Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS—Report

SAT Encoding of Unification in ££

Franz Baader Barbara Morawska

LTCS-Report 10-04

Lehrstuhl fiir Automatentheorie
Institut fiir Theoretische Informatik Hans-Grundig-Str. 25
TU Dresden 01062 Dresden

http://lat.inf.tu-dresden.de Germany

SAT Encoding of Unification in £L£

Franz Baader
TU Dresden, Germany
baader@tcs.inf.tu-dresden.de

Barbara Morawska*
TU Dresden, Germany
morawska@tcs.inf.tu-dresden.de

May 27, 2010

Abstract

The Description Logic £L£ is an inexpressive knowledge representation
language, which nevertheless has recently drawn considerable attention in
the knowledge representation and the ontology community since, on the
one hand, important inference problems such as the subsumption problem
are polynomial. On the other hand, ££ is used to define large biomedical
ontologies. Unification in Description Logics has been proposed as a novel
inference service that can, for example, be used to detect redundancies in
ontologies. In a recent paper, we have shown that unification in ££ is NP-
complete, and thus of a complexity that is considerably lower than in other
Description Logics of comparably restricted expressive power.

In this paper, we introduce a new NP-algorithm for solving unification
problem in £L, which is based on a reduction to satisfiability in proposi-
tional logic (SAT). The advantage of this new algorithm is, on the one hand,
that it allows us to employ highly optimized state of the art SAT solvers
when implementing an £L-unification algorithm. On the other hand, this
reduction provides us with a proof of the fact that £L-unification is in
NP that is much simpler than the one given in our previous paper on £L-
unification.

1 Introduction

Description logics (DLs) [3] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of

*supported by DFG under grant BA 1122/14-1

an application domain using concept terms, which are built from concept names
and role names using certain concept constructors. The DL £L offers the con-
structors conjunction (M), existential restriction (Ir.C'), and the top concept (T).
This description logic has recently drawn considerable attention since, on the one
hand, important inference problems such as the subsumption problem are polyno-
mial in EL [1, 2]. On the other hand, though quite inexpressive, L can be used
to define biomedical ontologies. For example, both the large medical ontology
SNOMED CT and the Gene Ontology' can be expressed in £L.

Unification in description logics has been proposed in [5] as a novel inference
service that can, for example, be used to detect redundancies in ontologies. There,
it was shown that, for the DL FL,, which differs from £L by offering value
restrictions (Vr.C') in place of existential restrictions, deciding unifiability is an
ExpTime-complete problem. In [4], we were able to show that unification in EL£
is of considerably lower complexity: the decision problem is “only” NP-complete.
However, the unification algorithm introduced in [4] to establish the NP upper
bound is a brutal “guess and then test” NP-algorithm, and thus it is unlikely that
a direct implementation of it will perform well in practice.

In this report, we present a new decision procedure for £L-unification that
takes a given £L-unification problem I' and translates it into a set of proposi-
tional clauses C'(I') such that (i) the size of C(I') is polynomial in the size of
[, and (ii) I" is unifiable iff C(I") is satisfiable. This allows us to use a highly-
optimized SAT-solver such as MiniSat? to decide solvability of &£L-unification
problems. Our SAT-translation is inspired by Kapur and Narendran’s translation
of ACIU-unification problems into satisfiability in propositional Horn logic (Horn-
SAT) [8]. The connection between £L-unification and ACIU-unification is due to
the fact that (modulo equivalence) the conjunction constructor in ££ is associa-
tive, commutative, and idempotent, and has the top concept T as a unit. However,
to treat also existential restrictions correctly, we need to introduce clauses that
are not Horn.

It should be noted that the proof of correctness of our translation into SAT
does not depend on the results in [4]. Consequently, this translation provides us
with a new proof of the fact that £L-unification is in NP. This proof is much
simpler than the original proof of this fact in [4].

2 Unification in £L£

Starting with a set N, of concept names and a set N, of role names, £L-concept
terms are built using the following concept constructors: the nullary constructor
top-concept (T), the binary constructor conjunction (C'T1 D), and for every role

!see http://www.ihtsdo.org/snomed-ct/ and http://www.geneontology.org/
http://minisat.se/

Name ‘ Syntax ‘ Semantics

concept name A AT C D;

role name r rT CDr xDg

top-concept T T =D

conjunction cCnb (CnD =c*nD*
existential restriction | Ir.C' | (Ir.C) ={z | Jy: (z,y) € rf ANy € CF}
subsumption ccbhD ctcD?

equivalence CcC=D Cct =D?

Table 1: Syntax and semantics of ££

name r € Ny, the unary constructor ezistential restriction (Ir.C’). The se-
mantics of £L is defined in the usual way, using the notion of an interpretation
T = (Dz,%), which consists of a nonempty domain D7 and an interpretation
function - that assigns binary relations on D7 to role names and subsets of Dy
to concept terms, as shown in the semantics column of Table 1.

The concept term C' is subsumed by the concept term D (written C' C D) iff
CT C D7 holds for all interpretations Z. We say that C is equivalent to D (written
C=D)iff CC Dand DCC, i.e., iff CT = D? holds for all interpretations Z.

