TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

18. Vorlesung: Unifikation

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 23. Juni 2025


https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Resolution fir Pradikatenlogik

Ein konkreter Algorithmus zum logischen SchlieBen:
(1) Logische Konsequenz auf Unerflllbarkeit reduzieren
(2) Formeln in Klauselform umwandeln
— Formel bereinigen
Negationsnormalform bilden
Pranexform bilden

Skolemform bilden
Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden

— Unifikation zum Finden passender Klauseln
— Bilden von Resolventen bis zur Terminierung
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Konjunktive Normalform in Pradikatenlogik

Eine Formel ist in konjunktiver Normalform (KNF) wenn sie in Préanexform
Ox;.---Ox,.F ist, wobei F eine Konjunktion von Disjunktionen von Literalen ist, wel-
che keine Quantoren enthalt. Das hei3t F hat die Form:

(Ll»l \Y ---VLl,ml)/\(LZ,l V... VLz’m2)/\ .../\(L,,’l V... VLn,mn)

wobei L;; Literale sind. Klauseln sind Disjunktionen von Literalen.

Wir stellen die KNF in der Pradikatenlogik wie folgt her:
(1) Formel bereinigen
(2) Bilden der Negationsnormalform
(3) Bilden der Pranexform
(4) Skolemisieren
(5) Erschopfende Anwendung der folgenden Ersetzung auf Teilformeln im
quantorenfreien Teil der Formel:

FV(GAH)— (FVG)A(FVH)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 18 Folie 3 von 29


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Konjunktive Normalform

Vxi, X2, X3, X4, X5.

(W) A =L) v (L) A =W(x)))

A (W) vV (W(x3) V L(xs)))

A (AL(xs) V (AW folxr, %2, 33, 24, 65)) A =L(f(x1, X2, 33, %3, 35)))
VX1, X2, X3, X4, X5.

((W(x1) v L) A (~L(xy) V Lixy)

A (W) V =W(@xp) A (~L(xy) V =W(x,))

A (W) V (W) V L(xa))

A (~L(xs) V (AW (fylx1, 32, 33, %4, 35)) A L (1, %2, X3, 33, 35))))
VX1, X2, X3, X4, X5.
(W) v L) A (=LGxy) V Lix)

A (W) V =W(@p) A (~L(xy) V ~W(x,))

A (=W () V (W(x3) V L(x))

A (=L(xs) V 2 W(fo(x1, X2, X3, X4, X5))) A (=L(xs5) V —|L(f7(x1,x2,x3,X4,X5))))
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Klauselform

Die Klauselform ist eine vereinfachte Schreibweise der KNF:
® Allquantoren werden weggelassen.
® Klauseln werden als Mengen von Literalen geschrieben.

e Konjunktionen von Klauseln werden als Mengen von Mengen von Literalen
geschrieben.

Beispiel: Unser Beispiel kann damit wie folgt geschrieben werden:
{ WG, L)},
{=L(x1), L(x1)},
{(W(x1), =W,
{=L(x1), =W(x1)},
{=W(x2), W(x3), L(x4)},
{=L(x5), "W(fe(x1, X2, X3, X4, X5))},
{=L(xs), =L(f7(x1, X2, X3, X4, X5))}  }
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Unifikation
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Idee der Resolution

Aussagenlogische Resolution verallgemeinert die Verkettung von Implikationen.
Beispiel:

A—B B—-C
{-A, B} {-B, C}

{4, C}
A->C
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Idee der Resolution

Aussagenlogische Resolution verallgemeinert die Verkettung von Implikationen.
Beispiel:

A—B B—-C
{-A, B} {-B, C}

{4, C}
A->C

Dies ist auch in der Pradikatenlogik ein gultiger Schluss:

Vx.(A(x) = B(x)) Vx.(B(x) = C(x))
{=A(x), B(x)} {=B(x), C(x)}
{=AX), C0)}

Vx.(A(x) = C(x))
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Terme in Klauselform
Allerdings ist es nicht immer so einfach.
Schon die alten Griechen wussten:

Vx.(Mensch(x) — Sterblich(x)) Mensch(sokrates)

Sterblich(sokrates)
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Terme in Klauselform
Allerdings ist es nicht immer so einfach.
Schon die alten Griechen wussten:

Vx.(Mensch(x) — Sterblich(x)) Mensch(sokrates)

Sterblich(sokrates)

Aber die entsprechenden Klauseln sind:
{=Mensch(x), Sterblich(x)} {Mensch(sokrates)}

Problem: Wie kann man Resolution tber unterschiedliche Atome
Mensch(x) # Mensch(sokrates) durchfiihren?
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Terme in Klauselform
Allerdings ist es nicht immer so einfach.
Schon die alten Griechen wussten:

Vx.(Mensch(x) — Sterblich(x)) Mensch(sokrates)
Sterblich(sokrates)

Aber die entsprechenden Klauseln sind:
{=Mensch(x), Sterblich(x)} {Mensch(sokrates)}

Problem: Wie kann man Resolution tber unterschiedliche Atome
Mensch(x) # Mensch(sokrates) durchfiihren?

