ f (g( f (b))), y 7→ g( f (b)), z 7→ f (b)} ein Unifikator für G,
der nicht allgemeinst ist, denn es gilt θ ⪯̸ σ, weil σ{z 7→ f (b)} = θ gilt und Substitutio-
nen nur Variablen abbilden, die Ersetzung z 7→ f (b) also nicht umkehrbar ist.

Achtung: Die Relation ⪯ auf Substitutionen ist keine partielle Ordnung, da sie nicht
antisymmetrisch ist: Für ξ = {x 7→ z, z 7→ z} und ζ = {z 7→ x, x 7→ x} gilt ξ ⪯ ζ wegen
ξ ◦ {z 7→ x} = ζ und analog ζ ⪯ ξ wegen ζ ◦ {x 7→ z} = ξ, aber es ist ξ , ζ.
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Eindeutigkeit des mgu

Satz: Die allgemeinsten Unifikatoren von G sind bis auf Umbenennung von Variablen
identisch.

(Ohne Beweis.)

Beispiel: Das Problem
{
f (x) .
= f (z)

}
hat die allgemeinsten Unifikatoren {x 7→ z} und

{z 7→ x}, aber auch z.B. {x 7→ v, z 7→ v} für eine dritte Variable v ∈ V.
(Übungsaufgabe: Finden Sie die entsprechenden bezeugenden Substitutionen.)
Dagegen ist {x 7→ a, z 7→ a} mit a ∈ C ein nicht-allgemeinster Unifikator.

Satz: Wenn ein Unifikationsproblem lösbar ist (d.h., einen Unifikator hat), dann hat es
auch einen allgemeinsten Unifikator.

Wir zeigen das durch Angabe eines Algorithmus für die mgu-Berechnung.
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Gelöste Unifikationsprobleme

Ein Unifikationsproblem G = {x1
.
= t1, . . . , xn

.
= tn} ist in gelöster Form, wenn x1, . . . , xn

paarweise verschiedene Variablen sind, die nicht in den Termen t1, . . . , tn vorkommen.

In diesem Fall definieren wir eine Substitution σG := {x1 7→ t1, . . . , xn 7→ tn}.

Satz: Wenn G ein Unifikationsproblem in gelöster Form ist, dann ist σG ein allge-
meinster Unifikator für G.

Beweis: Sei G = {x1
.
= t1, . . . , xn

.
= tn}. Dann ist xiσG = ti = tiσG, wobei die zweite

Gleichheit gilt, da ti keine Variable aus x1, . . . , xn enthält. Also ist σG Unifikator für G.

Für einen beliebigen Unifikator θ von G gilt σG ◦ θ = θ (und damit σG ⪯ θ):

• Für xi ∈ {x1, . . . , xn} ist (xi)(σG ◦ θ) = (xiσG)θ = tiθ = xiθ.

• Für y < {x1, . . . , xn} ist (y)(σG ◦ θ) = (yσG)θ = yθ.

Also ist σG ein allgemeinster Unifikator. □
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Lösen von Unifikationsproblemen

Wir bringen Unifikationsprobleme schrittweise in gelöste Form:

Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator für G, oder „nicht unifizierbar“.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer Än-
derung führt:

• Löschen: {t .
= t} ∪ G′ { G′

• Zerlegung: { f (s1, . . . , sn) .
= f (u1, . . . , un)} ∪ G′ { {s1

.
= u1, . . . , sn

.
= un} ∪ G′

• Orientierung: {t .
= x} ∪ G′ { {x .

= t} ∪ G′ falls x ∈ V und t < V

• Eliminierung: {x .
= t} ∪ G′ { {x .

= t} ∪ G′{x 7→ t} falls x ∈ V nicht in t vorkommt

Wenn G danach in gelöster Form ist, dann gib σG aus.
Andernfalls gib aus „nicht unifizierbar“.
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Beispiel

{x .
= f (a), g(x, x) .

= g(x, y)}

Eliminierung

{x .
= f (a), g( f (a), f (a)) .

= g( f (a), y)} Zerlegung

{x .
= f (a), f (a) .

= f (a), f (a) .
= y} Löschen

{x .
= f (a), f (a) .

= y} Orientierung

{x .
= f (a), y .

= f (a)} gelöste Form

Die zugehörige Substitution {x 7→ f (a), y 7→ f (a)} ist Unifikator des ursprünglichen
Unifikationsproblems.
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{x .
= f (a), f (a) .

= y} Orientierung

{x .
= f (a), y .