The following lemma provides us with a useful characterization of subsumption

in EL [4].
Lemma 2.1 Let C, D be £L-concept terms such that

C:Al|_|...|_|Ak|_|5|7“1.01|_|...|_|§|7“m.0m,
D=pBn...M1B,M3s1.DyM...M3s,.D,y,

where Ay, ..., A, B1,..., By are concept names. Then C T D iff
® {Bl,...,Bg} g {Al,...,Ak} and

o for every j,1 < j < n, there exists an i,1 < i < m, such that r; = s; and
C; C D;.

When defining unification in ££, we assume that the set of concepts names
is partitioned into a set N, of concept variables (which may be replaced by sub-
stitutions) and a set N, of concept constants (which must not be replaced by
substitutions). A substitution o is a mapping from N, into the set of all £L-
concept terms. This mapping is extended to concept terms in the usual way, i.e.,
by replacing all occurrences of variables in the term by their o-images.

A substitution o induces the following binary relation >, on variables:

X >, Y iff there are n > 1 role names rq,...,7r, € N,y such that
o(X)Co(Iry.---3r,.Y).
The following lemma is an easy consequence of Lemma 2.1.
Lemma 2.2 The relation >, is a strict partial order.
Unification tries to make concept terms equivalent by applying a substitution.

Definition 2.3 An &L-unification problem is of the form I' = {Cy, =7 Dy, ...,
C, =" D,}, where C1, Dy, ...Cy, D, are EL-concept terms. The substitution o is
a unifier (or solution) of ' iff 0(C;) = o(D;) fori=1,...,n. In this case, T" is
called solvable or unifiable.

Note that Lemma 2.2 implies that the variable X cannot unify with the
concept term Jry.---3r,.X (n > 1), i.e., the £L-unification problem {X =’
Jry. -+ 3Ir,. X} does not have a solution. This means that an £L-unification al-
gorithm has to realize a kind of occurs check.

We will assume without loss of generality that our £L-unification problems
are flattened in the sense that they do not contain nested existential restrictions.
To define this notion in more detail, we need to introduce the notion of an atom.

An EL-concept term is called an atom iff it is a concept name (i.e., con-
cept constant or concept variable) or an existential restriction Jr.D. Obviously,
any £L-concept term is (equivalent to) a conjunction of atoms, where the empty
conjunction is T. The set At(C) of atoms of an EL-concept term C' is de-
fined inductively: if C = T, then At(C) := 0; if C is a concept name, then
At(C) = {C}; if C = Ir.D then At(C) := {C} U AL(D); if C = C, M Cy, then
At(C) = At(Cl) U At(CQ)

The following lemma is an easy consequence of Lemma 2.1.

Lemma 2.4 Let C, D be EL-concept terms such that C = Cy M ... N0 C,, and
D = Dyn...11D,, where Dy,...,D, are atoms. Then C T D iff for every
J, 1 < j <mn, there exists an 1,1 < i < m, such that C; C D;.

In our reduction, we will restrict the attention (without loss of generality) to
unification problems that are built from atoms without nested existential restric-
tions. To be more precise, concept names and existential restrictions Jr.D where
D is a concept name are called flat atoms. An EL-concept term is flat iff it is a
conjunction of flat atoms (where the empty conjunction is T). The £ L-unification
problem I is flat iff it consists of equations between flat £L-concept terms.

By introducing new concept variables and eliminating T, any &L-unification
problem I' can be transformed in polynomial time into a flat £ L-unification prob-
lem I such that I' is solvable iff I is solvable. Thus, we may assume without
loss of generality that our input £L-unification problems are flat. Given a flat
& L-unification problem I' = {C; =* Dy,...,C, =" D,}, we call the atoms of
Ci,Dq,...,C,, D, the atoms of T.

3 The SAT encoding

In the following, let I" be a flat £L-unification problem. We show how to trans-
late I' into a set of propositional clauses C(I') such that (i) the size of C(I") is
polynomial in the size of I, and (ii) I' is unifiable iff C'(T") is satisfiable. The main
idea underlying this translation is that we want to guess, for every pair of atoms
A, B of the flat unification problem I', whether or not A is subsumed by B after
the application of the unifier o to be computed. In addition, we need to guess a
strict partial order > on the variables of I', which corresponds to (a subset of) the
strict partial order >, induced by o.
Thus, we use the following propositional variables:

e [AIZB] for every pair A, B of atoms of T’;
e [X>Y] for every pair of variables occurring in I'.

Note that we use non-subsumption rather than subsumption for the propositional
variables of the first kind since this will allow us to translate the equations of the
unification problem into Horn clauses (a la Kapur and Narendran [8]). However,
we will have to “pay” for this since expressing transitivity of subsumption then
requires the use of non-Horn clauses.

Given a flat £L-unification problem I, the set C(I") consists of the following
clauses:

(1) Translation of the equations of I'. For every equation A; M --- M A, =’
Bym---M B, of I', we create the following Horn clauses, which express that
any atom that occurs as a top-level conjunct on one side of an equivalence must
subsume a top-level conjunct on the other side:

1. For every non-variable atom C' € {A4;,..., A, }:
[BiZC) A ... N [BEC] —

2. For every non-variable atom C' € {By,..., B,}:
[AJZCI A .. AN [ALZC] —

3. For every non-variable atom C of I" s.t. C & {Ay,..., A, B1,..., By}
[ATZCI A . N[ARZC] — [BjEC) forj=1,....n
[BiZC) A ... N [BEC] — [A,ZC) fori=1,...,m

(2) Translation of the relevant properties of subsumption in EL.

