
Notation3 as an Existential Rule Language

Dörthe Arndt1 and Stephan Mennicke2

1 Computational Logic Group, Technische Universität Dresden, Dresden, Germany
2 Knowledge-Based Systems Group, Technische Universität Dresden, Dresden, Germany

{firstname.lastname}@tu-dresden.de

Abstract. Notation3 Logic (N3) is an extension of RDF which allows the user
to write rules introducing new blank nodes to RDF graphs. Many applications
(e.g., ontology mapping) rely on this feature as blank nodes – used directly or in
auxiliary constructs – are omnipresent on the Web. However, the number of fast
N3 reasoners fully supporting blank node introduction is rather limited. On the
other hand, there are engines like VLog or Nemo not directly supporting Seman-
tic Web rule formats but developed for very similar constructs: existential rules. In
this paper we investigate the relation between N3 rules with blank nodes in their
heads and existential rules. We identify a subset of N3 which can be mapped di-
rectly to existential rules and define such a mapping preserving the equivalence of
N3 formulae. To also illustrate that N3 reasoning could benefit from our transla-
tion, we employ this mapping in an implementation to compare the performance
of the N3 reasoners EYE and cwm to VLog and Nemo on N3 rules and their
mapped counterparts. Our tests show that the existential rule reasoners perform
particularly well for use cases containing many facts while the EYE reasoner is
very fast when dealing with a high number of dependent rules. We thus provide
a tool enabling the Semantic Web community to directly use existing and future
existential rule reasoners and benefit from the findings of this active community.

Keywords: Notation3 · RDF · Blank Nodes · Existential rules.

1 Introduction

Notation3 Logic (N3) [28,9] is an extension of the Resource Description Framework
(RDF) which allows the user to quote graphs, to express rules, and to apply built-in
functions on the components of RDF triples. Facilitated by reasoners like cwm [7],
Data-Fu [21], or EYE [27], N3 rules directly consume and produce RDF graphs. This
makes N3 well-suited for rule exchange on the Web. N3 supports the introduction of
new blank nodes through rules, that is, if a blank node appears in the head3 of a rule,
each new match for the rule body produces a new instance of the rule’s head containing
fresh blank nodes. This feature is interesting for many use cases – mappings between
different vocabularies include blank nodes, workflow composition deals with unknown
existing instances [26] – but it also impedes reasoning tasks: from a logical point of view

3 To stay consistent across frameworks, we use the terms head and body throughout the whole
paper. The head is the part of the rule occurring at the end of the implication arrow, the body
the part at its beginning (backward rules: “head← body”, forward rules: “body→ head”).

2 D. Arndt & S. Mennicke

these rules contain existentially quantified variables in their heads. Reasoning with such
rules is known to be undecidable in general and very complex on decidable cases [5,25].

Even though recent projects like jen34 or RoXi [12] aim at improving the situation,
the number of fast N3 reasoners fully supporting blank node introduction is low. This
is different for reasoners acting on existential rules, a concept very similar to blank-
node-producing rules in N3, but developed for databases. Sometimes it is necessary to
uniquely identify data by a value that is not already part of the target database. One tool
to achieve that are labeled nulls which – just as blank nodes – indicate the existence
of a value. This problem from databases and the observation that rules may provide
a powerful, yet declarative, means of computing has led to more extensive studies of
existential rules [5,14]. Many reasoners like for example VLog [15] or Nemo [23] apply
dedicated strategies to optimize reasoning with existential rules.

This paper aims to make existing and future optimizations on existential rules usable
in the Semantic Web. We introduce a subset of N3 supporting existential quantification
but ignoring features of the language not covered in existential rules, like for exam-
ple built-in functions or lists. We provide a mapping between this logic and existential
rules: The mapping and its inverse both preserve equivalences of formulae, enabling N3
reasoning via existential rule technologies. We implement this mapping in python and
compare the reasoning performance of the existential rule reasoners Vlog and Nemo,
and the N3 reasoners EYE and cwm for two benchmarks: one applying a fixed set of
rules on a varying size of facts, and one applying a varying set of highly dependent rules
to a fixed set of facts. In our tests VLog and Nemo together with our mapping outper-
form the traditional N3 reasoners EYE and cwm when dealing with a high number of
facts while EYE is the fastest on large dependent rule sets. This is a strong indication
that our implementation will be of practical use when extended by further features.

We motivate our approach by providing examples of N3 and existential rule for-
mulae, and discuss how these are connected, in Sect. 2. In Sect. 3 we provide a more
formal definition of Existential N3 (N3∃), introduce its semantics and discuss its prop-
erties. We then formally introduce existential rules, provide the mapping from N3∃ into
this logic, and prove its truth-preserving properties in Sect. 4. Sect. 5 discusses our
implementation and provides an evaluation of the different reasoners. In Sect. 6 we dis-
cuss the related work to then conclude our paper with Sect. 7. We outsourced all formal
proofs to a technical appendix [3]. Furthermore, the code needed for reproducing our
experiments is available on GitHub (https://github.com/smennicke/n32rules).