Lésung: Die Variable x ist universell quantifiziert und kann fur beliebige Elemente
stehen, also auch fiir Sokrates — logisch gilt:

Vx.(Mensch(x) — Sterblich(x)) Mensch(sokrates) — Sterblich(sokrates)
{=Mensch(x), Sterblich(x)} {=Mensch(sokrates), Sterblich(sokrates)}
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Funktionsterme in Klauseln

Was passiert mit Funktionen?

Vx.(Mensch(x) — dy.hatVater(x, y))
Vz, v.(hatVater(z, v) — hatKind(v, z))

¥x.(Mensch(x) — dy.hatKind(y, x))
Entsprechende Klauseln:
{=Mensch(x), hatVater(x, f(x))}

{=hatVater(z, v), hatKind(v, z)}
{=Mensch(x), hatKind(f(x), x)}

Passen hatVater(x, f(x)) und —hatVater(z, v) zusammen?
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Funktionsterme in Klauseln

Was passiert mit Funktionen?

Vx.(Mensch(x) — dy.hatVater(x, y))
Vz, v.(hatVater(z, v) — hatKind(v, z))
¥x.(Mensch(x) — dy.hatKind(y, x))

Entsprechende Klauseln:

{=Mensch(x), hatVater(x, f(x))}
{=hatVater(z, v), hatKind(v, z)}
{=Mensch(x), hatKind(f(x), x)}

Passen hatVater(x, f(x)) und —hatVater(z, v) zusammen?
Ja, wenn wir z durch x ersetzten und v durch f(x), denn es gilt:

Yz, v.(hatVater(z, v) — hatKind(v, z)) Vx.(hatVater(x, f(x)) — hatKind(f(x), x))
{=hatVater(z, v), hatKind(v, z)} {=hatVater(x, f(x)), hatKind(f(x), x)}
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Zusammenfassung und Verallgemeinerung

Far die Anwendung von Resolution bendtigt man jeweils zwei gleiche Atome
(einmal negiert und einmal nicht-negiert)
Wir erreichen das in Pradikatenlogik durch folgende Methoden:

® Wir ersetzen (universell quantifizierte) Variablen durch andere Terme:
~> Substitution

* Damit wollen wir erreichen, dass Terme (und letztlich Atome) gleich werden:
~» Unifikation
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Substitutionen

Eine Substitution ist eine endliche Menge der Form

{xl = t19--~7-xn = tn}7
wobei xi,...,x, € V paarweise verschiedene Variablen und #,,...,1, € T beliebige Ter-
me sind.

Die Anwendung einer Substitution auf einen Ausdruck A (Formel oder Term) flihrt zu
einem Ausdruck A{x; — 1,...,x, — t,}, der aus A entsteht, wenn man jedes freie
Vorkommen einer Variablen x; in A simultan durch #; ersetzt.

Eine Formel bzw. einen Term Ao, der durch Anwendung einer Substitution o auf A
entsteht, nennt man Instanz von A (unter o).
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Substitutionen

Eine Substitution ist eine endliche Menge der Form

{xl = t19--~7-xn = tn}7
wobei xi,...,x, € V paarweise verschiedene Variablen und #,,...,1, € T beliebige Ter-
me sind.

Die Anwendung einer Substitution auf einen Ausdruck A (Formel oder Term) flihrt zu
einem Ausdruck A{x; — 1,...,x, — t,}, der aus A entsteht, wenn man jedes freie
Vorkommen einer Variablen x; in A simultan durch #; ersetzt.

Eine Formel bzw. einen Term Ao, der durch Anwendung einer Substitution o auf A
entsteht, nennt man Instanz von A (unter o).

Beispiele:
Py, x = f(),y = a} = p(f(y),a,2)
(qCx,y) = Voxr(x, )x o 2,y = f(0)} = (q(z,f (0) = Yxr(x, f(x))

Alternativ: Eine Substitution ist eine Funktion o : V — T, flr die die Menge {v € V | o«(v) # v} endlich ist.
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Quiz: Anwendung von Substitutionen

Eine Substitution ist eine endliche Menge der Form {x; - #;,...,x, - t,}, wobei x,...,x, € V paarweise
verschiedene Variablen und 14, ...,t, € T beliebige Terme sind.

Die Anwendung einer Substitution auf einen Ausdruck A (Formel oder Term) fuhrt zu einem Ausdruck
Af{x; & t1,...,x, > Iy}, der aus A entsteht, wenn man jedes freie Vorkommen einer Variablen x; in A
simultan durch t; ersetzt.