1. For every pair of distinct concept constants A, B occurring in I', we say that
A cannot be subsumed by B:

— [ALB]

3see Lemma 2.4.

2. For every pair of distinct role names r, s and atoms Jr.A, 3s.B of I', we say
that 3r.A cannot be subsumed by ds.B:
— [3r.Al/3s.B|

3. For every pair 3r.A,3r.B of atoms of I', we say that 3r.A can only be
subsumed by dr.B if A is already subsumed by B:
[AZB] — [3r.AZ3r.B]

4. For every concept constant A and every atom 3r.B of I', we say that A and
dr.B are not in a subsumption relationship

— [AZ3r.B] and — [Ir.BILA]

5. Transitivity of subsumption is expressed using the non-Horn clauses:

[C1ILC3) — [CLILCy] V [CLZCs] where O, Co, Cy are atoms of T

Note that there are further properties that hold for subsumption in £ (e.g.,
the fact that A C B implies 3r.A C 3r.B), but that are not needed to ensure
soundness of our translation.

(3) Translation of the relevant properties of >.

1. Transitivity and irreflexivity of > can be expressed using the Horn clauses:
[X>X] — and [X>Y|A[Y>Z] — [X>Z],
where XY, Z are concept variables occurring in I'.

2. The connection between this order and the order >, is expressed using the
non-Horn clauses:
— [X>Y] V[XEZIrY],

where X, Y are concept variables occurring in I" and Jr.Y is an atom of I'.

Since the number of atoms of I' is linear in the size of T', it is easy to see
that C(I") is of size polynomial in the size of I', and that it can be computed
in polynomial time. Note, however, that without additional optimizations, the
polynomial can be quite big. If the size of I' is n, then the number of atoms of I"
is in O(n). The number of possible propositional variables is thus in O(n?). The
size of C(I') is dominated by the number of clauses expressing the transitivity of
subsumption and the transitivity of the order on variables. Thus, the size of C(I")

is in O((n?)3) = O(n").

Example 3.1 The following € L-unification problem does not have a solution:
r={xXnarx="Xx}.

The set of clauses C(I") has the following elements:

6

(1) The only clause created in (1) is:

(XZIr X] — .

(2) Among the clauses introduced in (2) is the following:
5. [Fr XZIr. X]| — [Fr XZX]V [XZIr.X]
(8) The following clauses are created in (3):

1. [X>X] —
2. - [X>X]V[XZ3r.X].

It is easy to see that this set of clauses is unsatisfiable. In fact, [XZ3r.X] needs
to be assigned the truth value 0 because of (1). Consequently, (3)2. implies that
[X'>X] needs to be assigned the truth value 1, which then falsifies (3)1.

The next example considers an equation where the right-hand side is the top
concept, which is the empty conjunction of flat atoms.

Example 3.2 The following £L-unification problem does not have a solution:
N={AnB="T}L

In (1)1. we need to construct clauses for the atoms A and B on the left-hand side.
Since the right-hand side is the empty conjunction (i.e., n = 0), the left-hand
sides of the implications generated this way is empty, i.e., both atoms yield the
implication — , in which both the left-hand side and the right-hand side is empty.
An empty left-hand side is read as true (1), whereas an empty right-hand side is
read as false (0). Thus, this implication is unsatisfiable.

Theorem 3.3 (Soundness and completeness) Let I' be a flat EL-unification
problem. Then, T" is solvable iff C'(T') is satisfiable.

We prove this theorem in the next two subsections, one devoted to the proof
of soundness and the other to the proof of completeness. After the formal proof,
we will also explain the reduction on a more intuitive level.

Since our translation into SAT is polynomial and SAT is in NP, the above
theorem shows that £L-unification is in NP. NP-hardness follows from the fact
that £L-matching is known to be NP-hard [9].

Corollary 3.4 £L-unification is NP-complete.

Soundness

To prove soundness, we assume that C'(I') is satisfiable. We must show that this
implies that I' is solvable. In order to define a unifier of I, we take a propositional
valuation 7 that satisfies C(I"), and use 7 to define an assignment of sets Sx of
non-variable atoms of I' to the variables X of I

Sx :={C'| C non-variable atom of I" s.t. 7([XZC]) = 0}.

Given this assignment of sets of non-variable atoms to the variables in I', we say
that the variable X directly depends on the variable Y if Y occurs in an atom of
Sx. Let depends on be the transitive closure of directly depends on.

Lemma 3.5 Let X,Y be varitables occurring in I'.

1. If X depends on Y, then 7([X>Y]) = 1.

2. The depends on relation is irreflexive, i.e., X cannot depend on itself.

Proof. (1) If X directly depends on the variable Y, then Y appears in a non-
variable atom of Sx. This atom must be of the form dr.Y. By the construction
of Sx, Ir.Y € Sx can only be the case if 7([XZ3r.Y]) = 0. Since C(I") contains
the clause — [X>Y] V [X[Z3r.Y], this implies 7([X>Y]) = 1.

Since the transitivity clauses introduced in (3)1. are satisfied by 7, we also
have that 7([X>Y]) = 1 whenever X depends on the variable Y.