2 Motivation

N3 has been inroduced as a rule-based extension of RDF. As in RDF, N3 knowledge is
stated in triples consisting of subject, predicate, and object. In ground triples these can
either be Internationalized Resource Identifiers (IRIs) or literals. The expression

:lucy :knows :tom. (1)
means5 that “lucy knows tom”. Sets of triples are interpreted as their conjunction. Like
RDF, N3 supports blank nodes, usually starting with _:, which stand for (implicitly)

4 https://github.com/william-vw/jen3
5 We omit name spaces for brevity.

https://github.com/smennicke/n32rules
https://github.com/smennicke/n32rules
https://github.com/william-vw/jen3

Notation3 as an Existential Rule Language 3

existentially quantified variables. The statement
:lucy :knows _:x. (2)

means “there exists someone who is known by lucy”. N3 furthermore supports implic-
itly universally quantified variables, indicated by a leading question mark (?), and im-
plications which are stated using graphs, i.e., sets of triples, surrounded by curly braces
({}) as body and head connected via an arrow (=>). The formula

{:lucy :knows ?x}=>{?x :knows :lucy}. (3)
means that “everyone known by Lucy also knows her”. Furthermore, N3 allows the use
of blank nodes in rules. These blank nodes are not quantified outside the rule like the
universal variables, but in the rule part they occur in, that is either in its body or its head.

{?x :knows :tom}=>{?x :knows _:y. _:y :name "Tom"}. (4)
means “everyone knowing Tom knows someone whose name is Tom”.

This last example shows, that N3 supports rules concluding the existence of certain
terms which makes it easy to express them as existential rules. An existential rule is a
first-order sentence of the form

∀x,y.ϕ[x,y]→∃z.ψ[y,z] (5)
where x,y,z are mutually disjoint lists of variables, ϕ and ψ are conjunctions of atoms
using only variables from the given lists, and ϕ is referred to as the body of the rule
while ψ is called the head. Using the basic syntactic shape of (5) we go through all the
example N3 formulae (1)–(4) again and represent them as existential rules. To allow for
the full flexibility of N3 and RDF triples, we translate each RDF triple, just like the one
in (1) into a first-order atom tr(:lucy,:knows,:tom). Here, tr is a ternary predicate
holding subject, predicate, and object of a given RDF triple. This standard translation
makes triple predicates (e.g., :knows) accessible as terms. First-order atoms are also
known as facts, finite sets of facts are called databases, and (possibly infinite) sets of
facts are called instances. Existential rules are evaluated over instances (cf. Sect. 4).

Compared to other rule languages, the distinguishing feature of existential rules is
the use of existentially quantified variables in the head of rules (cf. z in (5)). The N3
formula in (2) contains an existentially quantified variable and can, thus, be encoded as

→∃x. tr(:lucy,:knows,x) (6)
Rule (6) has an empty body, which means the head is unconditionally true.
Rule (6) is satisfied on instances containing any fact tr(:lucy,:knows,_) (e.g.,
tr(:lucy,:knows,:tim) so that variable x can be bound to :tim).

The implication of (3) has
∀x. tr(:lucy,:knows,x)→ tr(x,:knows,:lucy) (7)

as its (existential) rule counterpart, which does not contain any existentially quantified
variables. Rule (7) is satisfied in the instance

I1 = {tr(:lucy,:knows,:tom), tr(:tom,:knows,:lucy)}
but not in K1 = {tr(:lucy,:knows,:tom)}
since the only fact in K1 matches the body of the rule, but there is no fact reflecting
on its (instantiated) head (i.e., the required fact tr(:tom,:knows,:lucy) is missing).
Ultimately, the implication (4) with blank nodes in its head may be transferred to a rule

4 D. Arndt & S. Mennicke

with an existential quantifier in the head:
∀x. tr(x,:knows,:tom)→∃y. tr(x,:knows,y)∧ tr(y,:name,"Tom"). (8)

It is clear that rule (8) is satisfied in instance
I2 = {tr(:lucy,:knows,:tom), tr(:tom,:name,"Tom")}.

However, instance K1 does not satisfy rule (8) because although the only fact satisfies
the rule’s body, there are no facts jointly satisfying the rule’s head.

Note, for query answering over databases and rules, it is usually not required to
decide for a concrete value of y (in rule (8)). Many implementations, therefore, use
some form of abstraction: for instance, Skolem terms. VLog and Nemo implement the
standard chase which uses another set of terms, so-called labeled nulls. Instead of in-
jecting arbitrary constants for existentially quantified variables, (globally) fresh nulls
are inserted in the positions existentially quantified variables occur. Such a labeled null
embodies the existence of a constant on the level of instances (just like blank nodes in
RDF graphs). Let n be such a labeled null. Then I2 can be generalized to
I3 = {tr(:lucy,:knows,:tom), tr(:lucy,:knows,n), tr(n,:name,"Tom")},

on which rule (8) is satisfied, binding null n to variable y. I3 is, in fact, more gen-
eral than I2 by the following observation: There is a mapping from I3 to I2 that is a
homomorphism (see Sect. 4.1 for a formal introduction) but not vice versa. The homo-
morphism here maps the null n (from I3) to the constant :tom (in I2). Intuitively, the
existence of a query answer (for a conjunctive query) on I3 implies the existence of a
query answer on I2. Existential rule reasoners implementing some form of the chase
aim at finding the most general instances (universal models) in this respect [18].

