
Computational
Logic ∴ Group

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałȩga)

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Horn Logics and Datalog
Lecture 3, 28th Oct 2024 // Foundations of Knowledge Representation, WS 2024/25

https://iccl.inf.tu-dresden.de/web/Foundations_of_Knowledge_Representation_(WS2024)

Recap
• Looked at using Propositional Logic (PL) for representing knowledge
• effectively implementable (SAT solvers), but lacks expressiveness
Want a KR language that can . . .
1. Represent sets of objects
2. Represent relationships between objects
3. Write statements that are true for some or all objects satisfying certain

conditions
4. Express everything we can express in propositional logic (and, or, implies,

not, . . .)
⇝ First-order logic (FOL)

However: FOL satisfiability is undecidable
⇝ cannot hope for implementations

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 2 of 28 Computational
Logic ∴ Group

Propositional Horn Fragment
PL Horn Fragment: only allows the following formulas (n > 0):

P1 ∧ . . . ∧ Pn → Q rules

P facts

With Pi, Q being atoms, and where Q can be ⊥.

Horn Clauses: Clauses with at most one positive literal.

¬P1 ∨ . . . ∨ ¬Pn ∨Q

(fact) entailment. Instance is setH of Horn formulas and atom P

Answer is true if every model ofH is also a model of P
and false otherwise.

PL Horn entailment is solvable in polynomial time.
Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 3 of 28 Computational
Logic ∴ Group

Lifting PL Horn to FOL Horn
First-Order Horn Clauses: Clauses with at most one positive literal
But now, atoms can contain variables, constants, and function symbols.

Some examples of First-Order Horn clauses:

¬JuvArthritis(x)∨ Arthritis(x)
¬Arthritis(x)∨ ¬JuvDisease(x)∨ JuvArthritis(x)

¬Child(x)∨ ¬Adult(x)
¬Affects(x, y)∨ Person(y)

¬JuvDisease(x)∨ Affects(x, f (x))
JuvDisease(JRA)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 4 of 28 Computational
Logic ∴ Group

Horn Logics

Horn Formulas: FOL sentences that in CNF yield Horn clauses.
Horn Logics: Syntactic FOL fragments allowing only Horn Formulas.

Some examples of Horn formulas:

∀x.(Arthritis(x) ∧ JuvDisease(x) → JuvArthritis(x))
∀x.(Child(x) ∧ Adult(x) → ⊥)

∀x.(∀y.(Affects(x, y) → Person(y)))
∀x.(JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child(y)))

∀x.(∀y.(∀z.(fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))
JuvDisease(JRA)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 5 of 28 Computational
Logic ∴ Group

Expressivity
We cannot express “disjunctive formulas”:
• Covering statements:

∀x.(Person(x) → Adult(x) ∨ Child(x) ∨ Teenager(x))
• Negation on the left of implication

∀x.(Person(x) ∧ ¬Woman(x) → Man(x))
As well as many others . . .
Note, however, that some formulas apparently “disjunctive” are Horn:

∀x.(Adult(x) ∨ Child(x) ∨ Teenager(x) → Person(x))

. . .because they can be rewritten into formulas that are obviously Horn:
∀x.(Adult(x) → Person(x))
∀x.(Child(x) → Person(x))

∀x.(Teenager(x) → Person(x))

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 6 of 28 Computational
Logic ∴ Group

Expressivity
We cannot express “disjunctive formulas”:
• Covering statements:

∀x.(Person(x) → Adult(x) ∨ Child(x) ∨ Teenager(x))
• Negation on the left of implication

∀x.(Person(x) ∧ ¬Woman(x) → Man(x))
As well as many others . . .
Note, however, that some formulas apparently “disjunctive” are Horn:

∀x.(Adult(x) ∨ Child(x) ∨ Teenager(x) → Person(x))
. . .because they can be rewritten into formulas that are obviously Horn:

∀x.(Adult(x) → Person(x))
∀x.(Child(x) → Person(x))

∀x.(Teenager(x) → Person(x))

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 6 of 28 Computational
Logic ∴ Group

Existential Rules
∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ∃y⃗.ψ(x⃗, y⃗)) Existential Rule

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ⊥) ⊥–Rule
P(a⃗) Fact

φ(x⃗, z⃗): conjunction of function-free atoms with vars x⃗ ∪ z⃗.
ψ(x⃗, y⃗): conjunction of function-free atoms with vars x⃗ ∪ y⃗.

