
Explaining Data with Formal Concept Analysis

Bernhard Ganter1[0000−0003−0767−1379], Sebastian
Rudolph1[0000−0002−1609−2080], and Gerd Stumme2[0000−0002−0570−7908]

1 TU Dresden firstname.lastname@tu-dresden.de
2 Uni Kassel stumme@cs.uni-kassel.de

Abstract. We give a brief introduction into Formal Concept Analysis,
an approach to explaining data by means of lattice theory.

Keywords: Formal Concept Analysis · Data Visualization · Attribute
Logic.

1 Introduction

Formal Concept Analysis (FCA) is a mathematical discipline which attempts to
formalize aspects of human conceptual thinking. For cognitive reasons, humans
tend to form categories for objects and situations they encounter in the real
world. These groups, defined based on commonalities between their elements,
can then be given a name, referred to, and reasoned about in their entirety. They
can be ordered by the level of generality or specificity giving rise to what is called
“conceptual hierarchies” or “taxonomies”. FCA provides a very simplified, yet
powerful and elegant formalization of the notion of “concept” by means of lattice
theory.

Over the last four decades, FCA has developed in a versatile scientific field,
yielding novel approaches to data visualization and data mining. It greatly con-
tributed to the development of data science and can be seen as a bottom-up
approach to explain data by means of hierarchical clustering techniques.

Here, we provide a gentle introduction into the basics of FCA. Thereby,
we will omit mathematical proofs of the presented theorems and lemmas; the
interested reader may consult [4] for more details.

2 TL;DR – Formal Concept Analysis in a Nutshell

This section is meant to be an ‘appetizer’. It provides a brief overview over
Formal Concept Analysis, in order to allow for a better understanding of the
overall picture. To this end, this section introduces the most basic notions of
Formal Concept Analysis, namely formal contexts, formal concepts, and concept
lattices. These definitions will be repeated and discussed in more detail later on.

Formal Concept Analysis (FCA) was introduced as a mathematical theory
modeling the notion of ‘concepts’ in terms of lattice theory. To come up with a
formal description of concepts and their constituents, extensions and intensions,
FCA starts by defining (formal) contexts.

2 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Definition 1 A (formal) context is a triple K := (G,M, I), where G is a set
whose elements are called objects, M is a set whose elements are called attributes,
and I is a binary relation between G and M (i. e., I ⊆ G×M), where (g,m) ∈ I
is read “object g has attribute m”. ♦

This definition captures the basic and immediately graspable idea of a collection
of entities, each of which might or might not have certain properties. At the
same time, this notion is generic enough to be applicable to a vast variety of
situations.

On another note, the interested reader might notice that formal contexts are
closely related to bipartite graphs (where both objects and attributes are nodes
in the graph and edges are connecting each object with its attributes). This link
enables the study of bipartite graphs using FCA and, likewise, FCA can profit
from known results developed for bipartite graphs.

Figure 1 shows a formal context where the object set G comprises all airlines
of the Star Alliance group and the attribute set M lists their destinations.3 The
binary relation I is given by the cross table and describes which destinations are
served by which Star Alliance member.

Definition 2 For an object set A ⊆ G, let

A′ := {m ∈M | ∀g ∈ A: (g,m) ∈ I}

and, for an attribute set B ⊆M , let

B′ := {g ∈ G | ∀m ∈ B: (g,m) ∈ I} .

A (formal) concept of a formal context (G,M, I) is a pair (A,B) with A ⊆ G,
B ⊆ M , A′ = B and B′ = A. The sets A and B are called the extent and the
intent of the formal concept (A,B), respectively. The subconcept–superconcept
relation ≤ is formalized by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2) .

The set of all formal concepts of a formal context K together with the order
relation ≤ always constitutes a complete lattice,4 called the concept lattice of K
and denoted by B(K). ♦

Figure 2 visualizes the concept lattice of the context in Figure 1 by means of a
line diagram. In a line diagram, each node represents a formal concept. A concept
c1 is a subconcept of a concept c2 if and only if there is a path of descending
edges from the node representing c2 to the node representing c1. The name of an
object g is always attached to the node representing the smallest concept with g
in its extent; dually, the name of an attribute m is always attached to the node

3 Note that the underlying data is somewhat outdated, if not to say antiquated.
4 I. e., for each subset of concepts, there is always a unique greatest common subcon-

cept and a unique least common superconcept.

Explaining Data with Formal Concept Analysis 3

Air Canada
Air New Zealand
All Nippon Airways
Ansett Australia
The Austrian Airlines Group
British Midland
Lufthansa
Mexicana
Scandinavian Airlines
Singapore Airlines
Thai Airways International
United Airlines
VARIG

La
tin

 A
m

er
ic

a
Eu

ro
pe

C
an

ad
a

As
ia

 P
ac

ific
M

id
dl

e
Ea

st
Af

ric
a

M
ex

ic
o

C
ar

ib
be

an
U

ni
te

d
St

at
es

Fig. 1. A formal context about the destinations of the Star Alliance members

United StatesAsia Pacific

Canada

Europe

Africa

Middle East

Latin America

Caribbean

Mexico

Ansett Australia

British Midland

All Nippon Airways
Air New Zealand

The Austrian Airlines Group
Singapore Airlines

Mexicana

Thai Airways International

Scandinavian Airlines

VARIG

United Airlines

Air Canada

Lufthansa

Fig. 2. The concept lattice of the context in Figure 1

4 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

representing the largest concept with m in its intent. We can read the context
relation from the diagram because an object g has an attribute m if and only if
the concept labeled by g is a subconcept of the one labeled by m. The extent
of a concept consists of all objects whose labels are attached to subconcepts,
and, dually, the intent consists of all attributes attached to superconcepts. For
example, the concept labeled by ‘Middle East’ has {Singapore Airlines, The
Austrian Airlines Group, Lufthansa, Air Canada} as extent, and {Middle East,
Canada, United States, Europe, Asia Pacific} as intent.

High up in the diagram, we find the destinations which are served by most of
the members: Europe, Asia Pacific, and the United States. For instance, besides
British Midland and Ansett Australia, all airlines are serving the United States.
Those two airlines are located at the top of the diagram, as they serve the fewest
destinations — they operate only in Europe and Asia Pacific, respectively.

The further we go down in the concept lattice, the more globally operating are
the airlines. The most destinations are served by the airlines close to the bottom
of the diagram: Lufthansa (serving all destinations besides the Caribbean) and
Air Canada (serving all destinations besides Africa). Also, the further we go
down in the lattice, the lesser served are the destinations. For instance, Africa,
the Middle East, and the Caribbean are served by relatively few Star Alliance
members.

Dependencies between the attributes can be described by implications. For
attribute sets X,Y ⊆ M , we say that the implication X → Y holds in the
context, if each object having all attributes in X also has all attributes in Y .
For instance, the implication {Europe, United States} → {Asia Pacific} holds
in the Star Alliance context. It can be read directly from the line diagram: the
largest concept having both ‘Europe’ and ‘United States’ in its intent (i. e., the
concept labeled by ‘All Nippon Airways’ and ‘Air New Zealand’) also has ‘Asia
Pacific’ in its intent. Similarly, one can detect that the destinations ‘Africa’ and
‘Canada’ together imply the destination ‘Middle East’ (and also ‘Europe’, ‘Asia
Pacific’, and ‘United States’).

Concept lattices can also be visualized using nested line diagrams. For ob-
taining a nested line diagram, one splits the set of attributes in two parts, and
obtains thus two formal contexts with identical object sets. For each formal
context, one computes its concept lattice and a line diagram. The nested line
diagram is obtained by enlarging the nodes of the first line diagram and by draw-
ing the second diagram inside. The second lattice is used to further differentiate
each of the extents of the concepts of the first lattice. Figure 3 shows a nested line
diagram for the Star Alliance context. It is obtained by splitting the attribute set
as follows: M = {Europe, Asia Pacific, Africa, Middle East } ∪ {United States,
Canada, Latin America, Mexico, Caribbean }. The order relation can be read
by replacing each of the lines of the large diagram by eight parallel lines linking
corresponding nodes in the inner diagrams. The concept lattice given in Fig-
ure 2 is embedded (as a join–semilattice) in this diagram, it consists of the solid
nodes. The concept mentioned above (labeled by ‘Middle East’) is for instance
represented by the left-most solid node in the lower right part.

Explaining Data with Formal Concept Analysis 5

Non-American Destinations

American Destinations

Europe
Asia Pacific

Africa Middle East

United States

Canada Latin America

Mexico

Caribbean

Mexicana

Ansett AustraliaBritish Midland

Air New Zealand

All Nippon Airways

Thai Airways International

United Airlines

Air Canada

Scandinavian Airlines

VARIG

Singapore Airlines

The Austrian Airlines Group

Lufthansa

Fig. 3. A nested diagram of the concept lattice in Figure 2

6 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

The solid concepts are referred to as ‘realized concepts’, as, for each of them,
the set of all attributes labeled above is an intent of the formal context. The
non-realized concepts are not only displayed to indicate the structure of the
inner scale, but also because they indicate implications: Each non-realized con-
cept indicates that the attributes in its intent imply the attributes contained in
the largest realized concept below. For instance, the first implication discussed
above is indicated by the non-realized concept having as intent ‘Europe’ and
‘United States’, it is represented by the empty node below the concept labeled
by ‘British Midland’. The largest realized sub-concept below is the one labeled
by ‘All Nippon Airways’ and ‘Air New Zealand’ — which additionally has ‘Asia
Pacific’ in its intent. Hence the implication { Europe, United States } → { Asia
Pacific } holds. The second implication from above is indicated by the non-
realized concept left of the concept labeled by ‘Scandinavian Airlines’, and the
largest realized concept below, which is the one labeled by ‘Singapore Airlines’
and ‘The Austrian Airlines Group’.

This section gave a short introduction to the core notions of FCA. We will
discuss most of them (and more advanced topics) in more detail in the remainder
of this chapter.