In the remainder of this paper, we further analyze the relation between N3 and
existential rules. First, we give a brief formal account of the two languages and then
provide a correct translation function from N3 to existential rules.

3 Existential N3

In the previous section we introduced essential elements of N3, namely triples and rules.
N3 also supports more complex constructs like lists, nesting of rules, and quotation. As
these features are not covered by existential rules, we define a subset of N3 excluding
them, called existential N3 (N3∃).6 We base our definitions on so-called simple N3
formulae [4, Chapter 7], these are N3 formulae which do not allow for nesting.

3.1 Syntax

N3∃ relies on the RDF alphabet. As the distinction is not relevant in our context, we
consider IRIs and literals together as constants. Let C be a set of such constants, U
a set of universal variables (starting with ?), and E a set of existential variables (i.e.,
blank nodes). If the sets C, U , E, and {{,},=>,.} are mutually disjoint, we call A :=
C ∪U ∪ E ∪ {{,},=>,.} an N3 alphabet. Fig. 1 provides the syntax of N3∃ over A.

6 This fragment is expressive enough to support basic use cases like user-defined ontology map-
ping. Here it is important to note that RDF lists can be expressed using first-rest pairs.

Notation3 as an Existential Rule Language 5

f ::= formulae: t ::= terms:
t t t. atomic formula ex existential variables
{e}=>{e}. implication c constants
f f conjunction

n ::= N3 terms: e ::= expressions:
uv universal variables n n n. triple expression
t terms e e conjunction expression

Fig. 1. Syntax of N3∃

N3∃ fully covers RDF – RDF formulae are conjunctions of atomic formulae – but
allows literals and blank nodes to occur in subject, predicate, and object position. On top
of the triples, it supports rules containing existential and universal variables. Note, that
the syntax allows rules having new universal variables in their head like for example

{:lucy :knows :tom}=>{?x :is :happy}. (9)
which results in a rule expressing "if lucy knows tom, everyone is happy". This implica-
tion is problematic: Applied on triple (1), it yields ?x :is :happy. which is a triple
containing a universal variable. Such triples are not covered by our syntax, the rule thus
introduces a fact we cannot express. Therefore, we restrict N3∃ rules to well-formed
implications which rely on components. A component of a formula or an expression is
an N3 term which does not occur nested in a rule. More formally, let f be a formula or
an expression over an alphabet A. The set comp(f) of components of f is defined as:

– If f is an atomic formula or a triple expression of the form t1 t2 t3., comp(f) =
{t1, t2, t3}.

– If f is an implication of the form {e1}=>{e2}., then comp(f) = {{e1},{e2}}.
– If f is a conjunction of the form f1 f2, then comp(f) = comp(f1)∪ comp(f2).

A rule {e1}=>{e2}. is called well-formed if (comp(e2) \ comp(e1))∩U = /0. For
the remainder of this paper we assume all implications to be well-formed.

3.2 Semantics

In order to define the semantics of N3∃ we first note, that in our fragment of N3 all
quantification of variables is only defined implicitly. The blank node in triple (2) is
understood as an existentially quantified variable, the universal in formula (3) as uni-
versally quantified. Universal quantification spans over the whole formula – variable ?x
occurring in body and head of rule (3) is universally quantified for the whole implica-
tion – while existential quantification is local – the conjunction in the head of rule (4)
is existentially quantified there. Adding new triples as conjuncts to formula (4) like

:lucy :knows _:y. _:y :likes :cake. (10)
leads to the new statement that "lucy knows someone who likes cake" but even though
we are using the same blank node identifier _:y in both formulae, the quantification of
the variables in this formula is totally seperated and the person named “Tom” is not nec-
essarily related to the cake-liker. With the goal to deal with this locality of blank node

6 D. Arndt & S. Mennicke

scoping, we define substitutions which are only applied on components of formulae and
leave nested elements like for example the body and head of rule (3) untouched.

A substitution σ is a mapping from a set of variables X ⊂U ∪E to the set of N3
terms. We apply σ to a term, formula or expression x as follows:

– xσ = σ(x) if x ∈ X ,
– (s p o)σ = (sσ)(pσ)(oσ) if x = s p o is an atomic formula or a triple expression,
– (f1 f2)σ = (f1σ)(f2σ) if x = f1 f2 is a conjunction,
– xσ = x else.

For formula f = _:x :p :o. {_:x :b :c}=>{_:x :d :e}., substitution σ and
:x ∈ dom(σ), we get: f σ = σ(:x):p :o. {_:x :b :c}=>{_:x :d :e}.7 We
use the substitution to define the semantics of N3∃ which additionally makes use of
N3 interpretations I = (D,a,p) consisting of (1) the domain of I, D; (2) a : C→ D
called the object function; (3) p : D→ 2D×D called the predicate function.