= f (a)} gelöste Form

Die zugehörige Substitution {x 7→ f (a), y 7→ f (a)} ist Unifikator des ursprünglichen
Unifikationsproblems.
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Quiz: Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator für G, oder „nicht unifizierbar“.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer Änderung führt:
• Löschen: {t .

= t} ∪ G′ { G′

• Zerlegung: { f (s1, . . . , sn) .
= f (u1, . . . , un)} ∪ G′ { {s1

.
= u1, . . . , sn

.
= un} ∪ G′

• Orientierung: {t .
= x} ∪ G′ { {x .

= t} ∪ G′ falls x ∈ V und t < V
• Eliminierung: {x .

= t} ∪ G′ { {x .
= t} ∪ G′{x 7→ t} falls x ∈ V nicht in t vorkommt

Wenn G danach in gelöster Form ist, dann gib σG aus. Andernfalls gib aus „nicht unifizierbar“.

Quiz: Welche der folgenden Ausführungen des Unifikationsalgorithmus sind korrekt?
. . .
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Korrektheit des Unifikationsalgorithmus (1)

Satz: Der Unifikationsalgorithmus berechnet für jedes Unifikationsproblem einen allge-
meinsten Unifikator, falls es einen Unifikator gibt, und liefert „nicht unifizierbar“ wenn
es keinen gibt.

Beweis: Wir zeigen nacheinander drei Aussagen, aus denen die Behauptung folgt.

Bei der Eingabe beliebiger Unifikationsprobleme G gilt:

(1) Wenn der Algorithmus eine Substitution σ ausgibt, dann ist σ ein allgemeinster
Unifikator für G.

(2) Wenn der Algorithmus „nicht unifizierbar“ ausgibt, dann hat G keinen Unifikator.

(3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen Schritten eine der
beiden Ausgaben.
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (‡):

Wenn ein Unifikationsproblem G1 in einem Ersetzungsschritt in ein Problem G2

umgewandelt werden kann, dann haben G1 und G2 die gleichen Unifikatoren.

Für Löschen, Orientierung und Zerlegung ist das leicht zu sehen.

Für Eliminierung betrachten wir G1 = {x
.
= t} ∪ G′ und die Substitution σ = {x 7→ t}. Es ist

also G2 = {x
.
= t} ∪ G′σ. Es gilt nun:

θ ist ein Unifikator für G1

gdw. xθ = tθ und θ ist ein Unifikator für G′

gdw. xθ = tθ und σ ◦ θ ist ein Unifikator für G′

Begründung: σ = σ{x .
=t} und daher σ ◦ θ = θ

für alle Unifikatoren θ von {x .
= t} (gezeigt auf Folie 17)

gdw. xθ = tθ und θ ist ein Unifikator für G′σ
gdw. θ ist ein Unifikator für {x .

= t} ∪ G′σ = G2
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Korrektheit des Unifikationsalgorithmus (3)

Beweis (Fortsetzung): (1) Wenn der Algorithmus eine Substitution σ ausgibt, dann ist
σ ein allgemeinster Unifikator für G.

• Gemäß Hilfsaussage (‡) erhält jeder Umformungsschritt die Unifikatoren und damit
auch die allgemeinsten Unifikatoren.

• Per Induktion gilt also: Jedes Unifikationsproblem, welches der Algorithmus
erzeugt, hat den gleichen allgemeinsten Unifikator wie G.

• Wenn der Algorithmus einen Unifikator ausgibt, dann ist dies ein allgemeinster
Unifikator für eine gelöste Form (Satz auf Folie 17).

Damit folgt die Behauptung.
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Korrektheit des Unifikationsalgorithmus (4)

Beweis (Fortsetzung): (2) Wenn der Algorithmus „nicht unifizierbar“ ausgibt, dann hat
G keinen Unifikator.

Beobachtung: In diesem Fall erzeugt der Algorithmus ein Problem G′, das eine
Gleichung einer der beiden folgenden Formen enthält:

(a) x .
= t, wobei die Variable x ∈ V in t vorkommt;

(b) f (t1, . . . , tn) .
= g(s1, . . . , sm) mit f , g.

Begründung: G′ muss eine Gleichung s .
= u enthalten, die nicht in gelöster Form ist.

• Fall 1: s .
= u hat auf mindestens einer Seite eine Variable.

Dann hat sie die Form (a), da sonst Orientierung oder Löschen möglich wäre.

• Fall 2: s .
= u hat auf keiner Seite eine Variable.

Dann hat sie die Form (b), da sonst Zerlegung möglich wäre.

Daraus folgt (2), da Gleichungen (a) und (b) keinen Unifikator haben. Nach (‡) hat damit
auch G keinen Unifikator.
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(a) x .
= t, wobei die Variable x ∈ V in t vorkommt;

(b) f (t1, . . . , tn) .
= g(s1, . . . , sm) mit f , g.

