
Computational
Logic ∴ Group

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałȩga)
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Recap
• Looked at using Propositional Logic (PL) for representing knowledge
• effectively implementable (SAT solvers), but lacks expressiveness
Want a KR language that can . . .
1. Represent sets of objects
2. Represent relationships between objects
3. Write statements that are true for some or all objects satisfying certain

conditions
4. Express everything we can express in propositional logic (and, or, implies,

not, . . . )
⇝ First-order logic (FOL)

However: FOL satisfiability is undecidable
⇝ cannot hope for implementations
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Propositional Horn Fragment
PL Horn Fragment: only allows the following formulas (n > 0):

P1 ∧ . . . ∧ Pn → Q rules

P facts

With Pi, Q being atoms, and where Q can be ⊥.

Horn Clauses: Clauses with at most one positive literal.

¬P1 ∨ . . . ∨ ¬Pn ∨Q

(fact) entailment. Instance is setH of Horn formulas and atom P

Answer is true if every model ofH is also a model of P
and false otherwise.

PL Horn entailment is solvable in polynomial time.
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Lifting PL Horn to FOL Horn
First-Order Horn Clauses: Clauses with at most one positive literal
But now, atoms can contain variables, constants, and function symbols.

Some examples of First-Order Horn clauses:

¬JuvArthritis(x)∨ Arthritis(x)
¬Arthritis(x)∨ ¬JuvDisease(x)∨ JuvArthritis(x)

¬Child(x)∨ ¬Adult(x)
¬Affects(x, y)∨ Person( y)

¬JuvDisease(x)∨ Affects(x, f (x))
JuvDisease( JRA)
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Horn Logics

Horn Formulas: FOL sentences that in CNF yield Horn clauses.
Horn Logics: Syntactic FOL fragments allowing only Horn Formulas.

Some examples of Horn formulas:

∀x.(Arthritis(x) ∧ JuvDisease(x) → JuvArthritis(x))
∀x.(Child(x) ∧ Adult(x) → ⊥)

∀x.(∀y.(Affects(x, y) → Person( y)))
∀x.( JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child( y)))

∀x.(∀y.(∀z.(fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))
JuvDisease( JRA)
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Expressivity
We cannot express “disjunctive formulas”:
• Covering statements:

∀x.(Person(x) → Adult(x) ∨ Child(x) ∨ Teenager(x))
• Negation on the left of implication

∀x.(Person(x) ∧ ¬Woman(x) → Man(x))
As well as many others . . .
Note, however, that some formulas apparently “disjunctive” are Horn:

∀x.(Adult(x) ∨ Child(x) ∨ Teenager(x) → Person(x))

. . .because they can be rewritten into formulas that are obviously Horn:
∀x.(Adult(x) → Person(x))
∀x.(Child(x) → Person(x))

∀x.(Teenager(x) → Person(x))
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Existential Rules
∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ∃y⃗.ψ(x⃗, y⃗)) Existential Rule

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ⊥) ⊥–Rule
P(a⃗) Fact

φ(x⃗, z⃗): conjunction of function-free atoms with vars x⃗ ∪ z⃗.
ψ(x⃗, y⃗): conjunction of function-free atoms with vars x⃗ ∪ y⃗.

∀x.(Arthritis(x) ∧ JuvDisease(x) → JuvArthritis(x)) Rule

∀x.(Child(x) ∧ Adult(x) → ⊥) ⊥-Rule
∀x.( JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child( y))) Rule

JuvDisease( JRA) Fact
Examples of Horn formulas outside this logic:

∀x.(Adult(x) ∨ Child(x) ∨ Teenager(x) → Person(x))
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Reasoning with Existential Rules

Fact Entailment: An instance is a pair ⟨R,F⟩ of
rules and facts and a fact P.
The answer is true iff ⟨R,F ∪ {¬P}⟩ is unsatisfiable.