Just as the function IEXT in RDF’s simple interpretations [22], N3’s predicate func-
tion maps elements from the domain of discourse to a set of pairs of domain elements
and is not applied on relation symbols directly. This makes quantification over predi-
cates possible while not exceeding first-order logic in terms of complexity. To introduce
the semantics of N3∃, let I= (D,a,p) be an N3 interpretation. For an N3∃ formula f :

1. If W = comp(f)∩E ̸= /0, then I |= f iff I |= f µ for some substitution µ : W →C.
2. If comp(f)∩E = /0:

(a) If f is an atomic formula t1 t2 t3, then I |= t1 t2 t3. iff (a(t1),a(t3)) ∈ p(a(t2)).
(b) If f is a conjunction f1 f2, then I |= f1 f2 iff I |= f1 and I |= f2.
(c) If f is an implication, then I |= {e1}=>{e2} iff I |= e2σ if I |= e1σ for all

substitutions σ on the universal variables comp(e1)∩U by constants.

The semantics as defined above uses a substitution into the set of constants in-
stead of a direct assignment to the domain of discourse to interpret quantified variables.
This design choice inherited from N3 ensures referential opacity of quoted graphs and
means, in essence, that quantification always refers to named domain elements.

With that semantics, we call an interpretation M model of a dataset Φ , written as
M |=Φ , if M |= f for each formula f ∈Φ . We say that two sets of N3∃ formulae Φ and
Ψ are equivalent, written as Φ ≡Ψ , if for all interpretations M: M |= Φ iff M |=Ψ . If
Φ = {φ} and Ψ = {ψ} are singleton sets, we write φ ≡ ψ omitting the brackets.

Piece Normal Form N3∃ formulae consist of conjunctions of triples and implications.
For our goal of translating such formulae to existential rules, it is convenient to consider
sub-formulae seperately. Below, we therefore define the so-called Piece Normal Form
(PNF) for N3∃ formulae and show that each such formula f is equivalent to a set of
sub-formulae Φ (i.e., Φ ≡ f) in PNF. We proceed in two steps.

First, we separate formulae based on their blank node components. If two parts of
a conjunction share a blank node component, as in formula (10), we cannot split the

7 Note that the semantics of simple formulae on which N3∃’s semantics is based, relies on two
ways to apply a substitution which is necessary to handle nested rules, since such constructs
are excluded in N3∃, we simplified here.

Notation3 as an Existential Rule Language 7

formula into two since the information about the co-reference would get lost. However,
if conjuncts either do not contain blank nodes or only contain disjoint sets of these,
we can split them into so-called pieces: Two formulae f1 and f2 are called pieces of a
formula f if f = f1 f2 and comp(f1)∩comp(f2)∩E = /0. For such formulae we know:

Lemma 1 (Pieces). Let f = f1 f2 be an N3∃ conjunction and let comp(f1)∩comp(f2)∩
E = /0, then for each interpretation I, I |= f iff I |= f1 and I |= f2.

If we recursively divide all pieces into sub-pieces, we get a maximal set F =
{ f1, f2, . . . , fn} for each formula f such that F ≡ { f} and for all 1 ≤ i, j ≤ n,
comp(fi)∩ comp(f j)∩E ̸= /0 implies i = j.

Second, we replace all blank nodes occurring in rule bodies by fresh uni-
versals. The rule {_:x :likes :cake}=>{:cake :is :good}. becomes
{?y :likes :cake}=>{:cake :is :good}. Note that both rules have the
same meaning, namely "if someone likes cake, then cake is good.". We generalize that:

Lemma 2 (Eliminating Existentials). Let f = {e1}=>{e2} and g = {e′1}=>{e2} be
N3∃ implications such that e′1 = e1σ for some injective substitution σ : comp(e1)∩E→
U \ comp(e1) of the existential variables of e1 by universals. Then: f ≡ g

For a rule f we call the formula f ′ in which all existentials occurring in its body are
replaced by universals following Lemma 2 the normalized version of the rule. We call
an N3∃ formula f normalized, if all rules occurring in it as conjuncts are normalized.
This allows us to introduce the Piece Normal Form:

Theorem 1 (Piece Normal Form). For every well-formed N3∃ formula f , there exists
a set F = { f1, f2, . . . , fk} of N3∃ formulae such that F ≡ { f} and F is in piece normal
form (PNF). That is, all fi ∈ F are normalized formulae and k ∈ N is the maximal
number such that for 1 ≤ i, j ≤ k, comp(fi)∩ comp(f j)∩ E ̸= /0 implies i = j. If fi
(1≤ i≤ k) is a conjunction of atomic formulae, we call fi an atomic piece.

Since the piece normal form F of N3∃ formula f is obtained by only replacing variables
and separating conjuncts of f into the set form, the overall size of F is linear in f .

4 From N3 to Existential Rules

Without loss of generality, we translate sets F of N3∃ formulae in PNF (cf. Theorem 1)
to sets of existential rules T (F). As a preliminary step, we introduce the language of
existential rules formally. Later on, we explain and define the translation function that
has already been sketched in Sect. 2. The section closes with a correctness argument,
establishing a strong relationship between existential rules and N3∃.

4.1 Foundations of Existential Rule Reasoning

For existential rules, we also consider a first-order vocabulary, consisting of constants
(C) and variables (V), and additionally so-called (labeled) nulls (N)8. As already men-
tioned in Sect. 2, we use the same set of constants as N3 formulae, meaning C = C.