(2) If X depends on itself, then 7(|X>X]) = 1 by the first part of this lemma.
This is, however, impossible since 7 satisfies the clause [X>X]| — . J

The second part of this lemma shows that the depends on relation, which is
transitive by definition, defines a strict partial order on variables:

X >;Y iff X depends on Y.

We can now use the sets Sx to define a substitution o along the strict partial
order >g4:

e If X is a minimal variable w.r.t. >, then o(X) is the conjunction of the
elements of Sx, where the empty conjunction is T.

e Assume that o(Y) is already defined for all variables Y such that X >; Y,
and let Sx ={D,...,D,}. We define o(X) :=o(Dy)M...Mo(D,), where
again the empty conjunction (in case n =0) is T.

Note that the substitution o defined this way is actually a ground substitution, i.e.,
for all variables X occurring in I' we have that ¢(X) does not contain variables.
In the following, we will say that this substitution is induced by the assignment
I.

Before we can show that o is a unifier of I', we must first prove the following
lemma.

Lemma 3.6 Let Cy,Cy be atoms of . If 7([C1ILCy]) = 0, then o(Cy) C o(Cy).

Proof. Assume that 7([C1ZC5]) = 0.

First, consider the case where (; is a variable. By the construction of o, our
assumption 7([C1£C5]) = 0 implies that o(Cy) is a conjunct of o(Cy), and hence
a(Cy) C o(Cy).

Second, consider the case where o(Cy) = T. Then o(C}) C o(Cy) is obviously
satisfied.

Hence, it remains to prove the lemma for the cases when C' is not a variable
(i.e., it is a concept constant or an existential restriction) and ¢(Cy) is not T. We
use induction on the role depth of ¢(C}) Mo (Cy), where the role depth of an £L-
concept term is the maximal nesting of existential restrictions in this term. To be
more precise, if Dy, Dy, C1, Cy are atoms of ', then we define (Dy, D) = (C1, Cs)
iff the role depth of o(D;) Mo (D7) is greater than the role depth of o(C) Mo (Cy).

We prove the lemma by induction on . The base case for this induction is
the case where o(C}) and o(C3) have role depth 0, i.e., both are conjunctions of
concept constants. Since C; is not a variable, this implies that C; is a concept
constant. The atom C5 is either a concept constant or a concept variable. We
consider these two cases:

e Let (5 be a concept constant (and thus Cy = o(C3)). Since 7([C1ZCs]) =0
and the clauses introduced in (2)1. of the translation to SAT are satisfied
by 7, we have Cy = C1, and thus o(C4) C o(C5).

o Assume that Cy is a variable. Since the role depth of 0(Cs) is 0 and o(Cy) is
not T, 0(Cs) is a non-empty conjunction of concept constants, i.e., 0(Cs) =
ByM---M1 B, for n > 1 constants By, ..., B, such that 7([C2l£B;]) = 0 for
i =4{1,...,n}. Then, since 7 satisfies the transitivity clauses introduced in
(2)5. of the translation to SAT, 7([C1ZB;]) = 0 for i = {1,...,n}. Since 7
satisfies the clauses introduced in (2)1. of the translation to SAT, B; must
be identical to C} for i = {1,...,n}. Hence, 0(Cy) = By M---MB,=C, =
o(C1), which implies o(C}) C o(Cy).

Now we assume by induction that the statement of the lemma holds for all pairs
of atoms Dy, Dy such that (Cy,Cy) = (Dq, Ds). Notice that, if C; is a constant,
then o(Cy) cannot contain an atom of the form 3r.D as a top-level conjunct.
In fact, this could only be the case if either (5 is an existential restriction, or
(U5 is a variable and Sg, contains an existential restriction. In the first case,
7([C1ZC5)) = 0 would then imply that one of the clauses introduced in (2)4. is
not satisfied by 7. In the second case, 7 would either need to violate one of the
transitivity clauses introduced in (2)5. or one of the clauses introduced in (2)4.
Thus, o(Cy) cannot contain an atom of the form 3r.D as a top-level conjunct.
This implies that o(Cy) Mo (Cy) has role depth 0, which actually means that we
are in the base case. Therefore, we can assume that ' is not a constant.

9

Since (] is not a variable, we have only one case to consider: (' is of the
form C; = 3r.C. Then, because of the clauses in (2)4. and the transitivity clauses
in (2)5., 0(Cy) cannot contain a constant as a conjunct. If Cy is an existential
restriction Cy = 3s.D, then 7([C1ZCy]) = 0, together with the clauses in (2)2.
yields r = s. Consequently, 7([C1Z£C5]) = 0, together with the clauses in (2)3.,
yields 7([CZD] = 0. By induction, this implies o(C) C o(D), and thus o(C}) =
Ir.o(C) C Ir.o(D) = a(Cy).

If Cy is a variable, then o(C5) must be a conjunction of atoms of the form
ry.0(Dy),...,3r,.0(D,,), where 7([ColZ3r;.D;]) = 0 for ¢ = 1,...,n. The tran-

sitivity clauses in (2)5. yield 7([3Ir.CZ3Ir.Dy)) = ... = 7([Fr.C¥ZIr,.D,]) = 0,
and the clauses in (2)2. yield r; = --- = r, = r. Using the clauses in (2)3.,
we thus obtain 7([CZD,|) = ... = 7([C¥D,]) = 0. By induction, this implies
o(C) C a(Dy),...,0(C) C o(D,), which in turn yields o(Cy) = Jr.oc(C) C
Iri.0(Dy) M-+~ M 3r,.o(D,) = o(Cy). a

Now we can easily prove the soundness of the translation.