Resolution can be optimised for Horn clauses.
General strategy: allow only certain kinds of resolution inferences:
• Need to show completeness

Unsatisfiability must imply that the empty clause is derivable.
• No need to show soundness

Still just resolution, which is sound.
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Recall FOL Resolution Rule

α∨φ ¬β∨ψ

(φ∨ψ)MGU(α,β)
α,β are atoms
MGU(α,β) is Most General Unifier of α and β

Examples:

(¬ArthritisPat(x)∨ Affects( f (x), x)) ArthritisPat( g(a))
Affects( f ( g(a)), g(a)) {x 7→ g(a)}

Affects(x, John) ¬Affects( JRA, y)
□

{x 7→JRA, y 7→John}

JuvDisease(h( g( f (x),a))) ¬JuvDisease(h( g( y, y)))
Rule not applicable
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Recall FOL Factoring Rule

γ ∨ δ∨ψ

(γ ∨ψ)MGU(γ, δ) γ, δ literals, same sign

Examples:

ArthritisPat(x)∨ Affects( f (x), x)∨ ArthritisPat( g(a))
Affects( f ( g(a)), g(a))∨ ArthritisPat( g(a)) {x 7→ g(a)}

Affects(x, John)∨ Affects( JRA, y)
Affects( JRA, John) {x 7→JRA, y 7→John}

¬JuvDisease(h( g( f (x),a)))∨ ¬JuvDisease(h( g( y, z)))
¬JuvDisease(h( g( f (x),a))) {y 7→ f (x), z 7→a}
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Recall FOL Resolution Procedure

1: procedure Sat(S)
2: repeat
3: for all clauses C1, C2 in S do
4: S := S∪ resolve(C1,C2)
5: end for
6: until No new clause can be added to S or □ ∈ S

7: If □ ∈ S return false
8: return true
9: end procedure

Function resolve(C1,C2) applies FO resolution in all possible ways, and then
applies factoring in all possible ways.

Wait . . . in all possible ways?
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Resolution with Free Selection
Resolution with free selection: a complete strategy
• Calculus parameterised by a Selection Function S
• S assigns to each Horn clause C a non-empty subset of its literals:

– S(C) contains the single positive literal, OR
– S(C) contains a subset of negative literals

• Restrict resolution such that we only resolve on selected literals

We are free to design the selection function ourselves:
If we satisfy the basic constraints, completeness is guaranteed.
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Resolution with Free Selection
A reasonable selection function:
• Select the set of all negative literals in each clause
• If there is no negative literal, select the (unique) positive literal

As usual, we prepare for resolution (Skolemisation, CNF, clause form)

A(x) → ∃y.R(x, y)∧ B( y) ⇝ ¬A(x)∨ R(x, f (x))
¬A(x)∨ B( f (x))

B(x) → C(x) ⇝ ¬B(x)∨ C(x)
R(x, y)∧ C( y) → D( y) ⇝ ¬R(x, y)∨ ¬C( y)∨D( y)

A(a) ⇝ A(a)

We now want to see whether D(a) follows . . .
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Resolution with Free Selection

¬A(x)∨ R(x, f (x)) (1)
¬A(x)∨ B( f (x)) (2)

¬B(x)∨ C(x) (3)
¬R(x, y)∨ ¬C( y)∨D(x) (4)

A(a) (5)
¬D(a) (6)

With this selection, we don’t need to resolve (1) and (4)
Observation: This strategy amounts to Unit Resolution
One of the premises of resolution must be a unit clause!
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Resolution with Free Selection
¬A(x)∨ R(x, f (x)) (1)

¬A(x)∨ B( f (x)) (2)
¬B(x)∨ C(x) (3)

¬R(x, y)∨ ¬C( y)∨D(x) (4)
A(a) (5)

¬D(a) (6)
R(a, f (a)) (1) + (5) (7)
B( f (a)) (2) + (5) (8)
C( f (a)) (8) + (3) (9)

¬C( f (a))∨D(a) (7) + (4) (10)
D(a) (9) + (10) (11)
□ (11) + (6) (12)
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Resolution with Free Selection
We still have termination problems . . .