8 We choose here different symbols to disambiguate between existential rules and N3, although
vocabularies partially overlap.

8 D. Arndt & S. Mennicke

Furthermore, let P be a set of relation names, where each p ∈ P comes with an arity
ar(p) ∈ N. C, V, N, and P are countably infinite and pair-wise disjoint. We use the
ternary relation name tr ∈ P to encode N3 triples in Sect. 2. If p ∈ P and t1, t2, . . . , tar(p)
is a list of terms (i.e., ti ∈C∪N∪V), p(t1, t2, . . . , tar(p)) is called an atom. We often use
t to summarize a term list like t1, . . . , tn (n ∈ N), and treat it as a set whenever order is
irrelevant. An atom p(t) is ground if t⊆ C. An instance is a (possibly infinite) set I of
variable-free atoms and a finite set of ground atoms D is called a database.

For a set of atomsA and an instance I, we call a function h from the terms occurring
in A to the terms in I a homomorphism from A to I, denoted by h : A → I, if (1)
h(c) = c for all c ∈ C (occurring in A), and (2) p(t) ∈ A implies p(h(t)) ∈ I. If any
homomorphism fromA to I exists, writeA→I. Please note that if n is a null occurring
in A, then h(n) may be a constant or null.

For an (existential) rule r : ∀x,y. ϕ[x,y]→∃z. ψ[y,z] (cf. (5)), rule bodies (body(r))
and heads (head(r)) will also be considered as sets of atoms for a more compact repre-
sentation of the semantics. Let r be a rule and I an instance. We call a homomorphism
h : body(r)→ I a match for r in I. A match h is satisfied for r in I if there is an ex-
tension h⋆ of h (i.e., h⊆ h⋆) such that h⋆(head(r))⊆ I. If all matches of r are satisfied
in I, we say that r is satisfied in I, denoted by I |= r. For a rule set Σ and database D,
we call an instance I a model of Σ and D, denoted by I |= Σ ,D, if D ⊆ I and I |= r
for each r ∈ Σ . We say that two rule sets Σ1 and Σ2 are equivalent, denoted Σ1 ⇆ Σ2,
iff for all instances I, I |= Σ1 iff I |= Σ2.

Labeled nulls play the role of fresh constants without further specification, just like
blank nodes in RDF or N3. The chase is a family of algorithms that soundly produces
models of rule sets by continuously applying rules for unsatisfied matches. If some rule
head is instantiated, existential variables are replaced by fresh nulls in order to facilitate
for arbitrary constants. Although the chase is not guaranteed to terminate, it always
produces a (possibly infinite) model9 [18].

4.2 The Translation Function from N3 to Existential Rules

The translation function T maps sets F = { f1, . . . , fk} of N3∃ formulae in PNF to sets
of rules Σ . Before we go into the details of the translation for every type of piece, we
consider an auxiliary function T : C∪E∪U→C∪V mapping N3 terms to terms in our
rule language (cf. previous subsection):

T(t) :=

v∀x if t = ?x ∈U
v∃y if t = _:y ∈ E
t if t ∈C,

where v∀x ,v
∃
y ∈ V and t ∈ C (i.e., we assume C ⊆ C). While variables in N3 belong to

either E or U , this separation is lost under function T. For enhancing readability of
subsequent examples, the identity of the variable preserves this information by using
superscripts ∃ and ∀. We provide the translation for every piece fi ∈ F (1 ≤ i≤ k) and
later collect the full translation of F as the union of its translated pieces.

9 Not just any model, but a universal model, which is a model that has a homomorphism to
any other model of the database and rule set. Up to homomorphisms, universal models are the
smallest among all models.

Notation3 as an Existential Rule Language 9

Translating Atomic Pieces. If fi is an atomic piece, it has the form fi = g1 g2 . . . gl
for some l ≥ 1 and each g j (1≤ j ≤ l) is an atomic formula. The translation of fi is the
singleton set T (fi) = {→ ∃z. tr(T(g1))∧ tr(T(g2))∧ . . .∧ tr(T(gl))}, where T(g j) =
T(t1

j),T(t2
j),T(t3

j) if g j = t1
j t2

j t3
j and z is the list of translated existential variables

(via T) from existentials occurring in f . For example, the formula in (10) constitutes a
single piece f(10) which translates to a set containing the rule

→∃v∃y . tr(:lucy,:knows,v∃y)∧ tr(v∃y ,:likes,:cake).

Translating Rules. For fi being a rule {e1}=>{e2} we also obtain a single rule. Re-
call that the PNF ensures all variables of e1 to be universals and all universal vari-
ables of e2 to also occur in e1. If e1 = g1

1 g2
1 · · · gm

1 and e2 = g1
2 g2

2 · · · gn
2, T (fi) =

{∀x.
∧m

j=1 tr(T(g j
1))→ ∃z.

∧n
j=1 tr(T(g j

2))} where x and z are the lists of translated
universals and existentials, respectively. Applying the translation to the N3 formula in
(4), which is a piece according to our definitions, we obtain again a singleton set, now
containing the rule

∀v∀x . tr(v∀x ,:knows,:tom)→∃v∃y . tr(v∀x ,:knows,v
∃
y)∧ tr(v∃y ,:name,"Tom"),

which is the same rule as (8) up to a renaming of (bound) variables (α-conversion [19]).