Quiz: Welche der folgenden Anwendungen von Substitutionen sind korrekt berech-
net?...
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Komposition von Substitutionen

Wir kdnnen Substitutionen hintereinander ausfiihren:

Flr Substitutionen o = {x; > 1,...,x, > t,} und 6 = {y; > s1,...,y, > 5} ist die
Komposition o o 6 die folgende Substitution:

{xl = tlga"-a-xn Land tng} U {yl =S |)’z € {)71,---7}’m}\{x1,---axn}}
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Komposition von Substitutionen

Wir kdnnen Substitutionen hintereinander ausfiihren:

Flr Substitutionen o = {x; > 1,...,x, > t,} und 6 = {y; > s1,...,y, > 5} ist die
Komposition o o 6 die folgende Substitution:

{xl = tlga"-axn Land tng} U {yl =S |)’z € {yla"'vym}\{xl,"'vxn}}

Satz: Fir alle Terme oder Formeln A und Substitutionen o~ und @ gilt: A(o o 0) = (Ao )6.
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Komposition von Substitutionen

Wir kdnnen Substitutionen hintereinander ausfiihren:

Flr Substitutionen o = {x; > 1,...,x, > t,} und 6 = {y; > s1,...,y, > 5} ist die
Komposition o o 6 die folgende Substitution:

{xl = tlea"-axn Land tng} U {yl =S |)’z € {yla"'vym}\{xlv'-'vxn}}

Satz: Fir alle Terme oder Formeln A und Substitutionen o~ und @ gilt: A(o o 0) = (Ao )6.

Beweis: Per struktureller Induktion Uber den Aufbau von Termen.
Induktionsanfang: Satz gilt fir Konstanten A € C und Variablen A € V per Definition.
Induktionsvoraussetzung: Satz gilt fir Terme 11, ..., ;.

Induktionsschritt: Damit gilt flr gréBere Funktionsterme
ft1, ... 10)(0 0 0) = f(t1(T 0 6), ..., 10 0 6)) = f(110)6, ..., (1)) = (f(t1, ..., 1))

Beweis fur Formeln analog (aber mit mehr Fallen im Induktionsschritt). O
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates))
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}

x=f0),y = 2@}
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}

{x =f(y),y =g} hatden Unifikator {x — f(g(z)),y — g},
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}

{x=f(),y =g} hatden Unifikator {x - f(g(2)),y — g(2)},
aber auch z.B. {x - f(g(a)),y = g(a),z — a}
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}
{x =f(),y =gz} hatden Unifikator {x — f(g(2)),y — g(2)},
aber auch z.B. {x — f(g(a)),y — g(a),z — a}

und {x = f(g(f(2))),y = g(f(b)),z = f(b)}
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}

{x=f(»),y =g} hatden Unifikator {x - f((z)),y — g@)},
aber auch z.B. {x — f(g(a)),y — g(a),z — a}
und {x = f(g(f(D))),y > g(f(b)),z — f(b)}
{f(0) = g0}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 18 Folie 14 von 29


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}
{x =f(y),y =g} hatden Unifikator {x — f(g(z)),y — g},
aber auch z.B. {x — f(g(a)),y — g(a),z — a}
und {x - f(g(f (D)), y = g(f(b)),z — f(b)}
{f(x) = g(x)} hat keinen Unifikator
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G = {61 = tigoooySp = ballc

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x > sokrates}
{x =f(y),y =g} hatden Unifikator {x — f(g(z)),y — g},
aber auch z.B. {x — f(g(a)),y — g(a),z — a}
und {x - f(g(f (D)), y = g(f(b)),z — f(b)}
{f(x) = g(x)} hat keinen Unifikator

e =)
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Unifikationsprobleme

Ein Unifikationsproblem ist eine endliche Menge von Gleichungen der Form
G={s;=t,...,8 = t,}.

Eine Substitution o ist genau dann ein Unifikator fir G, wenn s, = 1,0 fur alle
iefl,..., n}qilt.

Beispiele:
{f(x) = f(sokrates)} hat den Unifikator {x — sokrates}
{x =f(y),y =g} hatden Unifikator {x — f(g(z)),y — g},
aber auch z.B. {x — f(g(a)),y — g(a),z — a}
und {x - f(g(f (D)), y = g(f(b)),z — f(b)}
{f(x) = g(x)} hat keinen Unifikator
{x =f(x)} hat keinen Unifikator
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Unifikatoren vergleichen

Das Problem {x = f(y), y = g(z)} hat viele Unifikatoren — gibt es einen ,besten*?

Eine Substitution o ist genau dann mindestens so allgemein wie eine Substitution 6, in
Symbolen o < 6, wenn es eine Substitution A gibt, so dass oo 1 = 6.

Ein allgemeinster Unifikator fir ein Unifikationsproblem G ist ein Unifikator o fir G, so
dass o < 6 fur alle Unifikatoren 6 fur G gilt.

