
Atomic Cut Elimination for Classical Logic

Technische Universität Dresden – Technical Report WV-2002-11

Kai Brünnler
kai.bruennler@inf.tu-dresden.de

Technische Universität Dresden, Fakultät Informatik, D - 01062 Dresden, Germany

Abstract. System SKS is a set of rules for classical propositional logic
presented in the calculus of structures. Like sequent systems and unlike
natural deduction systems, it has an explicit cut rule, which is admissible.
In contrast to sequent systems, the cut rule can easily be restricted to
atoms. This allows for a very simple cut elimination procedure based
on plugging in parts of a proof, like normalisation in natural deduction
and unlike cut elimination in the sequent calculus. It should thus be a
good common starting point for investigations into both proof search as
computation and proof normalisation as computation.

1 Introduction

The two well-known connections between proof theory and language de-
sign, proof search as computation and proof normalisation as computa-
tion, have mainly used different proof-theoretic formalisms. While de-
signers of functional programming languages prefer natural deduction,
because of the close correspondence between proof normalisation and re-
duction in related term calculi [3, 7], designers of logic programming lan-
guages prefer the sequent calculus [6], because infinite choice and much
of the unwanted non-determinism is limited to the cut rule, which can be
eliminated.

System SKS [1] is a set of inference rules for classical propositional logic
presented in a new formalism, the calculus of structures [4, 5]. This system
admits the good properties usually found in sequent systems: in partic-
ular, all rules that induce infinite choice in proof search are admissible.
Thus, in principle, it is as suitable for proof search as systems in the se-
quent calculus. In this paper I will present a cut elimination procedure
for SKS that is very similar to normalisation in natural deduction. It thus
allows us to develop, at least for the case of classical logic, both the proof
search and the proof normalisation paradigm of computation in the same
formalism and starting from the same system of rules.

Normalisation in natural deduction and cut elimination in the sequent
calculus, widely perceived as ‘morally the same’, differ quite a bit, tech-
nically. Compared to cut elimination, normalisation is simpler, involving
neither permutation of a multicut rule, nor induction on the cut-rank.
The equivalent of a cut in natural deduction, for example,

��
��

��
��������

∆1

Γ, A � B⊃I
Γ � A ⊃ B

��
��

��
��������

∆2

Γ � A⊃E ,
Γ � B

is eliminated as follows: first, assumption A and all its copies are removed
from ∆1. Second, the derivation ∆2, with the context strengthened ac-
cordingly, is plugged into all the leaves of ∆1 where assumption A was
used.

This method relies on the fact that no rule inside ∆1 can change the
premise A, which is why it does not work for the sequent calculus. How-
ever, given a cut with an atomic cut formula a inside a sequent calculus
proof, we can trace the occurrence of a and its copies produced by con-
traction, identify all the leaves where they are used in identity axioms,
and plug in subproofs in very much the same way as in natural deduc-
tion. The problem for the sequent calculus is that cuts are not atomic, in
general.

The calculus of structures, which generalises the one-sided sequent cal-
culus, was conceived to express a logical system with a self-dual non-
commutative connective resembling sequential composition in process al-
gebras [4, 5, 2]. It has also led to inference systems for existing logics, like
classical and linear logic, with interesting new properties [1, 8, 9].

Derivations in the calculus of structures enjoy a top-down symmetry that
is not available in the sequent calculus: they are chains of one-premise
inference rules. ‘Meta-level conjunction’ (the branching of the proof tree)
and ‘object-level conjunction’ (the connective in a formula) are identified.
The two notions of formulae and sequent are also identified, they merge
into the notion of structure, which is a formula subject to equivalences
that are usually imposed on sequents. This simplification allows to observe

2

the exact duality between the cut rule and the identity axiom [4]:

S{true}
identity

S{R ∨ R̄}
S{R ∧ R̄}

cut
S{false}

The identity rule is read bottom-up as: if inside a structure there occurs
a disjunction of a structure R and its negation, then it can be replaced
by the constant true. The notion of duality between cut and identity is
precisely the contrapositive one.

As a consequence of this duality, R can be restricted to atomic formu-
las not only in the identity axiom, as in the sequent calculus, but with
the same ease also in the cut. For classical logic, the calculus of struc-
tures therefore admits a very simple cut elimination procedure similar to
normalisation in natural deduction.

After introducing basic notions of the calculus of structures, I show sys-
tem SKS with atomic contraction, weakening, identity and, most signif-
icantly, atomic cut. Then, after establishing some lemmas, I present the
cut elimination procedure.