Proposition 3.7 (Soundness) The substitution o induced by a satisfying as-
signment of C(I') is a unifier of I'.

Proof. We must show, for each equation A; M...MA,, =" B;MN...MB, inT,
that o(A) M ... MNo(An) = o(By) M...Mo(B,). Both sides of this equivalence
are conjunctions of ground atoms, i.e., o(A;)M...Mo(A;,) = Ey M ..M E; and
o(By)M...Mo(B,) =FMN...MF.

To prove that the equivalence holds, it is enough to show that, for each Fj,
there is an A; such that o(A4;) C F;, and for each Ej, there is a B; such that
o(B;) C E;. Here we show only the first part since the other one can be shown
in the same way.

First, assume that F; = o(B,) for a non-variable atom B, € {By,...,B,}.
Since the clauses introduced in (1)1. of the translation are satisfied by 7, there is
an A; such that 7([A;iZB,]) = 0. By Lemma 3.6, this implies 0(4;) C o(B,) = F;.

If there is no non-variable atom B, € {Bj,...,B,} such that o(B,) = F,
then there is a variable B, such that the atom Fj is a conjunct of o(B,). By the
construction of o, we know that there is a non-variable atom C of I' such that
F; = o(C) and 7([B,ZC]) = 0. By our assumption, C' is not in {By,..., B,}.
Since the clauses created in (1)3. are satisfied by 7, there is an A; such that
7([A;£C]) = 0. By Lemma 3.6, this implies 0(A;) C o(C) = Fi. -

Completeness

To show completeness, assume that I' is solvable, and let v be a unifier I'. We
must show that there is an assignment 7 satisfying all the clauses in C(I').
We define the propositional assignment 7 as follows:

10

e for all non-variable atoms C, D of T, we define 7([CZD]) := 1 if v(C) £

v(D); and 7([CED]) := 0 if v(C) C (D).

e for all variables X,Y occurring in I', we define 7([X>Y]) := 1 if v(X) >,

v(Y); and 7([X>Y]) := 0 otherwise.

In the following, we call 7 the assignment induced by o.
We show that 7 satisfies all the clauses that are created by our translation:

(1) In (1) of the translation we create three types of Horn clauses for each

equation A; M---M A, =" B MN---MNB,.

1. If C € {Ay,..., A} is a non-variable atom, then C'(I") contains the

clause [BiIZC| A -+ N [BLILC] —

The fact that C' is a non-variable atom (i.e., a concept constant or an
existential restriction) implies that «(C') is also a concept constant or an
existential restriction. Since 7 is a unifier of the equation, Lemma 2.4
implies there must be an atom B; such that v(B;) C ~(C). Therefore
7([B;iZC]) = 0, and the clause is satisfied by 7.

. The clauses generated in (1)2. of the translation can be treated simi-

larly.

. If C' is a non-variable atom of I' that does not belong to {41, ..., A,

By, ..., B,}, then C(I") contains the clause [A;ZC] A -+ A [A,EZC] —
[BLZC] for k = 1,...,n. (The symmetric clauses also introduced in
(1)3. can be treated similarly.)

To show that this clause is satisfied by 7, assume that 7([BxlZC]) = 0,
i.e., 7(Bk) C v(C). We must show that this implies 7([A;ZC]) = 0 for
some j.

Now, y(A)M-+-My(Ap) = v(Bi)N---My(By) E v(By) & v(C) implies
that there is an A; such that v(4;) C v(C), by Lemma 2.4. Thus, or
definition of 7 ylelds T([A;2C)) = 0.

(2) Now we look at the clauses introduced in (2). Since two constants cannot

be in a subsumption relationship, the clauses in (2)1. are satisfied by 7.
Similarly, the clauses in (2)2. are satisfied by 7 since no existential restriction
can subsume another one built using a different role name. The clauses in
(2)3. are satisfied because v(3r.A) C ~(Ir.B) implies v(A) T ~(B), by
Lemma 2.1. In a similar way we can show that all clauses in (2) are satisfied
by our assignment 7. Indeed, these clauses just describe valid properties of
the subsumption relation in £L.

The clauses introduced in (3) all describe valid properties of the strict partial
order >,; hence they are satisfied by 7.

11

Proposition 3.8 (Completeness) The assignment T induced by a unifier of T
satisfies C(T).

Some comments regarding the reduction

We have shown above that our SAT reduction is sound and complete in the sense
that the (flat) £L-unification problem I' is solvable iff its translation C'(I') into
a SAT problem is satisfiable. This proof is, of course, a formal justification of
our definition of this translation. Here, we want to explain some aspects of this
translation on a more intuitive level.