∀x.(Arthritis(x) ∧ JuvDisease(x) → JuvArthritis(x)) Rule

∀x.(Child(x) ∧ Adult(x) → ⊥) ⊥-Rule
∀x.(JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child(y))) Rule

JuvDisease(JRA) Fact
Examples of Horn formulas outside this logic:

∀x.(Adult(x) ∨ Child(x) ∨ Teenager(x) → Person(x))

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 7 of 28 Computational
Logic ∴ Group

Reasoning with Existential Rules

Fact Entailment: An instance is a pair ⟨R,F⟩ of
rules and facts and a fact P.
The answer is true iff ⟨R,F ∪ {¬P}⟩ is unsatisfiable.

Resolution can be optimised for Horn clauses.
General strategy: allow only certain kinds of resolution inferences:
• Need to show completeness

Unsatisfiability must imply that the empty clause is derivable.
• No need to show soundness

Still just resolution, which is sound.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 8 of 28 Computational
Logic ∴ Group

Recall FOL Resolution Rule

α∨φ ¬β∨ψ

(φ∨ψ)MGU(α,β)
α,β are atoms
MGU(α,β) is Most General Unifier of α and β

Examples:

(¬ArthritisPat(x)∨ Affects(f (x), x)) ArthritisPat(g(a))
Affects(f (g(a)), g(a)) {x 7→ g(a)}

Affects(x, John) ¬Affects(JRA, y)
□

{x 7→JRA, y 7→John}

JuvDisease(h(g(f (x),a))) ¬JuvDisease(h(g(y, y)))
Rule not applicable

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 9 of 28 Computational
Logic ∴ Group

Recall FOL Factoring Rule

γ ∨ δ∨ψ

(γ ∨ψ)MGU(γ, δ) γ, δ literals, same sign

Examples:

ArthritisPat(x)∨ Affects(f (x), x)∨ ArthritisPat(g(a))
Affects(f (g(a)), g(a))∨ ArthritisPat(g(a)) {x 7→ g(a)}

Affects(x, John)∨ Affects(JRA, y)
Affects(JRA, John) {x 7→JRA, y 7→John}

¬JuvDisease(h(g(f (x),a)))∨ ¬JuvDisease(h(g(y, z)))
¬JuvDisease(h(g(f (x),a))) {y 7→ f (x), z 7→a}

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 10 of 28 Computational
Logic ∴ Group

Recall FOL Resolution Procedure

1: procedure Sat(S)
2: repeat
3: for all clauses C1, C2 in S do
4: S := S∪ resolve(C1,C2)
5: end for
6: until No new clause can be added to S or □ ∈ S

7: If □ ∈ S return false
8: return true
9: end procedure

Function resolve(C1,C2) applies FO resolution in all possible ways, and then
applies factoring in all possible ways.

Wait . . . in all possible ways?

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 11 of 28 Computational
Logic ∴ Group

Recall FOL Resolution Procedure

1: procedure Sat(S)
2: repeat
3: for all clauses C1, C2 in S do
4: S := S∪ resolve(C1,C2)
5: end for
6: until No new clause can be added to S or □ ∈ S

7: If □ ∈ S return false
8: return true
9: end procedure

Function resolve(C1,C2) applies FO resolution in all possible ways, and then
applies factoring in all possible ways.

Wait . . . in all possible ways?