3 Concept Lattices

Formal Concept Analysis studies how objects can be hierarchically grouped to-
gether according to their common attributes. One of the aspects of FCA thus is
attribute logic, the study of possible attribute combinations. Most of the time,
this will be very elementary. Those with a background in Mathematical Logic
might say that attribute logic is just Propositional Calculus, and thus Boolean
Logic, or even a fragment of this. Historically, the name Propositional Logic is
misleading: Boole himself used the intuition of attributes (“signs”) rather than
of propositions. So in fact, attribute logic goes back to Boole.

But our style is different from that of logicians. Our logic is contextual, which
means that we are interested in the logical structure of concrete data (of the
context). Of course, the general rules of mathematical logic are important for
this and will be utilized.

3.1 Formal Contexts and Cross Tables

Definition 3 A Formal Context (G,M, I) consists of two sets G and M and
of a binary relation I ⊆ G×M . The elements of G are called the objects, those
of M the attributes of (G,M, I). If g ∈ G and m ∈ M are in relation I, we
write (g,m) ∈I or g Im and read this as “object g has attribute m”. ♦

The simplest format for writing down a formal context is a cross table:
we write a rectangular table with one row for each object and one column for

Explaining Data with Formal Concept Analysis 7

each attribute, having a cross in the intersection of row g with column m iff
(g,m) ∈ I. The simplest data type for computer storage is that of a bit matrix.5

Note that the definition of a formal context is very general. There are no
restrictions about the nature of objects and attributes. We may consider physical
objects, or persons, numbers, processes, structures, etc. – virtually everything.
Anything that is a set in the mathematical sense may be taken as the set of
objects or of attributes of some formal context. We may interchange the rôle
of objects and attributes: if (G,M, I) is a formal context, then so is the dual
context (M,G, I−1) (with (m, g) ∈I−1:⇐⇒ (g,m) ∈I). It is also not necessary
that G and M are disjoint, they need not even be different.

On the other hand, the definition is rather restrictive when applied to real
world phenomena. Language phrases like “all human beings” or “all chairs” do
not denote sets in our sense. There is no “set of all chairs”, because the decision
if something is a chair is not a matter of fact but a matter of subjective inter-
pretation. The notion of “formal concept” which we shall base on the definition
of “formal context” is much, much narrower than what is commonly understood
as a concept of human cognition. The step from “context” to “formal context”
is quite an incisive one. It is the step from “real world” to “data”. Later on,
when we get tired of saying “formal concepts of a formal context”, we will some-
times omit the word “formal”. But we should keep in mind that it makes a big
difference.

3.2 The derivation operators

Given a selection A ⊆ G of objects from a formal context (G,M, I), we may
ask which attributes from M are common to all these objects. This defines an
operator that produces for every set A ⊆ G of objects the set A↑ of their common
attributes.

Definition 4 For A ⊆ G, we let

A↑ := {m ∈M | g I m for all g ∈ A} .

Dually, we introduce for a set B ⊆M of attributes

B↓ := {g ∈ G | g I m for all m ∈ B} .

These two operators are the derivation operators for (G,M, I). ♦

The set B↓ denotes thus the set consisting of those objects in G that have (at
least) all the attributes from B.

5 It is not easy to say which is the most efficient data type for formal contexts. This
depends, of course, on the operations we want to perform with formal contexts.
The most important ones are the derivation operators, to be defined in the next
subsection.

8 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Usually, we do not distinguish the derivation operators in writing and use
the notation A′, B′ instead. This is convenient, as long as the distinction is not
explicitly needed.

If A is a set of objects, then A′ is a set of attributes, to which we can apply
the second derivation operator to obtain A′′ (more precisely: (A↑)↓), a set of
objects. Dually, starting with a set B of attributes, we may form the set B′′,
which is again a set of attributes. We have the following simple facts:

Proposition 1 For subsets A,A1, A2 ⊆ G we have

1. A1 ⊆ A2 ⇒ A′2 ⊆ A′1,
2. A ⊆ A′′,
3. A′ = A′′′.

Dually, for subsets B,B1, B2 ⊆M we have

1’. B1 ⊆ B2 ⇒ B′2 ⊆ B′1,
2’. B ⊆ B′′,
3’. B′ = B′′′.

The reader may confer to [4] for details and proofs. The mathematically inter-
ested reader may notice that the derivation operators constitute an (antitone)
Galois connection between the (power sets of the) sets G and M .

The not so mathematically oriented reader should try to express the state-
ments of the Proposition in common language. We give an example: Statement
1. says that if a selection of objects is enlarged, then the attributes which are
common to all objects of the larger selection are among the common attributes
of the smaller selection. Try to formulate 2. and 3. in a similar manner!

3.3 Formal Concepts, Extent and Intent

In what follows, (G,M, I) always denotes a formal context.

Definition 5 (A,B) is a formal concept of (G,M, I) iff

A ⊆ G, B ⊆M, A′ = B, and A = B′.

The set A is called the extent while the set B is called the intent of the formal
concept (A,B). ♦

According to this definition, a formal concept has two parts: its extent and its
intent. This follows an old tradition in philosophical concept logic, as expressed
in the Logic of Port Royal, 1654 [2], and in the International Standard ISO 704
(Terminology work – Principles and methods, translation of the German Stan-
dard DIN 2330).

The description of a concept by extent and intent is redundant, because each
of the two parts determines the other (since B = A′ and A = B′). But for many
reasons this redundant description is very convenient.

Explaining Data with Formal Concept Analysis 9

When a formal context is written as a cross table, then every formal concept
(A,B) corresponds to a (filled) rectangular subtable, with row set A and column
set B. To make this more precise, note that in the definition of a formal context,
there is no order on the setsG orM . Permuting the rows or the columns of a cross
table therefore does not change the formal context it represents. A rectangular
subtable may, in this sense, omit some rows or columns; it must be rectangular
after an appropriate rearrangement of the rows and the columns. It is then easy
to characterize the rectangular subtables that correspond to formal concepts:
they are full of crosses and maximal with respect to this property.

Lemma 2 (A,B) is a formal concept of (G,M,I) iff A ⊆ G, B ⊆M , and A and
B are each maximal (with respect to set inclusion) for the property A×B ⊆ I.

A formal context may have many formal concepts. In fact, it is not difficult
to come up with examples where the number of formal concepts is exponential
in the size of the formal context. The set of all formal concepts of (G,M, I) is
denoted

B(G,M, I),

or just B if the context is known and fixed. Later on we shall discuss an algorithm
to compute all formal concepts of a given formal context.

3.4 Conceptual Hierarchy

Formal concepts can be (partially) ordered in a natural way. Again, the definition
is inspired by the way we usually order concepts in a subconcept–superconcept
hierarchy: “Dog” is a subconcept of “mammal”, because every dog is a mammal.
Transferring this to formal concepts, the natural definition is as follows:

Definition 6 Let (A1, B1) and (A2, B2) be formal concepts of (G,M, I). We
say that (A1, B1) is a subconcept of (A2, B2) (and, equivalently, that (A2, B2)
is a superconcept of (A1, B1)) iff A1 ⊆ A2. We use the ≤-sign to express this
relation and thus have

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2.

The set B of all formal concepts of (G,M, I), ordered by the relation ≤ – that
is, the structure (B,≤) – is denoted

B(G,M, I)

and is called the concept lattice of the formal context (G,M, I). ♦

We will see in a bit, why the structure is called lattice. Arguably, this definition
is natural, but irritatingly asymmetric. What about the intents? Well, a look at
Proposition 1 shows that for concepts (A1, B1) and (A2, B2)

A1 ⊆ A2 is equivalent to B2 ⊆ B1.

10 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Therefore

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1).

The concept lattice of a formal context is a partially ordered set. We recall the
formal definition of such a partial ordered set in the following.

Definition 7 A partially ordered set is a pair (P,≤) where P is a set, and
≤ is a binary relation on P (i. e., ≤ is a subset of P × P) which is

1. reflexive (x ≤ x for all x ∈ P),
2. anti-symmetric (x ≤ y and y ≤ x imply x = y for all x, y ∈ P), and
3. transitive (x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ P).

We write x ≥ y for y ≤ x, and x < y for x ≤ y with x 6= y. ♦

Partially ordered sets appear frequently in mathematics and computer sci-
ence. Observe that we do not assume a total order, which would require the
additional condition x ≤ y or y ≤ x for all x, y ∈ P . Concept lattices have addi-
tional properties beyond being partially ordered sets, that is why we call them
‘lattices’. This will be the topic of the next section.

3.5 Concept lattice diagrams

The concept lattice of (G,M, I) is the set of all formal concepts of (G,M, I),
ordered by the subconcept–superconcept order. Ordered sets of moderate size
can conveniently be displayed as order diagrams, sometimes also referred to
as line diagrams. We explain how to read such a concept lattice line diagram by
means of an example given in Figure 4. Later on, we will discuss how to draw
such diagrams.

Figure 4 refers to the following situation: Think of two squares of equal size
that are drawn on paper. There are different ways to arrange the two squares:
they may be disjoint (i. e., have no point in common), may overlap (i. e., have
a common interior point), may share a vertex, an edge or a line segment of the
boundary (of length > 0), they may be parallel or not.

Figure 4 shows a concept lattice unfolding these possibilities. It consists of
twelve formal concepts, represented by the twelve small circles in the diagram.
The names of the six attributes are given. Each name is attached to one of
the formal concepts and is written slightly above the respective circle. The ten
objects are represented by little pictures; each showing a pair of unit squares.
Again, each object is attached to exactly one formal concept; the picture rep-
resenting the object is drawn slightly below the circle representing the object
concept.

Some of the circles are connected by edges. These express the concept order.
With the help of the edges, we can read from the diagram which concepts are
subconcepts of which other concepts, and which objects have which attributes.
To do so, one has to follow ascending paths in the diagram.