Translating Sets. For the set F = { f1, f2, . . . , fk} of N3∃ formulae in PNF, T (F) is the
union of all translated constituents (i.e., T (F) =

⋃k
i=1T (fi)). Please note that T does

not exceed a polynomial overhead of its input.
The correctness argument for T splits into soundness – whenever we translate two

equivalent N3∃ formulae, their translated rules turn out to be equivalent as well – and
completeness – formulae that are not equivalent are translated to rule sets that are not
equivalent. Although the different formalisms have quite different notions of models,
models of a translated rule sets M can be converted into models of the original N3
formula by using a Herbrand argument. The full technical lemma and the construction
is part of our technical appendix [3]. Our correctness proof also considers completeness
since, otherwise, a more trivial translation function would have sufficed: Let T0 be a
function mapping all N3∃ formulae to the empty rule set: All equivalent N3∃ formulae
are mapped to equivalent rule sets (always /0), but also formulae that are not equivalent
yield equivalent rule sets under T0. Having such a strong relationship between N3 and
existential rules allows us to soundly use the translation function T in practice.

Theorem 2. For PNFs F and G of N3∃ formulae, F ≡ G iff T (F)⇆ T (G).

Beyond the correctness of T , we have no further guarantees. As N3∃ reasoning does
not necessarily stop, there is no requirement for termination of the chase over translated
rule sets. We expect that the similarity between N3∃ and existential rules allows for the
adoption of sufficient conditions for finite models (e.g., by means of acyclicity [17]).

5 Evaluation

The considerations provided above allow us to use existential rule reasoners to perform
N3∃ reasoning. We would like to find out whether our finding is of practical relevance,

10 D. Arndt & S. Mennicke

that is whether we can identify datasets on which existential rule reasoners, running on
the rule translations, outperform classical N3 reasoners provided with the original data.

In order to do this we have implemented T as a python script that takes an arbitrary
N3∃ formula f , constructs its set representation F in PNF, and produces the set of
rules T (F). This script and some additional scripts to translate existential rules (with at
most binary predicates) to N3∃ formulae are available on GitHub. Our implementation
allows us to compare N3 reasoners with existential rule reasoners, performance-wise.
As existential rule reasoners we chose VLog [15], a state-of-the-art reasoning engine
designed for working with large piles of input data, and Nemo [23], a recently released
rust-based reasoning engine. As N3 reasoners we chose cwm [7] and EYE [27] which –
due to their good coverage of N3 features – are most commonly used. All experiments
have been performed on a laptop with 11th Gen Intel Core i7-1165G7 CPU, 32GB of
RAM, and 1TB disk capacity, running a Ubuntu 22.04 LTS.

5.1 Datasets

We performed our experiments on two datasets: LUBM from the Chasebench [6] pro-
vides a fixed set of 136 rules and varies in the number of facts these rules are applied;
the DEEP TAXONOMY (DT) benchmark developed for the WellnessRules project [11]
consists of one single fact and a varying number of mutually dependent rules.

The Chasebench is a benchmarking suite for existential rule reasoning. Among the
different scenaria in Chasebench we picked LUBM for its direct compatibility with N3:
all predicates in LUBM have at most arity 2. Furthermore, LUBM allows for a glimpse
on scalability since LUBM comes in different database sizes. We have worked with
LUBM 001, 010, and 100, roughly referring to dataset sizes of a hundred thousand,
one million and ten million facts. We translated LUBM data and rules into a canon-
ical N3 format. Predicate names and constants within the dataset become IRIs using
the example prefix. An atom like src_advisor(Student441,Professor8) becomes the
triple :Student441 :src_advisor :Professor8.. For atoms using unary predi-
cates, like TeachingAssistent(Student498), we treat :TeachingAssistent as a class
and relate :Student498 via rdf:type to the class. For any atom A, we denote its
canonical translation into triple format by t(A). Note this canonical translation only ap-
plies to atoms of unary and binary predicates. For the existential rule

∀x. B1∧ . . .∧Bm→∃z. H1∧ . . .∧Hn

we obtain the canonical translation by applying t to all atoms, respecting universally and
existentially quantified variables (i.e., universally quantified variables are translated to
universal N3 variables and existentially quantified variables become blank nodes):

{t(B1). · · · t(Bm).}=>{t(H1). · · · t(Hn).}.
All N3 reasoners have reasoned over the canonical translation of data and rules which
was necessary because of the lack of an N3 version of LUBM. Since we are evaluat-
ing VLog’s and Nemo’s performance on our translation T , we converted the translated
LUBM by T back to existential rules before reasoning. Thereby, former unary and bi-
nary atoms were turned into triples and then uniformly translated to tr-atoms via T .

https://github.com/smennicke/n32rules

Notation3 as an Existential Rule Language 11

x N0 N1

I1

J1

N2

I2

J2

...

...

...

a subClassOf

subClassOf
subClassOf

subClassOf

subClassfOf
subClassOf

Fig. 2. Structure of the DEEP TAXONOMY benchmark.