(Die englische Bezeichnung des allgemeinsten Unifikators ist most general unifier (mgu).)
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Unifikatoren vergleichen

Das Problem {x = f(y), y = g(z)} hat viele Unifikatoren — gibt es einen ,besten*?

Eine Substitution o ist genau dann mindestens so allgemein wie eine Substitution 8, in
Symbolen o < 6, wenn es eine Substitution A gibt, so dass oo 1 = 6.

Ein allgemeinster Unifikator fir ein Unifikationsproblem G ist ein Unifikator o fir G, so
dass o < 6 fur alle Unifikatoren 6 fur G gilt.

(Die englische Bezeichnung des allgemeinsten Unifikators ist most general unifier (mgu).)

Beispiel: Fir G = {x = f(y),y = g(2)} ist o = {x > f(g(2)),y — g(z)} ein allgemeinster
Unifikator. Dagegen ist 6 = {x  f(g(f(b))),y — g(f(b)),z  f(b)} ein Unifikator fir G,
der nicht allgemeinst ist, denn es gilt 8 £ o, weil o{z — f(b)} = 0 gilt und Substitutio-
nen nur Variablen abbilden, die Ersetzung z — f(b) also nicht umkehrbar ist.

Achtung: Die Relation < auf Substitutionen ist keine partielle Ordnung, da sie nicht
antisymmetrisch ist: Fir ¢ = {x > z,z— z} und ¢ = {z — x,x — x} gilt £ < { wegen
Eof{z x} = und analog ¢ <& wegen fo{x z} =&, aberesist & # (.
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Unifikatoren vergleichen

Das Problem {x = f(y), y = g(z)} hat viele Unifikatoren — gibt es einen ,besten*?

Eine Substitution o ist genau dann mindestens so allgemein wie eine Substitution 8, in
Symbolen o < 6, wenn es eine Substitution A gibt, so dass oo 1 = 6.

Ein allgemeinster Unifikator fir ein Unifikationsproblem G ist ein Unifikator o fir G, so
dass o < 6 fur alle Unifikatoren 6 fur G gilt.

(Die englische Bezeichnung des allgemeinsten Unifikators ist most general unifier (mgu).)

Beispiel: Fir G = {x = f(y),y = g(2)} ist o = {x > f(g(2)),y — g(z)} ein allgemeinster
Unifikator. Dagegen ist 6 = {x  f(g(f(b))),y — g(f(b)),z  f(b)} ein Unifikator fir G,
der nicht allgemeinst ist, denn es gilt 8 £ o, weil o{z — f(b)} = 0 gilt und Substitutio-
nen nur Variablen abbilden, die Ersetzung z — f(b) also nicht umkehrbar ist.

Achtung: Die Relation < auf Substitutionen ist keine partielle Ordnung, da sie nicht
antisymmetrisch ist: Fir ¢ = {x > z,z— z} und ¢ = {z — x,x — x} gilt £ < { wegen
Eof{z x} = und analog ¢ <& wegen fo{x z} =&, aberesist & # (.
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Eindeutigkeit des mgu

Satz: Die allgemeinsten Unifikatoren von G sind bis auf Umbenennung von Variablen
identisch.

(Ohne Beweis.)
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Eindeutigkeit des mgu

Satz: Die allgemeinsten Unifikatoren von G sind bis auf Umbenennung von Variablen
identisch.

(Ohne Beweis.)

Beispiel: Das Problem {f(x) = f(z)} hat die allgemeinsten Unifikatoren {x — z} und
{z — x}, aber auch z.B. {x — v,z — v} fUr eine dritte Variable v € V.
(Ubungsaufgabe: Finden Sie die entsprechenden bezeugenden Substitutionen.)
Dagegen ist {x = a,z — a} mit a € C ein nicht-allgemeinster Unifikator.
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Eindeutigkeit des mgu

Satz: Die allgemeinsten Unifikatoren von G sind bis auf Umbenennung von Variablen
identisch.

(Ohne Beweis.)

Beispiel: Das Problem {f(x) = f(z)} hat die allgemeinsten Unifikatoren {x — z} und
{z — x}, aber auch z.B. {x — v,z — v} fUr eine dritte Variable v € V.
(Ubungsaufgabe: Finden Sie die entsprechenden bezeugenden Substitutionen.)
Dagegen ist {x = a,z — a} mit a € C ein nicht-allgemeinster Unifikator.

Satz: Wenn ein Unifikationsproblem I8sbar ist (d.h., einen Unifikator hat), dann hat es
auch einen allgemeinsten Unifikator.

Wir zeigen das durch Angabe eines Algorithmus fir die mgu-Berechnung.
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Gelbste Unifikationsprobleme

Ein Unifikationsproblem G = {x; = 1,...,x, = t,} ist in geloster Form, wenn x;, ..., x,
paarweise verschiedene Variablen sind, die nicht in den Termen 14, ..., vorkommen.