Explaining Data with Formal Concept Analysis 11

Q
Q
Q
Q
Q
Q
Q

�
�
�
�

���������
Q
Q
Q
Q
Q
Q
Q

�
�
�
�

���������
Q
Q
Q
Q
Q
Q
Q

�
�
�
�

S
S
S
S
S
S
S
S
S
���������

E
E
E
E
E
E
E
E
E
E
E
E
E

common vertexparallel

common
segment

common edge

overlap

disjoint

Fig. 4. A concept lattice diagram. The objects are pairs of unit squares. The attributes
describe their mutual position.

For example, consider the object . From the corresponding circle we can
reach, via ascending paths, four attributes: “common edge”, “common segment”,
“common vertex”, and “parallel”. does in fact have these properties, and does
not have any of the others: the two squares are neither “disjoint” nor do they
“overlap”.

Similarly, we can find those objects that have a given attribute by following
all descending paths starting at the attribute concept. For example, to find all
objects which “overlap”, we start at the attribute concept labeled “overlap” and
follow the edges downward. We can reach three objects (namely , , and

, the latter symbolizing two squares at the same position). Note that we cannot
reach , because only at concept nodes it is allowed to make a turn.

With the same method, we can read the intent and the extent of every formal
concept in the diagram. For example, consider the concept circle labeled . Its
extent consists of all objects that can be reached from that circle on an descend-
ing path. The extent therefore is { , }. Similarly, we find by an inspection of
the ascending paths that the intent of this formal concept is {overlap, parallel}.

The diagram contains all necessary information. We can read off the objects,
the attributes, and the incidence relation I. Thus we can perfectly reconstruct

12 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

the formal context (i. e., “the original data”) from the diagram.6 Moreover, for
each formal concept we can easily determine its extent and intent from the
diagram.

So in a certain sense, concept lattice diagrams are perfect. But there are, of
course, limitations. Take another look at Figure 4. Is it correct? Is it complete?
The answer is that, since a concept lattice faithfully unfolds the formal context,
the information displayed in the lattice diagram can be only as correct and com-
plete as the formal context is. In our specific example it is easy to check that the
given examples in fact do have the properties as indicated. But a more difficult
problem is if our selection of objects is representative. Are there possibilities to
combine two squares, that lead to an attribute combination not occurring in our
sample? We shall come back to that question later.

3.6 Supremum and Infimum

Can we compute with formal concepts? Yes, we can. The concept operations
are however quite different from addition and multiplication of numbers. They
resemble more of the operations greatest common divisor and least common mul-
tiple, that we know from integers.

Definition 8 Let (M,≤) be a partially ordered set, and A be a subset of M . A
lower bound of A is an element s of M with s ≤ a, for all a ∈ A. An upper
bound of A is defined dually. If there exists a largest element in the set of all
lower bounds of A, then it is called the infimum (or meet) of A. It is denoted
inf A or

∧
A. The supremum (or join) of A (sup A,

∨
A) is defined dually. For

A = {x, y}, we write also x ∧ y for their infimun, and x ∨ y for their supremum.

♦

Lemma 3 For any two formal concepts (A1, B1) and (A2, B2) of some formal
context we obtain

– the infimum (greatest common subconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ∧ (A2, B2) := (A1 ∩A2, (B1 ∪B2)′′),

– the supremum (least common superconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ∨ (A2, B2) := ((A1 ∪A2)′′, B1 ∩B2).

It is not difficult to prove that what is suggested by this definition is in
fact true: (A1, B1) ∧ (A2, B2) is in fact a formal concept (of the same context),
(A1, B1)∧ (A2, B2) is a subconcept of both (A1, B1) and (A2, B2), and any other
common subconcept of (A1, B1) and (A2, B2) is also a subconcept of (A1, B1)∧
(A2, B2). Similarly, (A1, B1) ∨ (A2, B2) is a formal concept, it is a superconcept
of (A1, B1) and of (A2, B2), and it is a subconcept of any common superconcept
of these two formal concepts.

6 This reconstruction is assured by the Basic Theorem given below.

Explaining Data with Formal Concept Analysis 13

With some practice, one can read off infima and suprema from the lattice
diagram. Choose any two concepts from Figure 4 and follow the descending
paths from the corresponding nodes in the diagram. There is always a highest
point where these paths meet, that is, a highest concept that is below both,
namely, the infimum. Any other concept below both can be reached from the
highest one on a descending path. Similarly, for any two formal concepts there
is always a lowest node (the supremum of the two), that can be reached from
both concepts via ascending paths. And any common superconcept of the two
is on an ascending path from their supremum.

3.7 Complete lattices

The operations for computing with formal concepts, infimum and supremum, are
not as weird as one might suspect. In fact, we obtain with each concept lattice
an algebraic structure called a “lattice”, and such structures occur frequently in
mathematics and computer science. “Lattice theory” is an active field of research
in mathematics. A lattice is an algebraic structure with two operations (called
“meet” and “join” or “infimum” and “supremum”) that satisfy certain natural
conditions:7

Definition 9 A partially ordered set V := (V,≤) is called a lattice, if their
exists, for every pair of elements x, y ∈ V , their infimum x ∧ y as well as their
supremum x ∨ y. ♦

We shall not discuss the algebraic theory of lattices in this lecture. Many
universities offer courses in lattice theory, and there are excellent textbooks.8

Concept lattices have an additional nice property: they are complete lat-
tices. This means that the operations of infimum and supremum do not only
work for an input consisting of two elements, but for arbitrary many. In other
words: each collection of formal concepts has a greatest common subconcept and
a least common superconcept. This is even true for infinite sets of concepts. The
operations “infimum” and “supremum” are not necessarily binary, they work for
any input size.

Definition 10 A partially ordered set V := (V,≤) is a complete lattice, if for
every set A ⊆ V , there exists its infimum

∧
V and its supremum

∨
A. ♦

Note that the definition requests the existence of infimum and supremum
for every set A, hence also for the empty set A := Ø. Following the definition,
we obtain that

∧
Ø has to be the (unique) largest element of the lattice. It is

denoted by 1V. Dually,
∨

Ø has to be the smallest element of the lattice; it is
denoted by 0V.

7 Unfortunately, the word “lattice” is used with different meanings in mathematics.
It also refers to generalized grids.

8 An introduction to lattices and order by B. Davey and H. Priestley is particularly
popular among CS students.

14 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

The arbitrary arity of infimum and supremum is very useful, but will make
essentially no difference for our considerations, because we shall mainly be con-
cerned with finite formal contexts and finite concept lattices. Well, this is not
completely true. In fact, although the concept lattice in Figure 4 is finite, its
ten objects are representatives for all possibilities to combine two unit squares.
Of course, there are infinitely many such possibilities. It is true that we shall
consider finite concept lattices, but our examples may be taken from an infinite
reservoir.

3.8 The Basic Theorem of FCA

We give now a mathematically precise formulation of the algebraic properties of
concept lattices. The theorem below is not difficult, but basic for many other re-
sults. Its formulation contains some technical terms that we have not mentioned
so far.

In a complete lattice, an element is called supremum-irreducible if it can-
not be written as a supremum of other elements, and infimum-irreducible if
it can not be expressed as an infimum of other elements. It is very easy to locate
the irreducible elements in a diagram of a finite lattice: the supremum-irreducible
elements are precisely those from which there is exactly one edge going down-
ward. An element is infimum-irreducible if and only if it is the start of exactly
one upward edge. In Figure 4, there are precisely nine supremum-irreducible
concepts and precisely five infimum-irreducible concepts. Exactly four concepts
have both properties, they are doubly irreducible.

A set of elements of a complete lattice is called supremum-dense, if every
lattice element is a supremum of elements from this set. Dually, a set is called
infimum-dense, if the infima that can be computed from this set exhaust all
lattice elements.

The notion of isomorphism defined next essentially captures the idea of two
lattices being the same up to a renaming of the elements.

Definition 11 Two lattices V and W are isomorphic (V ∼= W), if there exists
a bijective mapping ϕ:V → W with x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y). The mapping ϕ
is then called lattice isomorphism between V and W. ♦

Now we have defined all the terminology necessary for stating the main the-
orem of Formal Concept Analysis.

Theorem 4 (The Basic Theorem of Formal Concept Analysis.) The
concept lattice of any formal context (G,M, I) is a complete lattice. For an ar-
bitrary set {(Ai, Bi) | i ∈ J} ⊆ B(G,M, I) of formal concepts, the supremum is
given by ∨

i∈J
(Ai, Bi) =

(
(
⋃
i∈J

Ai)
′′,
⋂
i∈J

Bi

)

Explaining Data with Formal Concept Analysis 15

and the infimum is given by

∧
i∈J

(Ai, Bi) =

(⋂
i∈J

Ai, (
⋃
i∈J

Bi)
′′

)
.

A complete lattice L is isomorphic to B(G,M, I) precisely if there are mappings
γ̃ : G → L and µ̃ : M → L such that γ̃(G) is supremum-dense and µ̃(M) is
infimum-dense in L, and for all g ∈ G and m ∈M

g I m ⇐⇒ γ̃(g) ≤ µ̃(m).

In particular, L ∼= B(L,L,≤).

The theorem is less complicated than it may first seem. We give some expla-
nations below. Readers in a hurry may skip these and continue with the next
section.

The first part of the theorem gives the precise formulation for infimum and
supremum of arbitrary sets of formal concepts. The second part of the theorem
gives (among other information) an answer to the question if concept lattices
have any special properties. The answer is “no”: every complete lattice is (iso-
morphic to) a concept lattice. This means that for every complete lattice, we
must be able to find a set G of objects, a set M of attributes and a suitable
relation I, such that the given lattice is isomorphic to B(G,M, I). The theorem
does not only say how this can be done, it describes in fact all possibilities to
achieve this.

In Figure 4, every object is attached to a unique concept, the correspond-
ing object concept. Similarly for each attribute there corresponds an attribute
concept. These can be defined as follows:

Definition 12 Let (G,M, I) be some formal context. Then

– for each object g ∈ G the corresponding object concept is

γg := ({g}′′, {g}′),

– and for each attribute m ∈M the attribute concept is given by

µm := ({m}′, {m}′′).