The Deep Taxonomy benchmark simulates deeply nested RDFS-subclass reason-
ing10. It contains one individual which is member of a class. This class is subclass of
three other classes of which one again is subclass of three more classes and so on.
Figure 2 illustrates this idea. The benchmark provides different depths for the subclass
chain and we tested with the depths of 1,000 and 100,000. The reasoning tests for the
membership of the individual in the last class of the chain. For our tests, the subclass
declarations were translated to rules, the triple :N0 rdfs:subClassOf :N1. became

{ ?x a :N0.}=>{ ?x a :N1.}.

This translation also illustrates why this rather simple reasoning case is interesting: we
have a use case in which we depend on long chains of rules executed after each other.
The reasoner EYE allows the user to decide per rule whether it is applied using forward-
or backward-reasoning, at least if the head of the rule does not contain blank nodes. For
this dataset, we evaluated full backward- and full forward-reasoning, separately.

5.2 Results

Table 1 presents the running times of the four reasoners and additionally gives statis-
tics about the sizes of the given knowledge base (# facts) and the rule set (# rules). For
DT we display two reasoning times for EYE, one produced by only forward reasoning
(EYE-fw), one for only backward-reasoning (EYE-bw). Note, that for the latter, the
reasoner does not produce the full deductive closure of the dataset, but answers a query
instead. As LUBM contains rules with blank nodes in their haeds, full backward reason-
ing was not possible in that case, the table is left blank. EYE performs much better than
VLog and Nemo for the experiments with DT. Its reasoning time is off by one order of
magnitude. Conversely, VLog and Nemo could reason over all the LUBM datasets while
EYE has thrown an exception after having read the input facts. The reasoning times of
VLog are additionally significantly lower than the times for EYE. While Nemo shows a
similar runtime on DT as VLog, it is slower on LUBM. However, we may be quite opti-
mistic regarding its progress in runtime behavior, as Nemo already shows better running
times on the original LUBM datasets. The reasoner cwm is consistently slower than the
other three and from LUBM 010 on. All reasoners tried to find the query answers/de-
ductive closures for at least ten minutes (i.e., — in Table 1 indicates a time-out).

10 N3 available at: http://eulersharp.sourceforge.net/2009/12dtb/.

http://eulersharp.sourceforge.net/2009/12dtb/

12 D. Arndt & S. Mennicke

Table 1. Experimental Results

Dataset # facts # rules cwm EYE-fw EYE-bw VLog Nemo

DT 1000 1 3001 180 s 0.1 s 0.001 s 1.6 s 1.7 s
DT 100000 1 30,001 — 0.3 s 0.003 s — —
LUBM 001 100,543 136 117.4 s 3.4 s 0.2 s 2.4 s
LUBM 010 1,272,575 136 — 44.8 s 4.3 s 31.2 s
LUBM 100 13,405,381 136 — — 47.3 s 362 s

5.3 Discussion

In all our tests we observe a very poor performance of cwm which is not surprising,
given that this reasoner has not been updated for some time. The results for EYE, VLog
and Nemo are more interesting as they illustrate the different strengths of the reasoners.

For very high numbers of rules compared to the amount of data, EYE performs
much better than VLog and Nemo. The good results of 0.1 and 0.3 seconds can even
be improved by using backward reasoning. This makes EYE very well-suited for use
cases where we need to apply complex rules on datasets of low or medium size. This
could be interesting in decentralized set-ups such as policy-based access control for
the Solidproject.11 On the other hand we see that VLog and Nemo perform best when
provided with large datasets and lower numbers of rules. This could be useful use cases
involving bigger datasets in the Web like Wikidata or DBpedia12.

From the perspective of this paper, these two findings together show the relevance
of our work: we observed big differences between the tools’ reasoning times and these
differences depended on the use cases. In other words, there are use cases which could
benefit from our translation and we thus do not only make the first steps towards having
more N3 reasoners available but also broaden the scope of possible N3 applications.

6 Related work

When originally proposed as a W3C member submission [8], the formal semantics of
N3 was only introduced informally. As a consequence, different systems, using N3,
interpreted concepts like nested formulae differently [1]. Since then, the relation of N3
to other Web standards has been studied from a use-case perspective [4] and a W3C
Community group has been formed [28], which recently published the semantics of N3
without functions [2]. Even with these definitions, the semantic relation of the logic to
other standards, especially outside the Semantics Web, has not been studied thoroughly.

For N3’s subset RDF, de Bruijn and Heymans [13] provide a translation to first-order
logic and F-Logic using similar embeddings (e.g., a tenary predicate to represent triples)
to the ones in this paper, but do not cover rules. Boley [10] supports N3 in his RuleML
Knowledge-Interoperation Hub providing a translation of N3 to PSOA RuleML. This
can be translated to other logics. But the focus is more on syntax than on semantics.

11 https://solidproject.org/.
12 https://www.wikidata.org/ and https://www.dbpedia.org/

https://solidproject.org/
https://www.wikidata.org/
https://www.dbpedia.org/

Notation3 as an Existential Rule Language 13

In Description Logics (DL), rewritings in rule-based languages have their own tra-
dition (see, e.g., [16] for a good overview of existing rewritings and their complexity,
as well as more references). The goal there is to (1) make state-of-the-art rule reasoners
available for DLs and, thereby, (2) use a fragment of a rule language that reflects on
the data complexity of the given DL fragment. Also practical tools have been designed
to capture certain profiles of the Web Ontology Language (OWL), like the Orel sys-
tem [24] and, more recently, DaRLing [20]. To the best of our knowledge, a rewriting
for N3 as presented in this paper did not exist before. Also, existential rule reasoning
engines have not been compared to the existing N3 reasoners.