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 11 of 28 Computational
Logic ∴ Group

Resolution with Free Selection
Resolution with free selection: a complete strategy
• Calculus parameterised by a Selection Function S
• S assigns to each Horn clause C a non-empty subset of its literals:

– S(C) contains the single positive literal, OR
– S(C) contains a subset of negative literals

• Restrict resolution such that we only resolve on selected literals

We are free to design the selection function ourselves:
If we satisfy the basic constraints, completeness is guaranteed.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 12 of 28 Computational
Logic ∴ Group

Resolution with Free Selection
A reasonable selection function:
• Select the set of all negative literals in each clause
• If there is no negative literal, select the (unique) positive literal

As usual, we prepare for resolution (Skolemisation, CNF, clause form)

A(x) → ∃y.R(x, y)∧ B(y) ⇝ ¬A(x)∨ R(x, f (x))
¬A(x)∨ B(f (x))

B(x) → C(x) ⇝ ¬B(x)∨ C(x)
R(x, y)∧ C(y) → D(y) ⇝ ¬R(x, y)∨ ¬C(y)∨D(y)

A(a) ⇝ A(a)

We now want to see whether D(a) follows . . .

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 13 of 28 Computational
Logic ∴ Group

Resolution with Free Selection

¬A(x)∨ R(x, f (x)) (1)
¬A(x)∨ B(f (x)) (2)

¬B(x)∨ C(x) (3)
¬R(x, y)∨ ¬C(y)∨D(x) (4)

A(a) (5)
¬D(a) (6)

With this selection, we don’t need to resolve (1) and (4)
Observation: This strategy amounts to Unit Resolution
One of the premises of resolution must be a unit clause!

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 13 of 28 Computational
Logic ∴ Group

Resolution with Free Selection
¬A(x)∨ R(x, f (x)) (1)

¬A(x)∨ B(f (x)) (2)
¬B(x)∨ C(x) (3)

¬R(x, y)∨ ¬C(y)∨D(x) (4)
A(a) (5)

¬D(a) (6)
R(a, f (a)) (1) + (5) (7)
B(f (a)) (2) + (5) (8)
C(f (a)) (8) + (3) (9)

¬C(f (a))∨D(a) (7) + (4) (10)
D(a) (9) + (10) (11)
□ (11) + (6) (12)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 13 of 28 Computational
Logic ∴ Group

Resolution with Free Selection
We still have termination problems . . .

A(x) → ∃y.R(x, y)∧ A(y) ⇝ ¬A(x)∨ R(x, f (x))
¬A(x)∨ A(f (x))

A(a) ⇝ A(a)

¬A(x)∨ R(x, f (x))
¬A(x)∨ A(f (x))

A(a)
R(a, f (a))
A(f (a))

R(a, f (f (a))
A(f (f (a))

. . .

Theorem
Unsatisfiability and fact entailment over existential rules are undecidable
(semi-decidable).

That is, as difficult as checking unsatisfiability in FOL.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 14 of 28 Computational
Logic ∴ Group

Resolution with Free Selection
We still have termination problems . . .

A(x) → ∃y.R(x, y)∧ A(y) ⇝ ¬A(x)∨ R(x, f (x))
¬A(x)∨ A(f (x))

A(a) ⇝ A(a)

¬A(x)∨ R(x, f (x))
¬A(x)∨ A(f (x))

A(a)
R(a, f (a))
A(f (a))

R(a, f (f (a))
A(f (f (a))

. . .
Theorem
Unsatisfiability and fact entailment over existential rules are undecidable
(semi-decidable).

That is, as difficult as checking unsatisfiability in FOL.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 14 of 28 Computational
Logic ∴ Group

Datalog
To achieve decidability we need to sacrifice expressivity.
Datalog: The quintessential rule-based KR language

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ψ(x⃗)) Rule

∀x⃗.∀z⃗.(φ(x⃗, z⃗) → ⊥) ⊥–Rule
P(a⃗) Fact

φ(x⃗, z⃗) and ψ(x⃗): conjunctions of function-free atoms

We can still express
∀x.(∀y.(∀z.(fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))

∀x.(∀y.(Affects(x, y) → Person(y)))
But, we can no longer express

∀x.(JuvDisease(x) → ∃y.(Affects(x, y) ∧ Child(y))))

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 15 of 28 Computational
Logic ∴ Group

Decidability of Entailment
Theorem
Fact entailment in Datalog is decidable.