2 Structures and Derivations

Definition 1. Atoms are denoted by a, b, The structures of the lan-
guage KS are generated by

S ::= t | f | a | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ ,

where t and f are the constants true and false, [S1, . . . , Sh] is a disjunction
and (S1, . . . , Sh) is a conjunction. S̄ is the negation of the structure S.
The negation of an atom is again an atom. Structures are denoted by S,
R, T , U and V . Structure contexts, denoted by S{ }, are structures with
one occurrence of { }, the empty context or hole, that does not appear in
the scope of a negation. S{R} denotes the structure obtained by filling
the hole in S{ } with R. We drop the curly braces when they are redun-
dant: for example, S [R, T] stands for S{[R, T]}. Structures are equivalent
modulo the smallest congruence relation induced by the equations shown
in Fig. 1. In the following, we do not distinguish between a congruence
class and one of its representatives: both of them are structures.

3

Associativity

[R, [T]] = [R, T]

(R, (T)) = (R, T)

Commutativity

[R, T] = [T , R]

(R, T) = (T , R)

Singleton

[R] = R = (R)

Constants

[f, R] = [R]

(t, R) = (R)

[t, t] = t

(f, f) = f

Negation

t = f

f = t

[R1, . . . , Rh] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h]

¯̄R = R

R and T are finite, non-empty sequences of structures.

Fig. 1. Equations on structures

Definition 2. An inference rule is a scheme of the kind

S{T}
ρ

S{R} ,

where ρ is the name of the rule, S{T} is its premise and S{R} is its
conclusion. In an instance of ρ, the structure taking the place of R is
called redex and the structure taking the place of T is called contractum.
A (formal) system S is a set of inference rules. To clarify the use of the

equational theory where it is not obvious, there is a rule
T

=
R

where R

and T are different representatives of the same structure.

Definition 3. A derivation ∆ in a certain formal system is a finite chain
of instances of inference rules in the system:

T
π′

V
π ...
ρ′

U
ρ

R

.

4

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S([R, U], T)
s

S [(R, T), U]

S [(R, U), (T, V)]
m

S([R, T], [U, V])

S{f}
aw↓

S{a}
S{a}

aw↑
S{t}

S [a, a]
ac↓

S{a}
S{a}

ac↑
S(a, a)

Fig. 2. System SKS

A derivation can consist of just one structure. The topmost structure in
a derivation is called the premise of the derivation, and the structure at
the bottom is called its conclusion. A derivation ∆ whose premise is T ,
whose conclusion is R, and whose inference rules are in S will be indicated

with
T

R
S∆ . A proof Π in the calculus of structures is a derivation whose

premise is the constant t. It will be denoted by
R

��
SΠ . A rule ρ is derivable

in a system S if for every instance of
T

ρ
R

there is a derivation
T

R
S∆ . A

rule ρ is admissible for a system S if for every proof
S

��
S∪{ρ}Π there is a

proof
S

��
SΠ′

.

5

3 System SKS

System SKS is shown in Fig. 2. The first S stands for “symmetric” or
“self-dual”, meaning that for each rule, its dual (or contrapositive) is also
in the system. The K stands for “klassisch” as in Gentzen’s LK and the
last S says that it is a system on structures.

The rules ai↓, s, m, aw↓, ac↓ are called respectively atomic identity, switch,
medial, atomic weakening and atomic contraction. Their dual rules carry
the same name prefixed with a “co-”, so e.g. aw↑ is called atomic co-
weakening. The rules s and m are their own duals. The rule ai↑ is special,
it is called atomic cut. Rules ai↓, aw↓, ac↓ are called down-rules and their
duals are called up-rules. In [1], by a semantic argument, all up-rules were
shown to be admissible. By removing them we obtain system KS, shown
in Fig. 3, which is sufficient for proof search.

S{t}
ai↓

S [a, ā]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S([R, T], U)
s

S [(R, U), T]

S [(R, T), (U, V)]
m

S([R, U], [T, V])

Fig. 3. System KS

Identity, cut, weakening and contraction are atomic in system SKS, they
do not have to be applied to arbitrarily large formulas. But they can, by
the following theorem.

Theorem 4. General identity, weakening, contraction and their duals, i.e.
the rules shown in Fig. 4, are derivable in system SKS. In particular,
the rules i↓, w↓ and c↓ are derivable in {ai↓, s}, {aw↓} and {ac↓, m}, re-
spectively. Dually, the rules i↑, w↑ c↑ are derivable in {ai↑, s}, {aw↑} and
{ac↑, m}, respectively.