A(x) → ∃y.R(x, y)∧ A( y) ⇝ ¬A(x)∨ R(x, f (x))
¬A(x)∨ A( f (x))

A(a) ⇝ A(a)

¬A(x)∨ R(x, f (x))
¬A(x)∨ A( f (x))

A(a)
R(a, f (a))
A( f (a))

R(a, f ( f (a))
A( f ( f (a))

. . .

Theorem
Unsatisfiability and fact entailment over existential rules are undecidable
(semi-decidable).

That is, as difficult as checking unsatisfiability in FOL.
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Datalog
To achieve decidability we need to sacrifice expressivity.
Datalog: The quintessential rule-based KR language

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ψ(x⃗)) Rule

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ⊥) ⊥–Rule
P(a⃗) Fact

φ(x⃗, z⃗) and ψ(x⃗): conjunctions of function-free atoms

We can still express
∀x.(∀y.(∀z.(fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))

∀x.(∀y.(Affects(x, y) → Person( y)))
But, we can no longer express

∀x.( JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child( y))))
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Decidability of Entailment
Theorem
Fact entailment in Datalog is decidable.

Decidability follows directly from Herbrand’s theorem
• Our problem reduces to unsatisfiability of S = R∪F ∪ {¬P}
• R∪F ∪ {¬P} is a set of clauses without function symbols

so Herbrand universe finite
• Gilmore’s FOL unsatisfiability algorithm terminates.
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Decidability of Entailment
Our algorithm is an adaptation of Gilmore’s when Herbrand universe is finite

1: procedure Datalog-Gil(⟨R,F⟩,P)
2: Compute Herbrand Universe U
3: R′ := ground(R,U)
4: return Horn-Prop(⟨R′,F⟩,P)
5: end procedure

Subroutine Horn-Prop solves entailment problem for Horn PL
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Complexity Considerations
∀x.(∀y.(∀z.( fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))

fatherOf ( John,Mary)
brotherOf ( John,Peter)

Herbrand universe: constants in ⟨R,F⟩
U = { John,Mary,Peter}

Grounding leads to exponential size set of propositional clauses
fatherOf ( John, John)∧ brotherOf ( John, John) → uncleOf ( John, John)

fatherOf ( John,Mary)∧ brotherOf ( John,Mary) → uncleOf (Mary,Mary)
fatherOf ( John,Peter)∧ brotherOf ( John,Peter) → uncleOf (Peter,Peter)

and so on
Size of the grounding grows as O(cv), where
• c is the max. number of constants in facts.
• v is the max. number of variables in rules.
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Complexity Considerations
Propositional entailment in Horn PL can be decided in polynomial time.
Overall process takes exponential time (because of grounding).

Theorem
Fact entailment in Datalog is decidable in ExpTime.

In fact, the problem is also ExpTime-hard (beyond this course).

⇝ Naive grounding algorithm is worst-case optimal.
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Practical Considerations
From a practical point of view, we can do much better:
• Avoid computing the grounding upfront
• Instantiate variables to constants “on the fly”
We develop two resolution-based strategies:
1. Forward chaining:

Start from facts and instantiate rules to derive new facts whenever possible
until goal is derived

2. Backward chaining:
Start from goal and proceed “backwards” to derive the empty clause

Both strategies can be seen as Resolution with Free Selection.
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Forward Chaining (Example)
Start from facts and instantiate rules to derive new facts whenever possible
until goal (or □) is derived

∀x.( JuvArthritis(x) → JuvDisease(x)) (13)
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y))) (14)

JuvArthritis( JRA) (15)
Affects( JRA, John) (16)

Match existing facts to rule bodies to derive new facts.

From Fact (15) and Rule (13) we obtain the following by unit resolution
JuvDisease( JRA) (17)

From Facts (17) and (16) and Rule (14), derive goal and stop.
Child( John)
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Forward Chaining and Resolution
Sfw: select all negative literals in clauses, and the (unique) positive

literal if the clause does not have negative literals.