Decidability follows directly from Herbrand’s theorem
• Our problem reduces to unsatisfiability of S = R∪F ∪ {¬P}
• R∪F ∪ {¬P} is a set of clauses without function symbols

so Herbrand universe finite
• Gilmore’s FOL unsatisfiability algorithm terminates.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 16 of 28 Computational
Logic ∴ Group

Decidability of Entailment
Our algorithm is an adaptation of Gilmore’s when Herbrand universe is finite

1: procedure Datalog-Gil(⟨R,F⟩,P)
2: Compute Herbrand Universe U
3: R′ := ground(R,U)
4: return Horn-Prop(⟨R′,F⟩,P)
5: end procedure

Subroutine Horn-Prop solves entailment problem for Horn PL

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 17 of 28 Computational
Logic ∴ Group

Complexity Considerations
∀x.(∀y.(∀z.(fatherOf (x, y)∧ brotherOf (x, z) → uncleOf (z, y))))

fatherOf (John,Mary)
brotherOf (John,Peter)

Herbrand universe: constants in ⟨R,F⟩
U = { John,Mary,Peter}

Grounding leads to exponential size set of propositional clauses
fatherOf (John, John)∧ brotherOf (John, John) → uncleOf (John, John)

fatherOf (John,Mary)∧ brotherOf (John,Mary) → uncleOf (Mary,Mary)
fatherOf (John,Peter)∧ brotherOf (John,Peter) → uncleOf (Peter,Peter)

and so on
Size of the grounding grows as O(cv), where
• c is the max. number of constants in facts.
• v is the max. number of variables in rules.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 18 of 28 Computational
Logic ∴ Group

Complexity Considerations
Propositional entailment in Horn PL can be decided in polynomial time.
Overall process takes exponential time (because of grounding).

Theorem
Fact entailment in Datalog is decidable in ExpTime.

In fact, the problem is also ExpTime-hard (beyond this course).

⇝ Naive grounding algorithm is worst-case optimal.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 19 of 28 Computational
Logic ∴ Group

Practical Considerations
From a practical point of view, we can do much better:
• Avoid computing the grounding upfront
• Instantiate variables to constants “on the fly”
We develop two resolution-based strategies:
1. Forward chaining:

Start from facts and instantiate rules to derive new facts whenever possible
until goal is derived

2. Backward chaining:
Start from goal and proceed “backwards” to derive the empty clause

Both strategies can be seen as Resolution with Free Selection.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 20 of 28 Computational
Logic ∴ Group

Forward Chaining (Example)
Start from facts and instantiate rules to derive new facts whenever possible
until goal (or □) is derived

∀x.(JuvArthritis(x) → JuvDisease(x)) (13)
∀x.(∀y.(JuvDisease(x)∧ Affects(x, y) → Child(y))) (14)

JuvArthritis(JRA) (15)
Affects(JRA, John) (16)

Match existing facts to rule bodies to derive new facts.

From Fact (15) and Rule (13) we obtain the following by unit resolution
JuvDisease(JRA) (17)

From Facts (17) and (16) and Rule (14), derive goal and stop.
Child(John)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 21 of 28 Computational
Logic ∴ Group

Forward Chaining and Resolution
Sfw: select all negative literals in clauses, and the (unique) positive

literal if the clause does not have negative literals.

¬JuvArthritis(x)∨ JuvDisease(x)
JuvArthritis(JRA)

We obtain the following by resolution:

JuvDisease(JRA)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 22 of 28 Computational
Logic ∴ Group

Forward Chaining and Resolution
Sfw: select all negative literals in clauses, and the (unique) positive

literal if the clause does not have negative literals.

Deriving a new fact by matching other facts to a rule may require several
resolution steps (Hyperresolution).