The set of all object concepts of (G,M, I) is denoted γG, the set of all attribute
concepts is µM . ♦

Using Definition 5 and Proposition 1, it is easy to check that these expressions
in fact define formal concepts of (G,M, I).

We have that γg ≤ (A,B) ⇐⇒ g ∈ A. A look at the first part of the Basic
Theorem shows that each formal concept is the supremum of all the object
concepts below it. Therefore, the set γG of all object concepts is supremum-
dense. Dually, the attribute concepts form an infimum-dense set in B(G,M, I).

16 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

The Basic Theorem says that, conversely, any supremum-dense set in a complete
lattice L can be taken as the set of objects and any infimum-dense set be taken
as a set of attributes for a formal context with concept lattice isomorphic to L.

We conclude with a simple observation that often helps to find errors in
concept lattice diagrams. The fact that the object concepts form a supremum-
dense set implies that every supremum-irreducible concept must be an object
concept (the converse is not true). Dually, every infimum-irreducible concept
must be an attribute concept. This yields the following rule for concept lattice
diagrams:

Proposition 5 Given a formal context (G,M, I) and a finite order diagram,
labeled by the objects from G and the attributes from M . For g ∈ G let γ̃(g)
denote the element of the diagram that is labeled with g, and let µ̃(m) denote the
element labeled with m. Then the given diagram is a correctly labeled diagram of
B(G,M, I) if and only if it satisfies the following conditions:

1. The diagram is a correct lattice diagram,
2. every supremum-irreducible element is labeled by some object,
3. every infimum-irreducible element is labeled by some attribute,
4. g I m ⇐⇒ γ̃(g) ≤ µ̃(m) for all g ∈ G and m ∈M .

The definitions of lattices and complete lattices are self-dual: If (V,≤) is a
(complete) lattice, then (V,≤)d := (V,≥) is also a (complete) lattice. If a the-
orem holds for a (complete) lattice, then the ‘dual theorem’ also holds, i. e.,
the theorem where all occurences of ≤,∨,∧,

∨
,
∧
,0V,1V etc. are replaced by

≥,∧,∨,
∧
,
∨
,1V,0V, resp.

For concept lattices, their dual can be obtained by “flipping” the formal
context:

Lemma 6 Let (G,M, I) be a formal context and B(G,M, I) its concept lattice.
Then (B(G,M, I))d ∼= B(M,G, I−1), with I−1 := {(m, g) | (g,m) ∈ I}.

3.9 Computing all Concepts of a Context

There are several algorithms that help drawing concept lattices. We shall discuss
some of them below. But we find it instructive to start by some small examples
that can be drawn by hand. For computing concept lattices, we will investigate
a fast algorithm later. We start with a naive method before proceeding to a
method which is suitable for manual computation.

In principle, it is not difficult to find all the concepts of a formal context.
The following proposition summarizes the naive possibilities of generating all
concepts.

Lemma 7 Each concept of a context (G,M, I) has the form (X ′′, X ′) for some
subset X ⊆ G and the form (Y ′, Y ′′) for some subset Y ⊆ M . Conversely, all
such pairs are concepts. Every extent is the intersection of attribute extents and
every intent is the intersection of object intents.

Explaining Data with Formal Concept Analysis 17

The first part of the lemma suggests a first algorithm for computing all con-
cepts: go through all subsets X of G and record (X ′′, X ′) as concept (skipping
duplicates). However, this is rather inefficient, and not practicable even for rel-
atively small contexts. The second part of the proposition at least yields the
possibility to calculate the concepts of a small context by hand.

The following method is more efficient, and is recommended for computations
by hand. It is based on the following observations:

1. It suffices to determine all concept extents (or all concept intents) of (G,M, I),
since we can always determine the other part of a formal concept with the
help of the derivation operators.

2. The intersection of arbitrary many extents is an extent (and the intersection
of arbitrary intents is an intent). This follows easily from the formulae given
in the Basic Theorem. By the way: a convention that may seem absurd on
the first glance allows to include in “arbitrary many” also the case “zero”.
The convention says that the intersection of zero intents equals M and the
intersection of zero extents equals G.

3. One can determine all extents from knowing all attribute extents {m}′,
m ∈ M (and all intents from all object intents {g}′, g ∈ G) because
every extent is an intersection of attribute extents (and every intent is the
intersection of object intents). This follows from the fact that the attribute
concepts are infimum-dense and the object concepts are supremum-dense.

These observations give rise to the following procedure.

Instruction for determining all formal concepts
of a small formal context

1. Initialize a list of concept extents. To begin with, write for each attribute
m ∈M the attribute extent {m}′ to this list (if not already present).

2. For any two sets in this list, compute their intersection. If the result is a
set that is not yet in the list, then extend the list by this set. With the
extended list, continue to build all pairwise intersections.

3. If for any two sets in the list their intersection is also in the list, then
extend the list by the set G (provided it is not yet contained in the list).
The list then contains all concept extents (and nothing else).

4. For every concept extent A in the list compute the corresponding intent
A′ to obtain a list of all formal concepts (A,A′) of (G,M, I).

Example 1 We illustrate the method by means of an example from elementary
geometry. The objects of our example are seven triangles. The attributes are five
standard properties that triangles may or may not have:

18 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Triangles

abbreviation coordinates diagram

T1 (0,0) (6,0) (3,1) PP��

T2 (0,0) (1,0) (1,1)
�
�

T3 (0,0) (4,0) (1,2) QQ��

T4 (0,0) (2,0) (1,
√

3) TT��

T5 (0,0) (2,0) (5,1) ���

T6 (0,0) (2,0) (1,3) B
B�
�

T7 (0,0) (2,0) (0,1) HH

Attributes

symbol property

a equilateral
b isoceles
c acute angled
d obtuse angled
e right angled

We obtain the following formal context

a b c d e

T1 × ×
T2 × ×
T3 ×
T4 × × ×
T5 ×
T6 × ×
T7 ×

Following the above instruction, we proceed:

1. Write the attribute extents to a list.

No. extent found as

e1 := {T4} {a}′

e2 := {T1, T2, T4, T6} {b}′

e3 := {T3, T4, T6} {c}′

e4 := {T1, T5} {d}′

e5 := {T2, T7} {e}′

2. Compute all pairwise intersections, and

Explaining Data with Formal Concept Analysis 19

3. add G.
No. extent found as

e1 := {T4} {a}′

e2 := {T1, T2, T4, T6} {b}′

e3 := {T3, T4, T6} {c}′

e4 := {T1, T5} {d}′

e5 := {T2, T7} {e}′

e6 := Ø e1 ∩ e4
e7 := {T4, T6} e2 ∩ e3
e8 := {T1} e2 ∩ e4
e9 := {T2} e2 ∩ e5
e10 := {T1, T2, T3, T4, T5, T6, T7} step 3

4. Compute the intents.

Concept No. (extent , intent)

1 ({T4} , {a, b, c})
2 ({T1, T2, T4, T6} , {b})
3 ({T3, T4, T6} , {c})
4 ({T1, T5} , {d})
5 ({T2, T7} , {e})
6 (Ø , {a, b, c, d, e})
7 ({T4, T6} , {b, c})
8 ({T1} , {b, d})
9 ({T2} , {b, e})

10 ({T1, T2, T3, T4, T5, T6, T7} , Ø)

We have now computed all ten formal concepts of the triangles–context. The
last step can be skipped if we are not interested in an explicit list of all concepts,
but just in computing a line diagram.

3.10 Drawing Concept Lattices

Based on one of the lists 3. or 4., we can start to draw a diagram. Before doing
so, we give two simple definitions.

Definition 13 Let (A1, B1) and (A2, B2) be formal concepts of some formal
context (G,M, I). We say that (A1, B1) is a proper subconcept of (A2, B2)
(written as (A1, B1) < (A2, B2)), if (A1, B1) ≤ (A2, B2) and (A1, B1) 6= (A2, B2).
We call (A1, B1) a lower neighbour of (A2, B2) (written as (A1, B1) ≺ (A2, B2)),
if (A1, B1) < (A2, B2), but no formal concept (A,B) of (G,M, I) exists with
(A1, B1) < (A,B) < (A2, B2). ♦

20 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Instruction how to draw a line diagram of a small concept lattice

5. Take a sheet of paper and draw a small circle for every formal concept, in
the following manner: a circle for a concept is always positioned higher
than the all circles for its proper subconcepts.

6. Connect each circle with the circles of its lower neighbors.
7. Label with attribute names: attach the attribute m to the circle repre-

senting the concept ({m}′, {m}′′).
8. Label with object names: attach each object g to the circle representing

the concept ({g}′′, {g}′).

We now follow these instructions.

5. Draw a circle for each of the formal concepts:

6

1

9 8 7

5 2 4 3

10

6. Connect circles with their lower neighbours:

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

J
J
J
J
J
J
J

�
�
�
�
�

Explaining Data with Formal Concept Analysis 21

7. Add the attribute names:

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

J
J
J
J
J
J
J

�
�
�
�
�

a

b cde

8. Determine the object concepts

object g object intent {g}′ no. of concept

T1 {b, d} 8

T2 {b, e} 9

T3 {c} 3

T4 {a, b, c} 1

T5 {d} 4

T6 {b, c} 7

T7 {e} 5

and add the object names to the diagram:

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

J
J
J
J
J
J
J

�
�
�
�
�

a

b cde

T1T2

T3

T4

T5

T6

T7

22 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Done! Usually it takes some attempts before a nice, readable diagram is achieved.
Finally we can make the effort to avoid abbreviations and to increase the read-
ability. The result is shown in Figure 5.

3.11 Clarifying and Reducing a Formal Context

There are context manipulations that simplify a formal context without chang-
ing the diagram, except for the labeling. It is usually advisable to do these
manipulations first, before starting computations.