In diesem Fall definieren wir eine Substitution o := {x; > 11,...,x,  t,}.
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Gelbste Unifikationsprobleme

Ein Unifikationsproblem G = {x; = 7,...,x, = t,} ist in geloster Form, wenn xy, ..., x,
paarweise verschiedene Variablen sind, die nicht in den Termen 14, ..., vorkommen.

In diesem Fall definieren wir eine Substitution o := {x; > 11,...,x,  t,}.

Satz: Wenn G ein Unifikationsproblem in geldster Form ist, dann ist o ein allge-
meinster Unifikator fur G.
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Gelbste Unifikationsprobleme

Ein Unifikationsproblem G = {x; = t1,...,x, = t,} ist in geléster Form, wenn x, ..., x,
paarweise verschiedene Variablen sind, die nicht in den Termen 14, ..., vorkommen.

In diesem Fall definieren wir eine Substitution o := {x; > 11,...,x,  t,}.

Satz: Wenn G ein Unifikationsproblem in geldster Form ist, dann ist o ein allge-
meinster Unifikator fur G.

Beweis: Sei G = {x; = 11,...,x, = t,}. Dannist x;o6 = t; = t;,0, wobei die zweite
Gleichheit gilt, da 7; keine Variable aus xi, ..., x, enthalt. Also ist o Unifikator fir G.
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Gelbste Unifikationsprobleme

Ein Unifikationsproblem G = {x; = t1,...,x, = t,} ist in geléster Form, wenn x, ..., x,
paarweise verschiedene Variablen sind, die nicht in den Termen 14, ..., vorkommen.

In diesem Fall definieren wir eine Substitution o := {x; > 11,...,x,  t,}.

Satz: Wenn G ein Unifikationsproblem in geléster Form ist, dann ist o ein allge-
meinster Unifikator fir G.

Beweis: Sei G = {x; = 11,...,x, = t,}. Dannist x;o6 = t; = t;,0, wobei die zweite
Gleichheit gilt, da 7; keine Variable aus xi, ..., x, enthalt. Also ist o Unifikator fir G.

Fir einen beliebigen Unifikator 8 von G gilt ¢ o 8 = 6 (und damit o < 6):
® Firx; €{xq,...,x,}ist (x;)(og 0 0) = (x;06)0 = 1,60 = x;0.
® Firyé¢{x),...,x,}ist(y)(ogo6) = (yos)0 = 6.
Also ist o ein allgemeinster Unifikator. O
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Lésen von Unifikationsproblemen

Wir bringen Unifikationsprobleme schrittweise in geléste Form:
Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator fir G, oder ,nicht unifizierbar*.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer An-
derung fuhrt:

® |Oschen: {t=t}UG ~ G

e Zerlegung: {f(s1,...,8) =f(uy,y...,.u)} UG ~>{sy =uy,...,5, =u,} UG’

® Orientierung: {t=x} UG ~ {x=r}UG fallsxeVundr¢ V

® Eliminierung: {x =t} U G’ ~ {x = t} U G’{x + 1} falls x € V nicht in r vorkommt

Wenn G danach in geléster Form ist, dann gib o aus.
Andernfalls gib aus ,nicht unifizierbar.
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Beispiel

{x = f(a), g(x,x) = g(x, y)}
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Beispiel

{x = f(a), g(x,x) = g(x,y)} Eliminierung
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Beispiel

{x =f(a),g(x,x) = g(x,y)} Eliminierung
x =f(a), g(f(a),f(a)) = g(f(a),y)}
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Beispiel

{x = f(a), g(x,x) = g(x,y)} Eliminierung
tx =f(a), 8(f(a),f(@)) = g(f(a),y)} Zerlegung
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Beispiel

(x = f(a), g(x,x) = g(x, )} Eliminierung

x=71(a),g(f(a),f(a)) = g(f(a),y)} Zerlegung
x =fla),f(a) = f(a),f(a) = y}
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Beispiel

(x = f(a), g(x,x) = g(x, )} Eliminierung

x=71(a),g(f(a),f(a)) = g(f(a),y)} Zerlegung
{x=7(a).f(a) =f(a),f(a) =y} Lbéschen
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Beispiel

{x = f(a),g(x,x) = g(x,y)} Eliminierung

x=71(a),g(f(a),f(a)) = g(f(a),y)} Zerlegung

Sebastian Rudolph, TU Dresden

{x=7(a).f(a) =f(a),f(a) =y} Lbéschen
(x=f(a),f(a) =y

Theoretische Informatik und Logik, VL 18
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Beispiel