Soundness

Basically, the clauses generated in (1) enforce that “enough” subsumption rela-
tionships hold to have a unifier, i.e., solve each equation. What “enough” means
is based on Lemma 2.4: once we have applied the unifier, every atom on one
side of the (instantiated) equation must subsume an (instantiated) conjunct on
the other side. Such an atom can either be an instance of a non-variable atom
(i.e., an existential restriction or a concept constant) occurring on this side of the
equation, or it is introduced by the instantiation of a variable. The first case is
dealt with by the clauses in (1)1. and (1)2. whereas the second case is dealt with
by (1)3. An assignment to the propositional variables of the form [AZ B] guesses
such subsumptions, and the clauses generated in (1) ensure that enough of them
are guessed for solving all equations. However, it is not sufficient to guess enough
subsumptions. We also must make sure that these subsumptions can really be
made to hold by applying an appropriate substitution. This is the role of the
clauses introduced in (2). Basically, they say that two existential restrictions can
only subsume each other if they are built using the same role name, and their
direct subterms subsume each other. Two concept constants subsume each other
iff they are equal, and there cannot be a subsumption relation between a concept
constant and an existential restriction. To ensure that all such consequences of
the guessed subsumptions are really taken into account, transitivity of subsump-
tion is needed. Otherwise, we would, for example, not detect the conflict caused
by guessing that [AZX] and [XZB] should be evaluated to 0, i.e., that (for the
unifier o to be constructed) we have o(A) C o(X) C o(B) for distinct concept
constants A, B. These kinds of conflicts correspond to what is called a clash failure
in syntactic unification [7].

Example 3.9 To see the clauses generated in (1) and (2) of the translation at
work, let us consider a simple example, where we assume that A, B are distinct
concept constants and X,Y are distinct concept variables. Consider the equation

Ir.X =" Y, (1)

12

which in (1)1. and (1)2. yields the clauses
[FrYZIr.X] — and [FrXZIrY]— (2)

These clauses state that, for any unifier o of the equation (1) we must have
o(3rY) C o(Ir.X) and o(Ir.X) C o(3r.Y). However, stating just these two
clauses is not sufficient: we must also ensure that the assignments for the vari-
ables X andY really realize these subsumptions. To see this, assume that we have
the additional equation

XnNY ="AnNB, (3)

which yields the clauses
[(XZAIANYEA] = and [XEB]A[YEB] — (4)
One possible way of satisfying these two clauses is to set
T([XZA) =0=7(YZB]) and 7([XZB]) =1=7([YZA)). (5)

The substitution o induced by this assignment replaces X by A and Y by B, and
thus clearly does not satisfy the subsumptions o(3Ir.Y) C o(Ir.X) and o(Ir.X) C
o(3r.Y). Choosing the incorrect assignment (5) is prevented by the clauses intro-
duced in (2) of the translation. In fact, in (2)4. we introduce the clauses

(XZY] — [3r X¢Z3rY] and [YZX]|— [3r.YZ3Ir.X] (6)
Together with the clauses (2), these clauses can be used to deduce the clauses
[(XZY] — and [YZX]— (7)
Together with the transitivity clauses introduced in (2)5.:
[(XZB] — [XZY]V[YEB] and [YZA] — [YZX]V [XIZA] (8)
the clauses (7) prevent the assignment (5).

This example illustrates, among other things, why the clauses introduced in
(2)3. of the translation are needed. In fact, without the clauses (6), the incorrect
assignment (5) could not have been prevented.

One may wonder why we only construct the implications in (2)3., but not the
implications in the other direction:

[Fr.AlZ3r.B] — [AILB]
The reason is that these implications are not needed to ensure soundness.

13

Example 3.10 Consider the unification problem
(X="A Y="3rX Z="3rA,
which produces the clauses
(XZA] — | [YZIrX]— | [ZZ3Ir.A] —

The clause [XIZA] — states that, in any unifier o of the first equation, we must
have o(X) T o(A). Though this does imply that o(3Ir.X) C o(3Ir.A), there is
no need to state this with the clause [Ir.XZ3r.A] — since this subsumption is
not needed to solve the equation. Thus, it actually does not hurt if an assign-
ment evaluates [Fr.XL3r.A] with 1. In fact, this decision does not influence the
substitution for X that is computed from the assignment.

Expressed on a more technical level, the crucial tool for proving soundness is
Lemma 3.6, which says that 7([C1ZC5]) = 0 implies o(C}) C o(Cy) for the sub-
stitution ¢ induced by 7. This lemma does not state, and our proof of soundness
does not need, the implication in the other direction. As illustrated in the above
example, it may well be the case that o(Cy) C o(Csy) although the satisfying
assignment 7 evaluates [C1lZC5] to 1. The proof of Lemma 3.6 is by induction
on the role depth, and thus reduces the problem of showing a subsumption rela-
tionship for terms of a higher role depth to the problem of showing subsumption
relationships for terms of a lower role depth. This is exactly what the clauses in
(2)3. allow us to do. The implications in the other direction are not required for
this. They would be needed for proving the other direction of the lemma, but this
is not necessary for proving soundness.

Until now, we have not mentioned the clauses generated in (3). Intuitively,
they are there to detect what are called occurs check failures in the terminology
of syntactic unification [7]. To be more precise, the variables of the form [X>Y]
together with the clauses generated in (3)1. are used to guess a strict partial order
on the variables occurring in the unification problem. The clauses generated in
(3)2. are used to enforce that only variables Y smaller than X can occur in the
set Sx defined by a satisfying assignment. This makes it possible to use the sets
Sx to define a substitution ¢ by induction on the strict partial order. Thus, this
order realizes what is called a constant restriction in the literature on combining
unification algorithms [6]. We have already seen the clauses generated in (3) at
work in Example 3.1.