The simplest operation is clarification, which refers to identifying “equal
rows” of a formal context, and “equal columns” as well. What is meant is that if
a context contains objects g1, g2, . . . with {gi}′ = {gj}′ for all i, j, that is, objects
which have exactly the same attributes, then these can be replaced by a single
object, the name of which is just the list of names of these objects. The same
can be done for attributes with identical attribute extent.

Definition 14 We say that a formal context is clarified if no two of its object
intents are equal and no two of its attribute extents are equal. ♦

A stronger operation is reduction, which refers to omitting attributes that
are equivalent to combinations of other attributes (and dually for objects). For
defining reduction it is convenient to work with a clarified context.

Definition 15 An attribute m of a clarified context is called reducible if there
is a set S ⊆ M of attributes with {m}′ = S′, otherwise it is irreducible.
Reduced objects are defined dually. A formal context is called reduced, if all
objects and all attribues are irreducible. ♦

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

J
J
J
J
J
J
J

�
�
�
�
�

equilateral

isoceles

acute angled

obtuse angled

right angled

PP��
�
�

QQ��

TT��

���

B
B�
�

HH

Fig. 5. A diagram of the concept lattice of the triangle context.

Explaining Data with Formal Concept Analysis 23

{m}′ = S′ means that an object g has the attribute m if and only if it has
all the attributes from S. If we delete the column m from our cross table, no
essential information is lost because we can reconstruct this column from the
data contained in other columns (those of S). Moreover, deleting that column
does not change the number of concepts, nor the concept hierarchy, because
{m}′ = S′ implies that m is in the intent of a concept if and only if S is
contained in that intent. The same is true for reducible objects and concept
extents. Deleting a reducible object from a formal context does not change the
structure of the concept lattice.

It is even possible to remove several reducible objects and attributes simul-
taneously from a formal context without any effect on the lattice structure, as
long as the number of removed elements is finite.

Definition 16 Let (G,M, I) be a finite context, and let Girr be the set of
irreducible objects and Mirr be the set of irreducible attributes of (G,M, I). The
context (Girr,Mirr, I ∩Girr ×Mirr) is the reduced context corresponding to
(G,M, I).

For a finite lattice L let J(L) denote the set of its supremum-irreducible
elements and let M(L) denote the set of its infimum-irreducible elements. Then
(J(L),M(L),≤) is the standard context for the lattice L. ♦

Proposition 8 A finite context and its reduced context have isomorphic concept
lattices. For every finite lattice L there is (up to isomorphism) exactly one reduced
context, the concept lattice of which is isomorphic to L, namely its standard
context.

3.12 Additive and Nested Line Diagrams

In this section, we discuss possibilities to generate line diagrams both automati-
cally or by hand. A list of some dozens of concepts may already be quite difficult
to survey, and it requires practice to draw good line diagrams of concept lattices
with more than 20 elements.

The best and most versatile form of representation for a concept lattice is a
well-drawn line diagram. It is, however, tedious to draw such a diagram by hand
and one would wish an automatic generation by means of a computer. We know
quite a few algorithms to do this, but none which provides a general satisfactory
solution. It is by no means clear which qualities make up a good diagram. It
should be transparent, easily readable and should facilitate the interpretation
of the data represented. How this can be achieved in each individual case de-
pends, however, on the aim of the interpretation and on the structure of the
lattice. Simple optimization criteria (minimization of the number of edge cross-
ings, drawing in layers, etc.) often bring about results that are unsatisfactory.
Nevertheless, automatically generated diagrams are a great help: they can serve
as the starting point for drawing by hand. Therefore, we will describe simple
methods of generating and manipulating line diagrams by means of a computer.

24 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

3.12.1 Additive Line Diagrams We will now explain a method where a
computer generates a diagram and offers the possibility of improving it interac-
tively. Programming details are irrelevant in this context. We will therefore only
give a positioning rule which assigns points in the plane to the elements of
a given ordered set (P,≤). If a and b are elements of P with a < b, the point
assigned to a must be lower than the point assigned to b (i.e., it must have
a smaller y-coordinate). This is guaranteed by our method. We will leave the
computation of the edges and the checking for undesired coincidences of vertices
and edges to the program. We do not even guarantee that our positioning is
injective (which of course is necessary for a correct line diagram). This must
also be checked if necessary.

Definition 17 A set representation of an ordered set (P,≤) is an order em-
bedding of (P,≤) in the power-set of a set X, i.e., a map

rep : P → P(X)

with the property
x ≤ y ⇐⇒ repx ⊆ rep y.

♦

An example of a set representation for an arbitrary ordered set (P,≤) is the
assignment

X := P, a 7→ {x | x < a}.

In the case of a concept lattice,

X := G, (A,B) 7→ A

is a set representation.

X := M, (A,B) 7→M \B

is another set representation, and both can be combined to

X := G ∪̇M, (A,B) 7→ A ∪ (M \B).

It is sufficient to limit oneself to the irreducible objects and attributes.
For an additive line diagram of an ordered set (P,≤) we need a set rep-

resentation rep : P → P(X) as well as a grid projection

vec : X → R2,

assigning a real vector with a positive y-coordinate to each element of X. By

pos p := n+
∑

x∈rep p

vecx

we obtain a positioning of the elements of P in the plane. Here, n is a vector
which can be chosen arbitrarily in order to shift the entire diagram. By only

Explaining Data with Formal Concept Analysis 25

allowing positive y–coordinates for the grid projection we make sure that no
element p is positioned below an element q with q < p.

Every finite line diagram can be interpreted as an additive diagram with
respect to an appropriate set representation. For concept lattices we usually
use the representation by means of the irreducible objects and/or attributes.
The resulting diagrams are characterized by a great number of parallel edges,
which improves their readability. Experience shows that the set representation
by means of the irreducible attributes is most likely to result in an easily inter-
pretable diagram. Figure 5 for instance was obtaining by selecting the irreducible
attributes for the set representation.

Since the second set representation given above is somehow unnatural, we
introduce for this purpose the dual set representation.

Definition 18 A dual set representation of an ordered set (P,≤) is an order–
inversing embedding of (P,≤) in the power-set of a set X, i.e., a map

rep ′ : P → P(X)

with the property

x ≤ y ⇐⇒ rep ′x ⊇ rep ′y.

♦

Now

X := M, rep ′: (A,B) 7→ B

is a dual set representation. We request now that the grid projection allows
only negative y–coordinates. The following shows that the two ways are indeed
equivalent: Let vec′:X → R2 be given by vec′(m) := (−x,−y) where vec(m) =
(x, y) for all m ∈ X. Then all y–coordinates are indeed negative. We obtain then
the following equality:

pos(A,B) = n+
∑

m∈M\B

vec(m)

= n+
∑
m∈M

vec(m) +
∑
m∈B

− vec(m)

= n′ +
∑
m∈B

vec ′(m)

= pos ′(A,B)

where n′ := n+
∑

m∈M vec(m).
It is particularly easy to manipulate these diagrams: If we change – the set

representation being fixed – the grid projection for an element x ∈ X, this means
that all images of the order filter {p ∈ P | x ∈ rep p} are shifted by the same
distance and that all other points remain in the same position. In the case of the
set representation by means of the irreducibles these order filters are precisely
principal filters or complements of principal ideals, respectively. This means that

26 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

we can manipulate the diagram by shifting principal filters or principal ideals,
respectively, and leaving all other elements in position.

Even carefully constructed line diagrams loose their readability from a certain
size up, as a rule from around 50 elements up. One gets considerably further with
nested line diagrams which will be introduced next. However, these diagrams do
not only serve to represent larger concept lattices. They offer the possibility to
visualize how the concept lattice changes if we add further attributes.

3.12.2 Nested Line Diagrams Nested line diagrams permit a satisfactory
graphical representation of somewhat larger concept lattices. The basic idea of
the nested line diagram consists of clustering parts of an ordinary diagram and
replacing bundles of parallel lines between these parts by one line each. Thus,
a nested line diagram consists of ovals, which contain clusters of the ordinary
line diagram and which are connected by lines. In the simplest case, two ovals
which are connected by a simple line are congruent. Here, the line indicates that
corresponding circles within the ovals are direct neighbors, resp.

Furthermore, we allow that two ovals connected by a single line do not neces-
sarily have to be congruent, but they may each contain a part of two congruent
figures. In this case, the two congruent figures are drawn in the ovals as a “back-
ground structure”, and the elements are drawn as solid circles if they are part of
the respective substructures. The line connecting the two boxes then indicates
that the respective pairs of elements of the background shall be connected with
each other. An example is given in Figure 6. It is a screenshot of a library infor-
mation system which was set up for the library of the Center on Interdisciplinary
Technology Research of Darmstadt University of Technology.

Nested line diagrams originate from partitions of the set of attributes. The
basis is the following theorem:

Theorem 9 Let (G,M, I) be a context and M = M1 ∪M2. The map

(A,B) 7→ (((B ∩M1)′, B ∩M1) , ((B ∩M2)′, B ∩M2))

is a supremum-preserving order embedding of B(G,M, I) in the direct product
of B(G,M1, I ∩G×M1) and B(G,M2, I ∩G×M2). The component maps

(A,B) 7→ ((B ∩Mi)
′, B ∩Mi)

are surjective on B(G,Mi, I ∩G×Mi).

In order to sketch a nested line diagram, we proceed as follows: First of all,
we split up the attribute set: M = M1 ∪M2. This splitting up does not have
to be disjoint. More important for interpretation purposes is the idea that the
sets Mi bear meaning. Now, we draw line diagrams of the subcontexts Ki :=
(G,Mi, I ∩ G ×Mi), i ∈ {1, 2} and label them with the names of the objects
and attributes, as usual. Then we sketch a nested diagram of the product of
the concept lattices B(Ki) as an auxiliary structure. For this purpose, we draw

Explaining Data with Formal Concept Analysis 27

Geographie
Deutschland

America

G e r m a n y
Important Industrial Countries

Europe

Federal Republic*

GDR*
G e r m a n y *

Eastern Germany*

834

106

9

9 2

32
14

71
32 2

27
2

51

5
6

Forschen für die Zukunft : Wissenschaft
Jahrbuch Arbeit und Technik 1991 : Schwe

3

8

145

64

20
36

1

John von Neumann and Norbert Wiener : Fr33

1

68
1

5

Fig. 6. Nested line diagram of a library information system

a large copy of the diagram of B(K1), representing the lattice elements not by
small circles but by congruent ovals, which contain each a diagram of B(K2).