{x = f(a),g(x,x) = g(x,y)} Eliminierung

x=71(a),g(f(a),f(a)) = g(f(a),y)} Zerlegung

Sebastian Rudolph, TU Dresden

{x =f(a),f(a) = f(a),f(a) =y} Lbschen
{x = f(a),f(a) =y} Orientierung

Theoretische Informatik und Logik, VL 18
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Beispiel

x = f(a), g(x,x) = g(x,y)

}
x = fla), g(f(@),f(2) = g(f(a), )}
x =fla),f(a) = f(@),f(a) =y}
}
}

{x=f@),fl@=y

x=f(a),y =f(a)

Eliminierung
Zerlegung
Léschen

Orientierung
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Beispiel

{x = f(a), g(x,x) = g(x,y)} Eliminierung

x = fla), g(f(a),f (@) = g(f(a),y)

}

} Zerlegung
{x=f(a).f(a) = f(a),f(a) =y} LOschen

}

}

Orientierung

x=fla),fl@ =y

gelbste Form

x=fla),y =f(a)

Die zugehdrige Substitution {x — f(a),y — f(a)} ist Unifikator des urspriinglichen
Unifikationsproblems.
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Quiz: Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator fir G, oder ,nicht unifizierbar”.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer Anderung fiihrt:
® |oschen: {=t}UG ~ G’
® Zerlegung: {f(s1,...,8n) =f(ury...,un))} UG ~> {sy =up,...,8, = up,} UG’
® QOrientierung: {f =x}UG ~ {x=1}UG falls xeVund r¢V
® Eliminierung: {x =1} UG’ ~ {x =} U G’'{x 1} falls x € V nicht in ¢ vorkommt

Wenn G danach in geléster Form ist, dann gib o aus. Andernfalls gib aus ,nicht unifizierbar®.

Quiz: Welche der folgenden Ausfihrungen des Unifikationsalgorithmus sind korrekt?
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Korrektheit des Unifikationsalgorithmus (1)

Satz: Der Unifikationsalgorithmus berechnet fur jedes Unifikationsproblem einen allge-
meinsten Unifikator, falls es einen Unifikator gibt, und liefert ,nicht unifizierbar® wenn
es keinen gibt.

Beweis: Wir zeigen nacheinander drei Aussagen, aus denen die Behauptung folgt.

Bei der Eingabe beliebiger Unifikationsprobleme G gilt:

(1) Wenn der Algorithmus eine Substitution o~ ausgibt, dann ist o ein allgemeinster
Unifikator fur G.

(2) Wenn der Algorithmus ,nicht unifizierbar® ausgibt, dann hat G keinen Unifikator.

(3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen Schritten eine der
beiden Ausgaben.
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist

also G, = {x =t} U G’o. Es gilt nun:
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist

also G, = {x =t} U G’o. Es gilt nun:

0 ist ein Unifikator fir G;
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.
Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist
also G, = {x =t} U G’o. Es gilt nun:

0 ist ein Unifikator fir G,
gdw. x6 = 16 und @ ist ein Unifikator fir G’
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist
also G, = {x =t} U G’o. Es gilt nun:

0 ist ein Unifikator fir G;
gdw. x6 = 16 und @ ist ein Unifikator fir G’

gdw. x6# =0 und o o @ ist ein Unifikator fir G’
Begriindung: o = 0(,-, und daher o0 6 = 0
fur alle Unifikatoren 6 von {x = t} (gezeigt auf Folie 17)
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist
also G, = {x =t} U G’o. Es gilt nun:

0 ist ein Unifikator fir G;
gdw. x6 = 16 und @ ist ein Unifikator fir G’

gdw. x6# =0 und o o @ ist ein Unifikator fir G’
Begriindung: o = 0(,-, und daher o0 6 = 0
fur alle Unifikatoren 6 von {x = t} (gezeigt auf Folie 17)

gdw. x6 =10 und @ ist ein Unifikator fir G’o
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Korrektheit des Unifikationsalgorithmus (2)

Beweis (Fortsetzung): Als erstes zeigen wir eine Hilfsaussage (¥):

Wenn ein Unifikationsproblem G, in einem Ersetzungsschritt in ein Problem G,
umgewandelt werden kann, dann haben G, und G, die gleichen Unifikatoren.

Far Léschen, Orientierung und Zerlegung ist das leicht zu sehen.

Fir Eliminierung betrachten wir G; = {x = 1t} U G’ und die Substitution o = {x - ¢}. Es ist
also G, = {x =t} U G’o. Es gilt nun:

0 ist ein Unifikator fir G;
gdw. x6 = 16 und @ ist ein Unifikator fir G’

gdw. x6# =0 und o o @ ist ein Unifikator fir G’
Begriindung: o = 0(,-, und daher o0 6 = 0
fur alle Unifikatoren 6 von {x = t} (gezeigt auf Folie 17)

gdw. x6 =10 und @ ist ein Unifikator fir G’o
gdw. @ ist ein Unifikator fir {x =t} U G'o = G,
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Korrektheit des Unifikationsalgorithmus (3)

Beweis (Fortsetzung): (1) Wenn der Algorithmus eine Substitution o~ ausgibt, dann ist
o ein allgemeinster Unifikator fir G.
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Korrektheit des Unifikationsalgorithmus (3)

Beweis (Fortsetzung): (1) Wenn der Algorithmus eine Substitution o~ ausgibt, dann ist
o ein allgemeinster Unifikator fir G.