Connection to ACIU-unification d la Kapur and Narendran

Our reduction to SAT is an extension of Kapur and Narendran’s reduction to
HornSAT of unification modulo ACIU. In fact, since M is associative, commuta-
tive, idempotent, and has T as a unit, £L-unification problems not containing

14

existential restrictions are exactly ACIU-unification problems with constants. In
this case, our reduction is basically identical to the one introduced by Kapur and
Narendran in [8]. Kapur and Narendran use propositional variables Pagx in place
of our variables [XIZA], but the way a truth assignment 7 for these variables is
used to construct a substitution ¢ is the same as in our proof of soundness: if
T(Pagx) = 0, then the constant A is a conjunct in o(X).

Existential restrictions are now treated in a way similar to the treatment of
free unary function symbols in the literature on combining unification algorithms
[6]: the “clash rules” in (2)1., (2)2., and (2)4. and the decomposition rules in
(2)3. are similar to the Martelli-Montanari-style rules for syntactic unification [7],
existential restrictions are treated like constants by the ACIU-part of the unifica-
tion algorithm since they are “alien subterms,” and the clauses in (3) enforce a
constant restriction, as already mentioned before.

However, existential restrictions are not really free function symbols since they
are monotonic w.r.t. subsumption. This is taken into account in our transla-
tion by guessing subsumption relationships not only between variables and con-
stants/existential restrictions, but also between existential restriction, and by in-
troducing clauses that state relevant properties of subsumption (like the fact that
this relation is transitive).

Non-Horn clauses

In our translation, we follow the approach by Kapur and Narendran, and use
propositional variables that express non-subsumption rather than subsumption.
This ensures that the clauses introduced in (1) are Horn, but it causes the clauses
introduced in (2)5. and (3)2. to become non-Horn.

Since HornSAT can be solved in polynomial time and &£ L-unification is NP-
hard, it is clear that there cannot by a polynomial time translation of £ L-unification
into HornSAT (unless P=NP). Consequently, some non-Horn clauses must show
up in such a translation.

Instead of using propositional variables [C'lZD] that express non-subsumption,
we could also use propositional variables [CC D] expressing subsumption. Then,
the clauses in (2)5. would become Horn:

[CL1ECo] A [CoECs] — [C1ECs]
and the same would be true for the clauses in (3)2.:
[XCIrY] — [X>Y]
but the clauses in (1) would become non-Horn:

1. For every non-variable atom C' € {A,..., A, }:
— [BICC] V...V [B,CC]

15

2. For every non-variable atom C' € {By,..., B,}:
— [A1CC) V...V [A,LCC]

3. For every non-variable atom C of I" s.t. C' &€ {Ay,..., A, B1,..., By}
[A,CC) — [BICC| V...V [B,CC] for j=1,....,m
[B,CC| — [A1CC] V...V [ACC] fori=1,...,m

It is a priori not clear which of these approaches is better in practice; it may
well be the case that none is uniformly better than the other, i.e., it may depend
on the specific unification problem which one behaves better.

4 Connection to the original “in NP” proof for
& L-unification

It should be noted that in the present paper we give a proof of the fact that £L£-
unification is in NP that is independent of the proof in [4]. The only result from
[4] that we have used is the characterization of subsumption (Lemma 2.1), which
is an easy consequence of known results for £L£ [9].

In [4], the “in NP” result is basically shown as follows:

1. define a well-founded partial order > on substitutions and use this to show
than any solvable £ L-unification problem has a ground unifier that is mini-
mal w.r.t. this order;*

2. show that minimal ground unifiers are local in the sense that they are built
from atoms of I';

3. use the locality of minimal ground unifiers to devise a “guess and then test”
NP-algorithm for generating a minimal ground unifier.

The proof of 2., which shows that a non-local unifier cannot be minimal, is quite
involved. Compared to that proof, the proof of soundness and completeness given
in the present paper is much simpler.

In order to give a closer comparison between the approach used in [4] and the
one employed in the present paper, let us recall some of the definitions and results
from [4] in more detail:

Definition 4.1 Let I' be a flat £L-unification problem, and v a ground unifier of
['. Then ~ is called local if, for each variable X in I, there are n > 0 non-variable
atoms Dy, ..., D, of ' such that v(X) = v(Dy) M --- N ~(D,), where the empty
conjunction is T.

4Recall that a unifier v of T is ground if, for all variables X occurring in I, the concept term
v(X) does not contain variables.

16

The “guess and then test” algorithm in [4] crucially depends on the fact that
any solvable £L-unification problem has a local unifier. This result can be ob-
tained as an easy consequence of our proof of soundness and completeness.

Corollary 4.2 Let ' be a flat €L-unification problem that is solvable. Then T’
has a local unifier.