By Theorem 9 the concept lattice B(G,M, I) is embedded in this product
as a

∨
-semilattice. If a list of the elements of B(G,M, I) is available, we can

enter them into the product according to their intents. If not, we enter the object
concepts the intents of which can be read off directly from the context, and form
all suprema.

This at the same time provides us with a further, quite practicable method of
determining a concept lattice by hand: split up the attribute set as appropriate,

28 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

determine the (small) concept lattices of the subcontexts, draw their product
in form of a nested line diagram, enter the object concepts and close it against
suprema. This method is particularly advisable in order to arrive at a useful
diagram quickly.

4 Closure Systems

The algorithm that will be one central theme of our course was developed for
concept lattices, but can be rephrased without reference to Formal Concept
Analysis. The reason is that the algorithm essentially relies on a single prop-
erty of concept lattices, namely that the set of concept intents is closed under
intersections. The technique can be formulated for arbitrary intersection closed
families of sets, that is, for closure systems. Readers who are familiar with closure
systems but not with Formal Concept Analysis may prefer this approach.

But note that this means no generalization. We will show that closure systems
are not more general than systems of concept intents.

4.1 Definition and examples

Closure systems occur frequently in mathematics and computer science. Their
definition is very simple, but not very intuitive when encountered for the first
time. The reason is their higher level of abstraction: closure systems are sets of
sets with certain properties.

Let us recall some elementary notions how to work with sets of sets. For
clarity, we shall normally use small latin letters for elements, capital latin letters
for sets and calligraphic letters for sets of sets. Given a (nonempty) set S of sets,
we may ask

– which elements occur in these sets? The answer is given by the union of S,
denoted by ⋃

S := {x | x ∈ S for some S ∈ S}.

– which elements occur in each of these sets? The answer is given by the
intersection of S, denoted by⋂

S := {x | x ∈ S for every S ∈ S}.

Some confusion with this definition is caused by the fact that a set of sets
may (of course) be empty. Applying the above definition to the case S := Ø is
no problem for the union, since⋃

Ø = {x | x ∈ S for some S ∈ S} = {x | false} = Ø.

But there is a problem for the intersection, because the condition “x ∈ S for
every S ∈ S” is satisfied by all x (because there is nothing to be satisfied). But

Explaining Data with Formal Concept Analysis 29

there is no set of all x; such sets are forbidden in set theory, because they would
lead to contradictions.

For the case S = Ø the intersection is defined only with respect to some base
set M . If we work with the subsets of some specified set M (as we often do, for
example with the set of all attributes of some formal context), then we define⋂

Ø := M.

A set M with, say, n elements, has 2n subsets. The set of all subsets of a set
M is denoted P(M) and is called the power set of the set M . To indicate that
S is a set of subsets of M , we may therefore simply write S ⊆ P(M).

A closure system on a set M is a set of subsets that contains M and is closed
under intersections.

Definition 19 A closure system on a set M is a set C ⊆ P(M) satisfying

– M ∈ C, and
– if D ⊆ C, then

⋂
D ∈ C. ♦

Definition 20 A closure operator ϕ on M is a map P(M)→ P(M) assigning
a closure ϕX ⊆M to each set X ⊆M , which is

monotone: X ⊆ Y ⇒ ϕX ⊆ ϕY ,
extensive: X ⊆ ϕX, and
idempotent: ϕϕX = ϕX.

(Conditions to be satisfied for all X,Y ⊆M .) ♦

Closure operators are frequently met: their axioms describe the natural prop-
erties of a generating process. We start with some generating set X, apply the
generating process and obtain the generated set, ϕX, the closure of X. Such
generating processes occur in fact in many different variants in mathematics
and computer science.

Closure systems and closure operators are closely related. In fact, there is
a natural way to obtain from each closure operator a closure system and vice
versa. It works as follows:

Lemma 10 For any closure operator, the set of all closures is a closure system.
Conversely, given any closure system C on M , there is for each subset X of M a
unique smallest set C ∈ C containing X. Taking this as the closure of X defines
a closure operator. The two transformations are inverse to each other.

Thus closure systems and closure operators are essentially the same. We can
add to this:

Theorem 11 A closure system C on a set M can be considered as a complete
lattice, ordered by set inclusion ⊆. The infimum of any subfamily D ⊆ C is equal
to
⋂
D, and the supremum is the closure of

⋃
D. Conversely, we can find for

any complete lattice L a closure system that is isomorphic to L.

30 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

So closure systems and complete lattices are also very closely related. It comes
as no surprise that concept lattices fit well into this relationship. It follows from
the Basic Theorem (Thm. 4) that the set of all concept intents of a formal
context is closed under intersections and thus is a closure system on M . Dually,
the set of all concept extents always is a closure system on G. The corresponding
closure operators are just the two operators X 7→ X ′′ on M and G, respectively.

Conversely, given any closure system C on a set M , we can construct a formal
context such that C is the set of concept intents. It can be concluded from
the Basic Theorem that for example (C,M,3) is such a context. In particular,
whenever a closure operator on some set M is considered, we may assume that
it is the closure operator A 7→ A′′ on the attribute set of some formal context
(G,M, I).

Thus, closure systems and closure operators, complete lattices, systems of
concept intents, and systems of concept extents: all these are very closely related.
It is not appropriate to say that they are “essentially the same”, but it is true
that all these structures have the same degree of expressiveness; none of them is a
generalization of another. A substantial result proved for one of these structures
can usually be transferred to the others, without much effort.

4.2 The Next Closure Algorithm

We present a simple algorithm that solves the following task: For a given closure
operator on a finite set M , it computes all closed sets.

There are many ways to achieve this. Our algorithm is particularly simple.
We shall discuss efficiency considerations below.

We start by endowing our base set M with an arbitrary linear order, so that

M = {m1 < m2 < · · · < mn},

where n is the number of elements of M . Then every subset S ⊆ M can conve-
niently be described by its characteristic vector

εS : M → {0, 1},

given by

εS(m) :=
{

1 if m ∈ S
0 if m /∈ S .

For example, if the base set is

M := {a < b < c < d < e < f < g},

then the characteristic vector of the subset S := {a, c, d, f} is 1011010. In con-
crete examples we prefer to write a cross instead of a 1 and a blank or a dot
instead of a 0, similarly as in the cross tables representing formal contexts. The
characteristic vector of the subset S := {a, c, d, f} will therefore be written as

× . × × . × . .

Explaining Data with Formal Concept Analysis 31

Using this notation, it is easy to see if a given set is a subset of another given
set, etc.

The set P(M) of all subsets of the base set M is naturally ordered by the
subset-order ⊆. This is a complete lattice order, and (P(M),⊆) is called the
power set lattice of M . The subset-order is a partial order. We can also in-
troduce a linear or total order of the subsets, for example the lexicographic or
lectic order ≤, defined as follows: Let A,B ⊆ M be two distinct subsets. We
say that A is lectically smaller than B, if the smallest element in which A and
B differ belongs to B. Formally,

A < B :⇐⇒ ∃i.(i ∈ B ∧ i /∈ A ∧ ∀j < i(j ∈ A ⇐⇒ j ∈ B)).

For example {a, c, e, f} < {a, c, d, f}, because the smallest element in which the
two sets differ is d, and this element belongs to the larger set. This becomes even
more apparent when we write the sets as vectors and interprete them as binary
numbers:

1 0 1 0 1 1 0
l

1 0 1 1 0 1 0 .

Note that the lectic order extends the subset-order, i.e.,

A ⊆ B ⇒ A ≤ B.

The following notation is helpful:

A <i B :⇐⇒ i ∈ B ∧ i /∈ A ∧ ∀j < i (j ∈ A ⇐⇒ j ∈ B)).

In words: A <i B iff i is the smallest element in which A and B differ, and i ∈ B.

Proposition 12 1. A < B if and only if A <i B for some i ∈M .
2. If A <i B and A <j C with i < j, then C <i B.

We consider a closure operator

A 7→ A′′

on the base set M . To each subset A ⊆ M it yields9 its closure A′′ ⊆ M . Our
task is to find a list of all these closures. In principle, we might just follow the
definition, compute for each subset A ⊆M its closure A′′ and include that in the
list. The problem is that different subsets may have identical closures. So if we
want a list that contains each closure exactly once, we will have to check many
times if a computed closure already exists in the list. Moreover, the number of
subsets is exponential: a set with n elements has 2n subsets. The naive algorithm
“for each A ⊆M , compute A′′ and check if the result is already listed” therefore
requires an exponential number of lookups in a list that may have exponential
size.

9 For our algorithm it is not important how the closure is computed.

32 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

A better idea is to generate the closures in some predefined order, thereby
guaranteeing that every closure is generated only once. The reader may guess
that we shall generate the closures in lectic order. We will show how to com-
pute, given a closed set, the lectically next one. Then no lookups are necessary.
Actually, it will not even be necessary to store the list. For many applications it
will suffice to generate the list elements on demand. Therefore we do not have
to store exponentially many closed sets. Instead, we shall store just one!

To find the next closure we define for A ⊆M and mi ∈M

A⊕mi := ((A ∩ {m1, . . . ,mi−1}) ∪ {mi})′′.

We illustrate this definition by an example: Let A := {a, c, d, f} and mi := e.

↓
× . × × . × . .

We first remove all elements that are greater or equal mi from A:

↓
× . × ×

Then we insert mi

↓
× . × × × . .

and form the closure. Since we have not yet specified the closure operator ·′′
(i. e., we have not given a formal context), the example stops here with

A⊕ e = {a, c, d, e}′′.