Proof. By an easy structural induction on the structure that is cut, weak-
ened or contracted. Details are in [1]. The case for the cut is shown here.
A cut introducing the structure (R, T) together with its dual structure
[R̄, T̄] is replaced by two cuts on smaller structures:

6

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R, R]
c↓

S{R}
S{R}

c↑
S(R, R)

Fig. 4. General identity, weakening, contraction and their duals

S(R, T, [R̄, T̄])
i↑ �

S{f}

S(R, T, [R̄, T̄])
s
S(R, [R̄, (T, T̄)])

s
S [(R, R̄), (T, T̄)]

i↑
S(R, R̄)

i↑ .
S{f}

��

So, while general identity, weakening, contraction and their duals do not
belong to SKS, they will be freely used in derivations in SKS to denote
multiple instances of the corresponding rules in SKS according to Theo-
rem 4. Because the decomposition of down-rules does not introduce up-
rules, by the same argument, general identity, weakening and contraction
(but not their duals) will be used in derivations in KS.

Remark 5. Sequent calculus derivations easily correspond to derivations
in system SKS. For instance, the cut of sequent systems in Gentzen-
Schütte form [10]:

� Φ, A � Ψ, Ā
Cut corresponds to� Φ, Ψ

([Φ, A], [Ψ, Ā])
s

[Φ, (A, [Ψ, Ā])]
s

[Φ, Ψ, (A, Ā)]
i↑ .

[Φ, Ψ]

7

4 Cut Elimination

In contrast to the sequent calculus, the cut is not the only problematic
rule in system SKS. The rule aw↑ also induces infinite choice in proof-
search. Fortunately, we can not only eliminate the cut rule, but also the
other up-rules. Each up-rule individually can be shown to be admissible
for system KS. However, since we are going to eliminate the cut anyway,
to eliminate rules aw↑ and ac↑ the following lemma is sufficient.

Lemma 6. Each rule in SKS is derivable using identity, cut, switch and
its dual rule.

Proof. An instance of
S{T}

ρ↑
S{R} can be replaced by

S{T}
i↓

S(T, [R, R̄])
s
S [R, (T, R̄)]

ρ↓
S [R, (T, T̄)]

i↑
S{R}

.

The same holds for down-rules. ��

When plugging in a derivation in natural deduction, its context has to
be strengthened, to fit into the leaf into which it is plugged. Adding to
a context in natural deduction is easy, since it is a flat object, a set
or a multiset. In the calculus of structures, contexts are more general,
nested objects. The following definition and lemma are used to strengthen
contexts.

Definition 7. Given a derivation ∆, the derivation S{∆} is obtained as
follows:

∆ =

T
π′

V
π ...
ρ′

U
ρ

R

S{∆} =

S{T}
π′

S{V }
π ...
ρ′

S{U}
ρ

S{R}

.

Lemma 8. The following super switch rules are derivable using the switch:

S{T{R}}
ss↓

S [R, T{f}]
and

S(R, T{t})
ss↑

S{T{R}} .

8

Proof. An easy structural induction on T{ } replaces either rule by a
derivation consisting of switches. Details are in [1].

��

In the sequent calculus as well as in sequent-style natural deduction, a
derivation is a tree and cuts (seen bottom-up) split the tree into two
branches. A cut instance decides how to split the context among the two
branches (or just copies the context, in the case of natural deduction or
additive cut). In the calculus of structures, a cut rule does not split the
proof. But we can do that during cut elimination, duplicating the proof
above a cut and using the following lemma to remove atoms from the
proofs.

Lemma 9. Each proof
T{a}

��
KS

can be transformed into a proof
T{t}

��
KS

.

Proof. Starting with the conclusion, going up in the proof, in each struc-
ture we replace the occurrence of a and its copies, that are produced by
contractions, by the constant t.

Replacements inside the context of any rule instance do not affect the
validity of this rule instance. Instances of the rules m and s remain valid,
also in the case that atom occurrences are replaced inside redex and
contractum. Instances of the other rules are replaced by the following
derivations:

S [a, a]
ac↓ �

S{a}
S [t, t]

=
S{t}

S{f}
aw↓ �

S{a}

S{f}
=

S([t, t], f)
s
S [t, (t, f)]

=
S{t}

S{t}
ai↓ �

S [a, ā]

S{t}
=

S [t, f]
aw↓ .

S [t, ā]

��

9

Properly equipped, we now turn to cut elimination.

Theorem 10. Each proof
T

��
SKS can be transformed into a proof

T

��
KS .