Proof. Since I' is solvable, our completeness result implies that C/(I") is satisfiable.
Let 7 be an assignment that satisfies C'(I'), and let o be the unifier of I" induced
by 7 in our proof of soundness. Locality of ¢ is an immediate consequence of the
definition of o. |

This shows that one does not really need the notion of minimality, and the
quite involved proof that minimal unifiers are local given in [4], to justify the
completeness of the “guess and then test” algorithm from [4]. However, in [4]
minimal unifiers are also used to show a stronger completeness result for the “guess
and then test” algorithm: it is shown that (up to equivalence) every minimal
ground unifier is computed by the algorithm. In the following, we show that this
is also the case for the unification algorithm obtained through our reduction.

Definition 4.3 Let o and vy be substitutions, and I' an EL-unification problem.
We define

e v = o if, for each variable X in ', we have v(X) C o(X);
ey=cify>cando =7, andy = o if y>= o and 0 £ ;
e v is a minimal unifier of I if there is no unifier o of I' such that v > o.

As a corollary to our soundness and completeness proof, we can show that any
minimal ground unifier o of I' is computed by our reduction, in the sense that it
is induced by a satisfying assignment of C(T").

Corollary 4.4 Let I" be a flat £L-unification problem. If v is a minimal ground
unifier of I', then there is a unifier o, induced by a satisfying assignment T of
C(T), such that o = .

Proof. Let v be a minimal ground unifier of I'; and 7 the satisfying assignment of
C(T") induced by . We show that the unifier o of I' induced by 7 satisfies 7 = o.
Minimality of « then implies v = o.

We must show that, for each variable X occurring in I', we have v(X) C o(X).
We prove this by well-founded induction on the strict partial order > defined as®

X>Y iff 7([X>Y]) =1

>The clauses in C(I') make sure that this is indeed a strict partial order. It is trivially
well-founded since I' contains only finitely many variables.

17

Let X be a minimal variable with respect to this order. Since 7 satisfies the
clauses in (3)2., the set Sx induced by 7 (see the proof of soundness) contains
only ground atoms. Let Sx = {C4,...,C,} for n > 0 ground atoms. If n = 0,
then o(X) = T, and thus v(X) C o(X) is trivially satisfied. Otherwise, we have
o(X)=0(Cy)N...No(C,) =C1M...MC,, and we know, for each i € {1,...,n},
that 7([XZC;]) = 0 by the definition of Sx. Since 7 is the assignment induced by
the unifier v, this implies that v(X) C v(C;) = C;. Consequently, we have shown
that y(X) T CyMN...NC, =o(X).

Now we assume, by induction, that we have y(Y) C o(Y) for all variables
Y such that X > Y. Let Sx = {C4,...,C,} for n > 0 non-variable atoms of
I'. If n =0, then o(X) = T, and thus v(X) C o(X) is again trivially satisfied.
Otherwise, we have o(X) = o(Cy) M --- M o(Cy,), and we know, for each i €
{1,...,n}, that 7([XZC;]) = 0 by the definition of Sx. Since 7 is the assignment
induced by the unifier v, this implies that v(X) C v(C;). for each i € {1,...,n}.
Since all variables occurring in C, . . ., C, are smaller than X and since the concept
constructors of £L£ are monotonic w.r.t. subsumption, we have by induction that
v(C;) E a(C;) for each ¢ € {1,...,n}. Consequently, we have v(X) C ~(Cy) I
. My(C) Ea(C) M- Ma(Cy) = o(X). a

5 Conclusion

The results presented in this paper are of interest both from a theoretical and a
practical point of view. From the theoretical point of view, this paper gives a new
proof of the fact that £L-unification is in NP, which is considerably simpler than
the original proof given in [4]. We have also shown that the stronger completeness
result for the “guess and then test” NP algorithm of [4] (all minimal ground unifiers
are computed) holds as well for the new algorithm presented in this paper.

From the practical point of view, the translation into propositional satisfia-
bility allows us to employ highly optimized state of the art SAT solvers when
implementing an £L-unification algorithm. We have actually implemented the
SAT translation described in this paper in Java, and have used MiniSat for the
satisfiability check. Until now, we have tested the algorithm only on relatively
small unification problems, which nevertheless produced thousands of clauses with
hundreds of propositional variables. However, MiniSat had no problem testing sat-
isfiability within a few milliseconds in each case, which we find quite promising.

References

[1] Franz Baader. Terminological cycles in a description logic with existential
restrictions. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence

18

(IJCAI 2003), pages 325-330, 2003. Morgan Kaufmann, Los Altos.

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the £L£ envelope.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 364-369, Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

Franz Baader and Barbara Morawska. Unification in the description logic £L.
In Proceedings of the 20th International Conference on Rewriting Techniques
and Applications (RTA 2009), volume 5595 of Lecture Notes in Computer
Science, pages 350364. Springer-Verlag, 20009.

Franz Baader and Paliath Narendran. Unification of concepts terms in de-
scription logics. J. of Symbolic Computation, 31(3):277-305, 2001.

Franz Baader and Klaus Schulz. Unification in the union of disjoint equa-
tional theories: Combining decision procedures. J. of Symbolic Computation,
21(2):211-243, 1996.

Franz Baader and Wayne Snyder. Unification theory. In Handbook of Auto-
mated Reasoning, volume 1. Elsevier Science Publishers, 2001.

Deepak Kapur and Paliath Narendran. Complexity of unification problems
with associative-commutative operators. J. Automated Reasoning, 9:261-288,
1992.

Ralf Kiisters. Non-standard Inferences in Description Logics, volume 2100 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

19