Proposition 13 1. If i /∈ A then A < A⊕ i.
2. If B is closed and A <i B then A⊕ i ⊆ B, in particular A⊕ i ≤ B.
3. If B is closed and A <i B then A <i A⊕ i.

Theorem 14 The smallest closed set larger than a given set A ⊂M with respect
to the lectic order is

A⊕ i,

i being the largest element of M with A <i A⊕ i.

Now we are ready to give the algorithm for generating all extents of a given
context (G,M, I): The lectically smallest extent is ∅′′. For a given set A ⊂ G
we find the lectically next extent by checking all elements i of G \ A, starting
from the largest one and continuing in a descending order until for the first time
A <i A ⊕ i. A ⊕ i then is the “next” extent we have been looking for. These
three steps are made explicit in Figures 7 to 9.

Explaining Data with Formal Concept Analysis 33

Algorithm First Closure
Input: A closure operator X 7→ X ′′ on a finite set M .
Output: The closure A of the empty set.
begin

A := Ø′′;

end.

Fig. 7. First Closure.

Algorithm Next Closure
Input: A closure operator X 7→ X ′′ on a finite set M ,

and a subset A ⊆M .
Output: A is replaced by the lectically next closed set.
begin

i := largest element of M;

i := succ(i);
success := false;

repeat

i := pred(i);
if i /∈ A then

begin

A := A ∪ {i};
B := A′′;
if B \A contains no element < i then

begin

A:= B;

success := true;

end;

end else A := A \ {i};
until erfolg or i = smallest element of M.

end.

Fig. 8. Next Closure.

5 Implications

Have another look at the concept lattice shown in Figure 4. The six attributes
describe how two unit squares can be placed with respect to each other. Each of
the ten objects is a pair of unit squares, representing a possible placement. These
ten pairs are representatives for an infinite set of possible positions that such
pairs of squares may have. It is not stated, but perhaps expected by the reader,
that these ten examples cover all possible combinations of the given attributes.

Such a situation occurs often: attributes are given, but objects are not known,
or too many to handle them completely. We then have to study the possible
attribute combinations, the attribute logic of the respective situation.

34 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Algorithm All Closures
Input: A closure operator X 7→ X ′′ on a finite set M .
Output: All closed sets in lectic order.
begin

First Closure;

repeat

Output A;
Next Closure;

until not success;

end.

Fig. 9. Generating all closed sets.

Let M be some set. We shall call the elements of M attributes, so as if we
consider a formal context (G,M, I). However we do not assume that such a
context is given or explicitly known.

Definition 21 An implication between attributes in M is an expression of
the form A→ B where A and B are subsets of M . The set A is the premise of
the implication and B is its conclusion.

A subset T ⊆ M respects an implication A → B if A 6⊆ T or B ⊆ T . We
then also say that T is a model of the implication A → B, and denote this
by T |= A → B. T respects a set L of implications if T respects every single
implication in L. The implication A→ B holds in a set {T1, T2, . . .} of subsets
if each of these subsets respects A→ B. With

Imp{T1, T2, . . .}

we denote the set of all implications that hold in {T1, T2, . . .}. ♦

5.1 Implications of a Formal Context

Now let us consider the special case of implications of a formal context.

Definition 22 A → B holds in a context (G,M, I) if every object intent
respects A → B, that is, if each object that has all the attributes in A also
has all the attributes in B. We then also say that A → B is an implication of
(G,M, I). ♦

Proposition 15 An implication A → B holds in (G,M, I) if and only if B ⊆
A′′, which is equivalent to A′ ⊆ B′. It then automatically holds in the set of all
concept intents as well.

An implication A→ B holds in (G,M, I) if and only if each of the implications

A→ m, m ∈ B,

Explaining Data with Formal Concept Analysis 35

holds (A→ m is short for A→ {m}). We can read this off from a concept lattice
diagram in the following manner: A → m holds if the infimum of the attribute
concepts corresponding to the attributes in A is less or equal than the attribute
concept for m, formally if ∧

{µa | a ∈ A} ≤ µm.

A→ B holds in (G,M, I) if∧
{µa | a ∈ A} ≤

∧
{µb | b ∈ B}.

5.2 Semantic and Syntactic Implication Inference

As we will see, it is not necessary to store all implications of a formal context. We
will discuss how implications can be derived from already known implications.
First we discuss which kind of inference we want to model. This is given by the
so-called semantical inference. Then we discuss a calculus (syntactic inference),
and argue that the calculus is correct and complete with respect to our semantics.

5.3 When does an implication follow from other implications
(semantically)?

Proposition 16 If L is a set of implications in M , then

ModL := {T ⊆M | T respects L}

is a closure system on M . If L is the set of all implications of a context, then
ModL is the system of all concept intents.

The respective closure operator

X 7→ L(X)

can be described as follows: For a set X ⊆M , let

XL := X ∪
⋃
{B | A→ B ∈ L, A ⊆ X}.

Form the sets XL, XLL, XLLL, . . . until10 a set L(X) := XL...L is obtained with
L(X)L = L(X). Later on we shall discuss how to do this computation efficiently.

It is not difficult to construct, for any given set L of implications in M ,
a formal context such that ModL is the set of concept intents of this formal
context. In fact, (ModL,M,3) will do.

Definition 23 An implication A → B follows (semantically) from a set L
of implications in M if each subset of M respecting L also respects A → B. A
family of implications is called closed if every implication following from L is
already contained in L. A set L of implications of (G,M, I) is called complete,
if every implication that holds in (G,M, I) follows from L. ♦

In other words: An implication A→ B follows semantically from L if it holds
in every model of L.

10 If M is infinite, this may require infinitely many iterations.

36 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

5.4 When does an implication follow from other implications
(syntactically)?

The semantic definition of implication inference has a syntactic counterpart. We
can give sound and complete inference rules (known as Armstrong rules [1])
and an efficient algorithm for inference testing.

Proposition 17 A set L of implications in M is closed if and only if the fol-
lowing conditions are satisfied for all W,X, Y, Z ⊆M :

1. X → X ∈ L,
2. If X → Y ∈ L, then X ∪ Z → Y ∈ L,
3. If X → Y ∈ L and Y ∪ Z →W ∈ L, then X ∪ Z →W ∈ L.

Readers with a background in Computational Logic may prefer a different
notation of these Armstrong rules:

X → X
,

X → Y

X ∪ Z → Y
,

X → Y, Y ∪ Z →W

X ∪ Z →W
.

The proposition says that a set of implications is the set of all implications of
some context if and only if it is closed with respect to these rules. In other words,
an implication follows from other implications if and only if it can be derived
from these by successive applications of these rules. In particular, semantic and
syntactic inference are the same.

However, these rules do not always suggest the best proof strategy. Instead,
we may note the following:

Proposition 18 An implication X → Y follows from a list L of implications if
and only if Y ⊆ L(X).

We give an algorithm that efficiently computes the closure L(X) for any given
set X. Such algorithms are used in the theory of relational data bases for the
study of functional dependencies.

We can give a rough complexity estimation of the algorithm in Figure 10.
Except for manipulations of addresses, the main effort is to apply the implica-
tions. Each implication is applied at most once, and each application requires
a simple set operation. Therefore the time required by the closure algorithm is
essentially linear in the size of the input L.

Summarizing these considerations we learn that implication inference is easy:
to check if an implication X → Y follows from a list L of implications, it suffices
to check if Y ⊆ L(X) (by Proposition 18), and this can be done in time linear
in the size of the input.

In other words: implications are easy to use, much easier than many other
logical constructs. This may be a reason why implications are popular, and
perhaps be part of an explanation why our simple theory of formal concepts is
so useful.

Explaining Data with Formal Concept Analysis 37

Algorithm Closure
Input: A list L =: [L[1], . . . ,L[n]] of implications in M

and a set X ⊆M .
Output: The closure L(X) of X.

begin

for all x ∈M do

begin

avoid[x] := {1, . . . , n};
for i := 1 to n do with A→ B := L[i]
if x ∈ A then avoid[x] :=avoid[x] \ {i};

end;

used imps :=Ø;

old closure :={−1}; (∗ some element not in M ∗);
new closure := X;

while new closure 6= old closure do

begin

old closure := new closure;

T := M \new closure;

usable imps :=
⋂

x∈T avoid[x];
use now imps := usable imps \ used imps;

used imps := usable imps;

for all i ∈ use now imps with A→ B := L[i] do

new closure := new closure ∪ B;

end;

L(X) :=new closure;

end.

Fig. 10. Algorithm Closure.

5.5 The Stem Base

The number of implications that hold in a given situation can be very large.
For example, if there is only one closed set, M , then every implication holds. If
M has n elements, then these are some 22n implications. But this is ridiculous,
because all these implications can be inferred from a single one, namely from
∅ →M .

We see from this trivial example that the set of all implications of a given
formal context may be highly redundant. It is a natural question to ask for a
small implicational base, from which everything else follows. More precisely we
ask, for any given formal context (G,M, I), for a list L of implications that is

– sound (i.e., each implication in L holds in (G,M, I)),
– complete (i.e., each implication that holds in (G,M, I) follows from L), and
– non-redundant (i.e., no implication in L follows from other implications in
L).

It is easy to see that (for finite M) such sets L exist. We may start with some
sound and complete set of implications, for example, with the set of all im-

38 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

plications that hold in (G,M, I). We then can successively remove redundant
implications from this set, until we obtain a sound, complete, non redundant
set.

But this is an unrealistic procedure. We therefore look for a better way to
construct an implicational base. Duquenne and Guigues [5] have shown that
there is a natural choice, the stem base.

The following recursive definition is rather irritating at the first glance. We
define a pseudo-closed set to be a set which is not closed, but contains the closure
of every pseudo-closed proper subset.

Definition 24 Let X 7→ X ′′ be a closure operator on the finite set M . We call
a subset P ⊆M pseudo-closed, if (and only if)

– P 6= P ′′, and
– if Q ⊂ P is a pseudo-closed proper subset of P , then Q′′ ⊆ P . ♦

This is a valid recursive definition. It is not circular, because the pseudo-
closed set Q must have fewer elements than P , because it is a proper subset.11

Reformulating this definition for formal contexts, we obtain the following
definition.