® Geman Hilfsaussage () erhalt jeder Umformungsschritt die Unifikatoren und damit
auch die allgemeinsten Unifikatoren.
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Korrektheit des Unifikationsalgorithmus (3)

Beweis (Fortsetzung): (1) Wenn der Algorithmus eine Substitution o~ ausgibt, dann ist
o ein allgemeinster Unifikator fir G.

® Geman Hilfsaussage () erhalt jeder Umformungsschritt die Unifikatoren und damit
auch die allgemeinsten Unifikatoren.

® Per Induktion gilt also: Jedes Unifikationsproblem, welches der Algorithmus
erzeugt, hat den gleichen allgemeinsten Unifikator wie G.
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Korrektheit des Unifikationsalgorithmus (3)

Beweis (Fortsetzung): (1) Wenn der Algorithmus eine Substitution o~ ausgibt, dann ist
o ein allgemeinster Unifikator fir G.

® Geman Hilfsaussage () erhalt jeder Umformungsschritt die Unifikatoren und damit
auch die allgemeinsten Unifikatoren.

® Per Induktion gilt also: Jedes Unifikationsproblem, welches der Algorithmus
erzeugt, hat den gleichen allgemeinsten Unifikator wie G.

® Wenn der Algorithmus einen Unifikator ausgibt, dann ist dies ein allgemeinster
Unifikator flr eine geléste Form (Satz auf Folie 17).

Damit folgt die Behauptung.
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Korrektheit des Unifikationsalgorithmus (4)

Beweis (Fortsetzung): (2) Wenn der Algorithmus ,nicht unifizierbar* ausgibt, dann hat
G keinen Unifikator.
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Korrektheit des Unifikationsalgorithmus (4)

Beweis (Fortsetzung): (2) Wenn der Algorithmus ,nicht unifizierbar* ausgibt, dann hat
G keinen Unifikator.

Beobachtung: In diesem Fall erzeugt der Algorithmus ein Problem G’, das eine
Gleichung einer der beiden folgenden Formen enthalt:

(a) x =t, wobei die Variable x € V in t vorkommt;
(b) f(t17"'atn) ig(Sl,...7Sm) mltf:/:g

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 18 Folie 24 von 29


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Unifikationsalgorithmus (4)

Beweis (Fortsetzung): (2) Wenn der Algorithmus ,nicht unifizierbar* ausgibt, dann hat
G keinen Unifikator.

Beobachtung: In diesem Fall erzeugt der Algorithmus ein Problem G’, das eine
Gleichung einer der beiden folgenden Formen enthalt:

(a) x =t, wobei die Variable x € V in t vorkommt;
(b) f(t17 s 7tn) = g(slv .. '7sm) mltf # 8-
Begriindung: G’ muss eine Gleichung s = u enthalten, die nicht in geléster Form ist.

e Fall 1: s = u hat auf mindestens einer Seite eine Variable.
Dann hat sie die Form (a), da sonst Orientierung oder Léschen méglich ware.

® Fall 2: s = u hat auf keiner Seite eine Variable.
Dann hat sie die Form (b), da sonst Zerlegung méglich wére.
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Korrektheit des Unifikationsalgorithmus (4)

Beweis (Fortsetzung): (2) Wenn der Algorithmus ,nicht unifizierbar* ausgibt, dann hat
G keinen Unifikator.

Beobachtung: In diesem Fall erzeugt der Algorithmus ein Problem G’, das eine
Gleichung einer der beiden folgenden Formen enthalt:

(a) x =t, wobei die Variable x € V in ¢t vorkommt;
(b) f(t17 s 7tn) = g(slv .. .,Sm) mltf # 8-
Begriindung: G’ muss eine Gleichung s = u enthalten, die nicht in geléster Form ist.

e Fall 1: s = u hat auf mindestens einer Seite eine Variable.
Dann hat sie die Form (a), da sonst Orientierung oder Léschen méglich ware.

® Fall 2: s = u hat auf keiner Seite eine Variable.
Dann hat sie die Form (b), da sonst Zerlegung méglich wére.