¬JuvDisease(x)∨ ¬Affects(x, y)∨ Child(y)
Affects(JRA, John)
JuvDisease(JRA)

We obtain the following by resolution:

¬JuvDisease(JRA)∨ Child(John)
Child(John)

In forward chaining, we do both steps in one.
Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 22 of 28 Computational
Logic ∴ Group

Forward Chaining
1: procedure Forward(⟨R,F⟩, P)
2: F′ := F

3: repeat
4: for each rule R = ¬B1 ∨ ¬B2 ∨ . . . ,∨¬Bn ∨H ∈ R do
5: if {D1, . . . ,Dn} ⊆ F′ such that Bi unifies with Di then
6: θ := Unify({B1 =̇D1, . . . ,Bn =̇Dn})
7: F′ := F′ ∪ {Hθ}
8: end if
9: end for
10: until No new atom can be added to F′ or P ∈ F′ or □ ∈ F′

11: if P ∈ F′ or □ ∈ F′ then
12: return true
13: else
14: return false
15: end if
16: end procedure

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 23 of 28 Computational
Logic ∴ Group

Backward Chaining (Example)
Check whether following rules and facts imply Child(John):

∀x.(JuvArthritis(x) → JuvDisease(x)) (18)
∀x.(∀y.(JuvDisease(x)∧ Affects(x, y) → Child(y))) (19)

JuvArthritis(JRA) (20)
Affects(JRA, John) (21)

Match “goal” Child(John) to rule heads and facts to derive new goals.
To prove Child(John), by Rule (19) it is sufficient to show

JuvDisease(x) and Affects(x, John)

Then, by Fact (21), it would be sufficient to show JuvDisease(JRA).
Another possibility is to use Rule (18) and get the following sub-goals

JuvArthritis(x) and Affects(x, John)

And so on . . .
Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 24 of 28 Computational
Logic ∴ Group

Backward Chaining (Example)
We can represent this kind of
backwards reasoning
in an AND-OR tree:

Child(John)

JuvDisease(x), Affects(x, John)

JuvDisease(JRA)

JuvArthritis(JRA)

JuvArthritis(x), Affects(x, John)

Affects(JRA, John) . . .

∀x.(JuvArthritis(x) → JuvDisease(x))
∀x.(∀y.(JuvDisease(x)∧ Affects(x, y) → Child(y)))

JuvArthritis(JRA)
Affects(JRA, John)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 25 of 28 Computational
Logic ∴ Group

Backward Chaining and Resolution
Sbw: select the unique positive literal in clauses, and

all negative literals if the clause does not have positive literals.

Matching the goal to a rule head or a fact corresponds to one resolution step.

¬JuvDisease(x)∨ ¬Affects(x, y)∨ Child(y) ¬Child(John)
¬JuvDisease(x)∨ ¬Affects(x, John)

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 26 of 28 Computational
Logic ∴ Group

Termination Issues
Resolution with free selection may not terminate with Sbw.
Example: Show that John is a Scientist.

¬worksWith(x, y)∨ ¬Scientist(y)∨ Scientist(x) (22)
worksWith(John,Mary) (23)

¬Scientist(John) (24)
We start resolving on selected atoms:

¬worksWith(John, y)∨ ¬Scientist(y) (22) + (24) (25)
¬worksWith(John, y1)∨ ¬worksWith(y1, y2)∨ ¬Scientist(y2) (22) + (25) (26)

. . .

Keep on generating clauses with chains of worksWith atoms of increasing
length (variable proliferation).
Thus, the backward chaining tree can have infinite branches.

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 27 of 28 Computational
Logic ∴ Group

Other Considerations
Implementing Forward and Backward chaining efficiently is non-trivial:
• Forward chaining: set of deduced facts might get huge
• Backward chaining: recursion may be too deep or search tree too wide.

There are many ways to optimise these algorithms
Semi-naive evaluation, Magic sets, . . .

But, this is beyond the scope of this course.

There are many optimised systems that implement forward/backward
chaining.

The KR languages we have described are related to:
• Databases: Datalog query language, and deductive databases
• Logic programming: Prolog

Horn Logics and Datalog (Lecture 3)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 28 of 28 Computational
Logic ∴ Group