Definition 25 Let (G,M, I) be a formal context withM finite. A subset P ⊆M
is a pseudo intent of (G,M, I) iff

– P is not a concept intent, and
– if Q ⊂ P is a pseudo-closed proper subset of P , then there is some object
g ∈ G such that Q ⊆ g′ but P 6⊆ g′. ♦

Theorem 19 Let M be finite and let X 7→ X ′′ be some closure operator on M .
The set of implications

{P → P ′′ | P pseudo-closed }

is sound, complete, and non redundant.

The implication set in the theorem deserves a name. It is sometimes called
the Duquenne–Guigues–base. We simply call it the stem base of the closure
operator (or the stem base of a given formal context, if the closure operator is
given that way). In practice one uses a slightly different version of the stem base,
namely

{P → P ′′ \ P | P pseudo-closed }.
The stem base is not the only implicational base, but it plays a special rôle.

For example, no implicational base can consist of fewer implications, as the next
proposition shows:

Proposition 20 Every sound and complete set of implications contains, for
every pseudo closed set P , an implication A→ B with A′′ = P ′′.
11 ‘Recursive’ is meant here with respect to set inclusion. Compare with the following

recursive definition: A natural number is prime iff it is greater than 1 and not divisible
by any smaller prime number.

Explaining Data with Formal Concept Analysis 39

5.6 Computing the Stem Base

As before, consider a closure operator X 7→ X ′′ on a finite set M . We start with
a harmless definition:

Definition 26 A set Q ⊆ M is •-closed if it contains the closure of every
•-closed set that is properly contained in Q.

Formally, Q is •-closed iff for each •-closed set Q0 ⊂ Q with Q0 6= Q we have
Q′′0 ⊆ Q. ♦

This is a simple (but convenient) renaming, as the next proposition shows.

Proposition 21 A set is •-closed iff it is either closed or pseudo-closed.

Observe that if Q contains the closure of every •-closed subset, then Q must be
closed.

The first crucial step towards finding pseudo-closed sets is this:

Proposition 22 The intersection of •-closed sets is •-closed.

In other words: the •-closed sets form a closure system. We have described
an algorithm to compute, for a given closure operator, all closed sets. We can
apply this algorithm for computing all •-closed sets, provided that we can access
the corresponding closure operator. This is easy. We prepare the result with a
proposition that is an immediate consequence of Definition 26.

Proposition 23 Q is •-closed iff Q satisfies the following condition:

If P ⊂ Q, P 6= Q, is pseudo-closed, then P ′′ ⊆ Q.

Proposition 23 shows how to find the quasi closure of an arbitrary set S ⊆M :
As long as the condition in the proposition is violated, we (are forced to) extend
the set S, until we finally reach a fixed point.

Let L be the stem base12. Define, for X ⊆M ,

XL
•

:= X ∪
⋃
{P ′′ | P → P ′′ ∈ L, P ⊂ X,P 6= X},

iterate by forming

XL
•L•

, XL
•L•L•

, . . .

until a set

L•(X) := XL
•L•...L•

is obtained that satisfies

L•(X) = L•(X)L
•
.

Proposition 24 L•(X) is the smallest •-closed set containing X.

40 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Algorithm L•–Closure
Input: A list L =: [L[1], . . . ,L[n]] of implications in M

and a set X ⊆M .
Output: The closure L(X) of X.

begin

for all x ∈M do

begin

avoid[x] := {1, . . . , n};
for i := 1 to n do with A→ B := L[i]
if x ∈ A then avoid[x] :=avoid[x] \ {i};

end;

used imps :=Ø;

old closure :={−1}; (∗ some element not in M ∗);
new closure := X;

while new closure 6= old closure do

begin

old closure := new closure;

T := M \ new closure;

usable imps :=
⋂

x∈T avoid[x] ∩
⋃

x∈new closure avoid[x];
use now imps := usable imps \ used imps;

used imps := usable imps;

for all i ∈ use now imps with A→ B := L[i] do

new closure := new closure ∪ B;

end;

L(x) :=new closure;

end.

Fig. 11. Computing the L•–Closure.

Note that in order to find the quasi closure, we use only pseudo-closed sets
which are contained in the closure and therefore in particular are lectically
smaller than the quasi closure. Thus, the same result is obtained if L is a sub-
set of the stem base, containing thoses implications P → P ′′ for which P is
pseudo-closed and lectically smaller than L•(X).

Now it is easy to give an algorithm to compute all pseudo-closed sets for
a given closure operator. We use the Next Closure algorithm applied to the
closure system of •-closed sets. For short, we shall refer to this as the next
quasi closure after a given set A, next L• closure(A). This produces all
•-closed sets in lectic order. We record only those which are not closed. This
yields a list of all pseudo-closed sets.

Since the •-closed sets are generated in lectic order, we have, at each step,
the full information about the lectically smaller pseudo-closed sets. We have
seen that this suffices to compute the “quasi closure” operator. The algorithm

12 The reader might wonder why we use the stem base to construct the stem base. As
we shall see soon, this works, due to the recursive definition of the stem base.

Explaining Data with Formal Concept Analysis 41

in Figure 12 uses a dynamic list L. Whenever a pseudo-closed set P is found,
the corresponding implication P → P ′′ is included in the list. Since the pseudo-
closed sets are found in lectic order, this makes sure that at any step we have
sufficient information to compute the quasi closure.

Algorithm Stem base
Input: A closure operator X 7→ X ′′ on a finite set M ,

for example given by a formal context (G,M, I).
Output: The stem base L

begin

L := Ø;

A := Ø;

while A 6= M do

begin

if A 6= A′′ then L := L ∪ {A→ A′′};
A := next L• closure(A);

end;

end.

Fig. 12. Computing the stem base for a given closure operator.

Example 2 We compute the stem base for the context of triangles given in
Example 1. The steps are shown in Fig. 13. The first column contains all quasi
closed sets, in lectic order. The pseudo-closed sets are precisely those which are
not closed (see middle column). Each pseudo-closed set gives rise to an entry in
the stem base (last column, short form).

Since the closure operator is given in terms of a formal context, we may
speak of quasi intents and pseudo intents instead of •-closed sets or pseudo-
closed sets. We see that the algorithm generates all quasi intents to find the
stem base. In other words, to compute all pseudo intents we also compute all
intents, possibly exponentially many. This looks like a rather unefficient method.
Unfortunately, we do not know of a better strategy. It is an open problem to
find a better algorithm for the stem base. In practice, the algorithm is not fast,
but nevertheless very useful.

6 Conclusion

Much more can be said about FCA, here we only dealt with the foundations of
the discipline. Over the past decades, the field has expanded in many directions.
We give a few examples of central topics in FCA which weren’t discussed here.

42 Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

•-closed set closed ? stem base implication

Ø yes
{e} yes
{d} yes
{d, e} no {d, e} → {a, b, c}
{c} yes
{c, e} no {c, e} → {a, b, d}
{c, d} no {c, d} → {a, b, e}
{b} yes
{b, e} yes
{b, d} yes
{b, c} yes
{a} no {a} → {b, c}

{a, b, c} yes
{a, b, c, d, e} yes

Fig. 13. Steps in the stem base algorithm

– Conceptual Scaling. One can argue that formal contexts are only able to
represent very limited information (essentially yes/no). The idea to allow
for proper entries in the tables rather than just crosses or blanks leads to
the notion of multi-valued contexts which are closer to database tables typi-
cally encountered in practice. A very generic method to make the machinery
of FCA applicable to data represented as multi-valued contexts is called
conceptual scaling, where this data is transformed back into plain formal
contexts.

– Association Rules. Real world data is often noisy and error-prone. In
order to still extract meaningful implicational information from such data,
one needs to formalize the notion of implications which do not hold always
(but often). Association rules are such implications that come with two
values, support (the fraction of all objects where the implication is applicable
and valid) and confidence (the fraction of objects satisfying the implication
among all objects where it is applicable). For association rules, one can again
characterize semantic and syntactic consequences and establish implicational
bases [7].

– Triadic FCA. The readers might ask themselves, why the incidence relation
used to characterize data in FCA is a binary one. Couldn’t it have a higher
arity? Indeed, people have investigated triadic FCA [6], where the incidence
relation is a ternary one between objects, attributes and conditions. Some of
the notions of FCA can be nicely generalized to the triadic case (and even
to incidence relations of higher arity, giving rise to polyadic FCA [8]) but
others are specific to the binary case.

– Attribute Exploration. Sometimes the data of a domain is only partially
recorded in a formal context, but there are experts who know the full domain
of interest. In that case, algorithms exist which can complete the context and

Explaining Data with Formal Concept Analysis 43

determine all the implications in an interactive process, where an expert is
repeatedly asked questions about the domain [3].

Acknowledgments.

We are grateful for the valuable feedback from the anonymous reviewers, which
helped greatly to improve this work. Special thanks to Thomas Feller for his
very careful proof-reading. This work has been funded by the European Research
Council via the ERC Consolidator Grant No. 771779 (DeciGUT)

References

1. Armstrong, W.: Dependency structures of data base relationships. In: Proc. of IFIP
Congress. pp. 580–583 (1974)

2. Arnauld, A., Nicole, P.: La logique ou l’art de penser — contenant, outre les règles
communes, plusieurs observations nouvelles, propres à former le jugement. Ch.
Saveux, Paris (1668)

3. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer (2016)
4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer (1997)
5. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resul-

tant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95,
5–18 (1986)

6. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis,
G., Levinson, R., Rich, W., Sowa, J.F. (eds.) Proc. 3rd Int. Conf. on Conceptual
Structures (ICCS 1995). LNCS, vol. 954, pp. 32–43. Springer (1995)

7. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines (29), 35–55 (1991)

8. Voutsadakis, G.: Polyadic concept analysis. Order - A Journal on The Theory of
Ordered Sets and Its Applications 19(3), 295–304 (2002)