Proof. By Lemma 6, the only rule left to eliminate is the cut. The topmost
instance of cut, together with the proof above it, is singled out:

T

��

KS∪{ai↑} =
R(a, ā)

ai↑
R{f}

��

Π KS

T

∆ KS∪{ai↑}

.

Lemma 9 is applied twice on Π to obtain

R{a}

��
Π1 KS

and
R{ā}

��
Π2 KS

.

Starting with the conclusion, going up in proof Π1, in each structure we
replace the occurrence of a and its copies, that are produced by contrac-
tions, by the structure R{f}.
Replacements inside the context of any rule instance do not affect the
validity of this rule instance. Instances of the rules m and s remain valid,
also in the case that atom occurrences are replaced inside redex and con-
tractum. Instances of ac↓ and aw↓ are replaced by their general versions:

S [a, a]
ac↓ �

S{a}
S [R{f}, R{f}]

c↓
S{R{f}}

S{f}
aw↓ �

S{a}
S{f}

w↓ .
S{R{f}}

Instances of ai↓ are replaced by S{Π2}:

10

S{t}
ai↓ �

S [a, ā]

S{t}

S{R{ā}}
S{Π2} KS

ss↓ .
S [R{f}, ā]

The result of this process of substituting Π2 into Π1 is a proof Π3, from
which we build

R{R{f}}
ss↓

[R{f}, R{f}]
c↓ .

R{f}

��

Π3 KS

T

∆ KS∪{ai↓}

Proceed inductively downward with the remaining instances of cut. ��

The proof is inspired by [4], where in a system without contraction the
context R{ } is split into two disjoint parts: one, that comes together with
a and one that comes together with ā. The proof of the context splitting
lemma is hard. In system KS, to split the proof above a cut, no such
context splitting is necessary: we can simply duplicate the proof and use
contraction. In the sequent calculus, where the technique of permuting
up a cut is used, contraction is an obstacle to cut elimination. Curiously,
in the calculus of structures, when the technique of plugging subproofs is
used, contraction simplifies cut elimination.

The cut elimination procedure has not been extended to the predicative
first-order case yet, however, we do know that in this case the cut is
admissible, either by a semantic argument or by translation to the se-
quent calculus, cf. [1]. So, system SKS should be relevant for proof search
also in the first-order predicative case, because for proof search it is just
important that the cut is admissible, not how this admissibility is shown.

Because of its simplicity, the cut elimination procedure presented here
seems a good starting point for the endeavour outlined in the introduc-
tion. In the proof search as computation realm, given the admissibility of
cut, a suitable notion of uniform proof as in [6] should be obtainable. For

11

proof normalisation as computation, natural questions to be considered
are strong normalisation and confluence of the cut elimination procedure
when imposing as little strategy as possible. Similarly to [7], a term calcu-
lus should be developed and its computational meaning be made precise.
The possibility of treating intuitionistic logic should be explored.

Acknowledgements
This work has been supported by the DFG Graduiertenkolleg 334 and
the IQN ‘Rational Mobile Agents and Systems of Agents’. I would like
to thank Alessio Guglielmi, for inspiration, Alwen Fernanto Tiu, for sim-
plifying an earlier version of the cut elimination procedure, and Michel
Parigot, for helpful discussions. I am grateful to Alessio Guglielmi and
Charles Stewart who helped me to improve previous drafts of this work.

References

1. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001. Available
as technical report at http://www.wv.inf.tu-dresden.de/˜kai/LocalClassicalLogic-
tr.pdf.

2. Paola Bruscoli. A purely logical account of sequentiality in proof search. Technical
Report WV-02-06, Dresden University of Technology, 2002. Accepted at ICLP
2002.

3. Jean Gallier. Constructive logics. Part I: A tutorial on proof systems and typed
λ-calculi. Theoretical Computer Science, 110:249–339, 1993.

4. Alessio Guglielmi. A calculus of order and interaction. Technical Report WV-
99-04, Dresden University of Technology, 1999. Revised version available at
http://www.wv.inf.tu-dresden.de/˜guglielm/Research/.

5. Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture
Notes in Computer Science, pages 54–68. Springer-Verlag, 2001.

6. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

7. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In LPAR 1992, volume 624 of Lecture Notes in Computer Science, pages
190–201. Springer-Verlag, 1992.

8. Lutz Straßburger. MELL in the calculus of structures. Technical Report WV-2001-
03, Dresden University of Technology, 2001. On the web at: http://www.ki.inf.tu-
dresden.de/˜lutz/els.pdf.

9. Lutz Straßburger. A local system for linear logic. Technical Report WV-2002-01,
Dresden University of Technology, 2002.

10. Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 1996.

12