¬JuvArthritis(x)∨ JuvDisease(x)
JuvArthritis( JRA)

We obtain the following by resolution:

JuvDisease( JRA)
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Forward Chaining and Resolution
Sfw: select all negative literals in clauses, and the (unique) positive

literal if the clause does not have negative literals.

Deriving a new fact by matching other facts to a rule may require several
resolution steps (Hyperresolution).

¬JuvDisease(x)∨ ¬Affects(x, y)∨ Child( y)
Affects( JRA, John)
JuvDisease( JRA)

We obtain the following by resolution:

¬JuvDisease( JRA)∨ Child( John)
Child( John)

In forward chaining, we do both steps in one.
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Forward Chaining
1: procedure Forward(⟨R,F⟩, P)
2: F′ := F

3: repeat
4: for each rule R = ¬B1 ∨ ¬B2 ∨ . . . ,∨¬Bn ∨H ∈ R do
5: if {D1, . . . ,Dn} ⊆ F′ such that Bi unifies with Di then
6: θ := Unify({B1 =̇D1, . . . ,Bn =̇Dn})
7: F′ := F′ ∪ {Hθ}
8: end if
9: end for
10: until No new atom can be added to F′ or P ∈ F′ or □ ∈ F′

11: if P ∈ F′ or □ ∈ F′ then
12: return true
13: else
14: return false
15: end if
16: end procedure
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Backward Chaining (Example)
Check whether following rules and facts imply Child( John):

∀x.( JuvArthritis(x) → JuvDisease(x)) (18)
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y))) (19)

JuvArthritis( JRA) (20)
Affects( JRA, John) (21)

Match “goal” Child( John) to rule heads and facts to derive new goals.
To prove Child( John), by Rule (19) it is sufficient to show

JuvDisease(x) and Affects(x, John)

Then, by Fact (21), it would be sufficient to show JuvDisease( JRA).
Another possibility is to use Rule (18) and get the following sub-goals

JuvArthritis(x) and Affects(x, John)

And so on . . .
Horn Logics and Datalog (Lecture 3)
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Backward Chaining (Example)
We can represent this kind of
backwards reasoning
in an AND-OR tree:

Child( John)

JuvDisease(x), Affects(x, John)

JuvDisease( JRA)

JuvArthritis( JRA)

JuvArthritis(x), Affects(x, John)

Affects( JRA, John) . . .

∀x.( JuvArthritis(x) → JuvDisease(x))
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y)))

JuvArthritis( JRA)
Affects( JRA, John)
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Backward Chaining and Resolution
Sbw: select the unique positive literal in clauses, and

all negative literals if the clause does not have positive literals.

Matching the goal to a rule head or a fact corresponds to one resolution step.

¬JuvDisease(x)∨ ¬Affects(x, y)∨ Child( y) ¬Child( John)
¬JuvDisease(x)∨ ¬Affects(x, John)
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Termination Issues
Resolution with free selection may not terminate with Sbw.
Example: Show that John is a Scientist.

¬worksWith(x, y)∨ ¬Scientist( y)∨ Scientist(x) (22)
worksWith( John,Mary) (23)

¬Scientist( John) (24)
We start resolving on selected atoms:

¬worksWith( John, y)∨ ¬Scientist( y) (22) + (24) (25)
¬worksWith( John, y1)∨ ¬worksWith( y1, y2)∨ ¬Scientist( y2) (22) + (25) (26)

. . .

Keep on generating clauses with chains of worksWith atoms of increasing
length (variable proliferation).
Thus, the backward chaining tree can have infinite branches.
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Other Considerations
Implementing Forward and Backward chaining efficiently is non-trivial:
• Forward chaining: set of deduced facts might get huge
• Backward chaining: recursion may be too deep or search tree too wide.

There are many ways to optimise these algorithms
Semi-naive evaluation, Magic sets, . . .

But, this is beyond the scope of this course.

There are many optimised systems that implement forward/backward
chaining.

The KR languages we have described are related to:
• Databases: Datalog query language, and deductive databases
• Logic programming: Prolog
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