Daraus folgt (2), da Gleichungen (a) und (b) keinen Unifikator haben. Nach () hat damit
auch G keinen Unifikator.
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Korrektheit des Unifikationsalgorithmus (5)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Ansatz: Wir ordnen Unifikationsprobleme so an, dass das aktuelle Problem in jedem
Schritt kleiner wird, und argumentieren, dass dies nicht ewig so weitergehen kann.
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Korrektheit des Unifikationsalgorithmus (5)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Ansatz: Wir ordnen Unifikationsprobleme so an, dass das aktuelle Problem in jedem
Schritt kleiner wird, und argumentieren, dass dies nicht ewig so weitergehen kann.

Dazu definieren wir fir jedes Problem G’ ein Tripel natirlicher Zahlen «(G") = (v, g, r):
® vy ist die Zahl der nicht gelésten Variablen in G’;
(Eine Variable x ist genau dann geldst, wenn sie in G’ nur in einer Gleichung
x =t vorkommt und dabei nicht in 7 enthalten ist.)
® ¢ ist die Gesamtzahl der Vorkommen von Funktionssymbolen, Konstanten und
Variablen in G’;
® rist die Zahl der Gleichungen s = x € G’ mit Variable x € V auf der rechten Seite.
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Korrektheit des Unifikationsalgorithmus (6)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.
Wir ordnen Unifikationsprobleme G’ lexikographisch beztglich der Tripel «(G”).
FOr Gy und G, mit k(G;) = (v;, gi, i) gilt Gy > G, gdw.:
® y; >y, oder
® y; =y, und g; > g, oder

® yy=vund g =g undr > .
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Korrektheit des Unifikationsalgorithmus (6)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.
Wir ordnen Unifikationsprobleme G’ lexikographisch beztglich der Tripel «(G”).
FOr Gy und G, mit k(G;) = (v;, gi, i) gilt Gy > G, gdw.:
® y; > vy, oder
® y; =y, und g; > g, oder

® yy=vund g =g undr > .

Beispiel: (4,2, 1) > (3,42,23) > (3,42,22) > (3,41, 1000).
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Korrektheit des Unifikationsalgorithmus (6)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Wir ordnen Unifikationsprobleme G’ lexikographisch beztglich der Tripel «(G”).
FOr Gy und G, mit k(G;) = (v;, gi, i) gilt Gy > G, gdw.:

® y, > y,, oder

® y; =y und g; > g, oder

® yy=vund g =g undr > .

Beispiel: (4,2, 1) > (3,42,23) > (3,42,22) > (3,41, 1000).

In dieser Ordnung gibt es keine unendlichen absteigenden Ketten immer kleiner
werdender Unifikationsprobleme: Die Ordnung ist wohlfundiert. (Ohne Beweis.)
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Korrektheit des Unifikationsalgorithmus (7)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Die Behauptung folgt nun, da fir jede Regelanwendung G, ~ G, die strikte
Ungleichung G, > G, folgt, also zu einem >-kleineren Unifikationsproblem flhrt:
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Korrektheit des Unifikationsalgorithmus (7)

Beweis (Fortsetzung): (3) Der Algorithmus terminiert, d.h. erzeugt nach endlich vielen
Schritten eine der beiden Ausgaben.

Die Behauptung folgt nun, da fir jede Regelanwendung G, ~ G, die strikte
Ungleichung G, > G, folgt, also zu einem >-kleineren Unifikationsproblem flhrt:
® y: Zahl der nicht gelésten Variablen
® ¢: Gesamtzahl von Termen

e r: Zahl der Gleichungen s = x € G’ mit Variable x e V

Der Effekt der Regeln ist dabei wie folgt:

1% 8 r
Loéschen > >
Zerlegen > > Da es keine unendlichen Ket-
. ten immer kleinerer Probleme
Orientieren > = > )
L geben kann, muss der Algorith-
Eliminierung >

mus irgendwann terminieren. O
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Beispiel: Terminierungsordnung

v 8 r

x=f@,gx,x) =g, 29 0
x=f(a),8(f(a),f(@) = g(f(@,y)} 1 12 0
x=fla),f(@=f@,fa=y} 1 10 1
x=fla,f@=y 1 6 1
x=fl@,y=f@} 0 6 0

Es gilt: (2,9,0) > (1,12,0) > (1,10, 1) > (1,6, 1) > (0,6, 0).
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= Eliminierung
= Zerlegung
= Lbschen

= Orientierung

geldste Form
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Zusammenfassung und Ausblick

Bei der pradikatenlogischen Resolution miissen Atome unifiziert werden.
Unifikation von Termen findet mit Hilfe von Substitutionen statt.

Der Unifikationsalgorithmus erlaubt uns, allgemeinste Unifikatoren zu berechnen, falls
diese existieren.

Was erwartet uns als nachstes?
® Der Resolutionsalgorithmus und seine Korrektheit
® Herbrand — genialer Mathematiker, aber unglicklicher Bergsteiger

® | ogik Uber endlichen Interpretationen und ihre praktische Anwendung
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