Begründung: G′ muss eine Gleichung s .
= u enthalten, die nicht in gelöster Form ist.

• Fall 1: s .
= u hat auf mindestens einer Seite eine Variable.

Dann hat sie die Form (a), da sonst Orientierung oder Löschen möglich wäre.

• Fall 2: s .
= u hat auf keiner Seite eine Variable.

Dann hat sie die Form (b), da sonst Zerlegung möglich wäre.

Daraus folgt (2), da Gleichungen (a) und (b) keinen Unifikator haben. Nach (‡) hat damit
auch G keinen Unifikator.
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Korrektheit des Unifikationsalgorithmus (5)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Ansatz: Wir ordnen Unifikationsprobleme so an, dass das aktuelle Problem in jedem
Schritt kleiner wird, und argumentieren, dass dies nicht ewig so weitergehen kann.

Dazu definieren wir für jedes Problem G′ ein Tripel natürlicher Zahlen κ(G′) = ⟨v, g, r⟩:

• v ist die Zahl der nicht gelösten Variablen in G′;

(Eine Variable x ist genau dann gelöst, wenn sie in G′ nur in einer Gleichung
x .
= t vorkommt und dabei nicht in t enthalten ist.)

• g ist die Gesamtzahl der Vorkommen von Funktionssymbolen, Konstanten und
Variablen in G′;

• r ist die Zahl der Gleichungen s .
= x ∈ G′ mit Variable x ∈ V auf der rechten Seite.
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Korrektheit des Unifikationsalgorithmus (6)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Wir ordnen Unifikationsprobleme G′ lexikographisch bezüglich der Tripel κ(G′).

Für G1 und G2 mit κ(Gi) = ⟨vi, gi, ri⟩ gilt G1 ≻ G2 gdw.:

• v1 > v2, oder

• v1 = v2 und g1 > g2, oder

• v1 = v2 und g1 = g2 und r1 > r2.

Beispiel: ⟨4, 2, 1⟩ ≻ ⟨3, 42, 23⟩ ≻ ⟨3, 42, 22⟩ ≻ ⟨3, 41, 1000⟩.

In dieser Ordnung gibt es keine unendlichen absteigenden Ketten immer kleiner
werdender Unifikationsprobleme: Die Ordnung ist wohlfundiert. (Ohne Beweis.)
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Korrektheit des Unifikationsalgorithmus (7)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Die Behauptung folgt nun, da für jede Regelanwendung G1 { G2 die strikte
Ungleichung G1 ≻ G2 folgt, also zu einem ≻-kleineren Unifikationsproblem führt:

• v: Zahl der nicht gelösten Variablen

• g: Gesamtzahl von Termen

• r: Zahl der Gleichungen s .
= x ∈ G′ mit Variable x ∈ V

Der Effekt der Regeln ist dabei wie folgt:

v g r
Löschen ≥ >

Zerlegen ≥ >

Orientieren ≥ = >

Eliminierung >

Da es keine unendlichen Ket-
ten immer kleinerer Probleme
geben kann, muss der Algorith-
mus irgendwann terminieren. □
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Beispiel: Terminierungsordnung

v g r

{x .
= f (a), g(x, x) .

= g(x, y)} 2 9 0 ⇒ Eliminierung

{x .
= f (a), g(f (a), f (a)) .

= g(f (a), y)} 1 12 0 ⇒ Zerlegung

{x .
= f (a), f (a) .

= f (a), f (a) .
= y} 1 10 1 ⇒ Löschen

{x .
= f (a), f (a) .

= y} 1 6 1 ⇒ Orientierung

{x .
= f (a), y .

= f (a)} 0 6 0 gelöste Form

Es gilt: ⟨2, 9, 0⟩ ≻ ⟨1, 12, 0⟩ ≻ ⟨1, 10, 1⟩ ≻ ⟨1, 6, 1⟩ ≻ ⟨0, 6, 0⟩.
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Zusammenfassung und Ausblick

Bei der prädikatenlogischen Resolution müssen Atome unifiziert werden.

Unifikation von Termen findet mit Hilfe von Substitutionen statt.

Der Unifikationsalgorithmus erlaubt uns, allgemeinste Unifikatoren zu berechnen, falls
diese existieren.

Was erwartet uns als nächstes?

• Der Resolutionsalgorithmus und seine Korrektheit

• Herbrand – genialer Mathematiker, aber unglücklicher Bergsteiger

• Logik über endlichen Interpretationen und ihre praktische Anwendung
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