7 Conclusion

In this paper we studied the close relationship between N3 rules supporting blank node
production and existential rules. N3 without special features like built-in functions, nest-
ing of rules, or quotation can be directly mapped to existential rules with unary and
binary predicates. In order to show that, we defined a mapping between N3∃, N3 with-
out the aforementioned features, and existential rules. We argued that this mapping and
its inverse preserve the equivalence and non-equivalence between datasets. This result
allows us to trust the reasoning results when applying the mapping in practice, that is,
when (1) translating N3∃ to existential rules, (2) reasoning within that framework, and
(3) using the inverse mapping to transfer the result back into N3.

We applied that strategy and compared the reasoning times of the N3 reasoners cwm
and EYE with the existential rule reasoners VLog and Nemo. The goal of that compari-
son was to find out whether there are use cases for which N3 reasoning can benefit from
the findings on existential rules. We tested the reasoners on two datasets: DT consisting
of one single fact and a varying number of mutually dependent rules and LUBM consist-
ing of a fixed number of rules and a varying number of facts. EYE performs better on
DT while VLog and Nemo showed their strength on LUBM. We see that as an indica-
tion that for use cases of similar nature, that is, reasoning on large numbers of facts, our
approach could be used to improve reasoning times. More generally, we see that rea-
soners differ in their strengths and that by providing the revertible translation between
N3∃ and existential rules we increase the number of reasoners (partly) supporting N3
and the range of use cases the logic can support in practice. We see our work as an
important step towards fully establishing rule-based reasoning in the Semantic Web.

As many N3 use cases rely on N3’s powerful built-in functions and logical features
such as support for graph terms, lists and nested rules, future work should include the
extension of our translation towards full coverage of N3. Another direction of future
work could be to investigate the differences and similarities we found in our evaluation
in more detail: while showing differences in their performance, the reasoners produced
the exact same result sets (modulo isomorphism) when acting on rules introducing blank
nodes. That is, the different reasoning times do not stem from the handling of existen-
tially quantified rule heads but from other optimization techniques. Fully understanding
these differences will help the N3 and the existential rule community to further improve
their tools. In that context, it would also be interesting to learn if EYE’s capability to

14 D. Arndt & S. Mennicke

combine forward and backward reasoning could improve the reasoning times for data
sets including existentially quantified rule heads.

We thus hope that our research on existential N3 will spawn further investigations
of powerful data-centric features in data-intensive rule reasoning as well as significant
progress in tool support towards these features. Ultimately, we envision a Web of data
and rule exchange, fully supported by the best tools available as converging efforts of
the N3 community, the existential rule reasoning community, and possibly many others.

Acknowledgements. This reasearch is partly supported by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) in project number 389792660 (TRR 248,
Center for Perspicuous Computing), by Bundesministerium für Bildung und Forschung
(BMBF, Federal Ministry of Education and Research) and DAAD (German Academic
Exchange Service) in project 57616814 (SECAI, School of Embedded and Compos-
ite AI), and by the BMBF under project 13GW0552B (KIMEDS, KI-assistierte Zerti-
fizierung medizintechnischer Software) in the Center for Scalable Data Analytics and
Artificial Intelligence (ScaDS.AI),

References

1. Arndt, D., Schrijvers, T., De Roo, J., Verborgh, R.: Implicit quantification made explicit:
How to interpret blank nodes and universal variables in Notation3 Logic. Journal of Web Se-
mantics 58, 100501 (Oct 2019). https://doi.org/10.1016/j.websem.2019.04.001

2. Arndt, D., Champin, P.A.: Notation3 semantics. W3C community group report, W3C (Jul
2023), https://w3c.github.io/N3/reports/20230703/semantics.html

3. Arndt, D., Mennicke, S.: Notation3 as an Existential Rule Language. CoRR abs/2308.07332
(2023)

4. Arndt, Dörthe: Notation3 as the unifying logic for the semantic web. Ph.D. thesis, Ghent
University (2019)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence 175(9-10), 1620–1654 (2011)

6. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura,
E.: Benchmarking the chase. In: Sallinger, E., den Bussche, J.V., Geerts, F. (eds.) Proc. 36th
Symposium on Principles of Database Systems (PODS’17). pp. 37–52. ACM (2017)

7. Berners-Lee, T.: cwm (2000–2009), http://www.w3.org/2000/10/swap/doc/cwm.
html

8. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C Team Submis-
sion (Mar 2011), http://www.w3.org/TeamSubmission/n3/

9. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical frame-
work for the World Wide Web. Theory and Practice of Logic Programming (3), 249–269
(2008). https://doi.org/10.1017/S1471068407003213

10. Boley, H.: The ruleml knowledge-interoperation hub. In: Alferes, J.J., Bertossi, L., Governa-
tori, G., Fodor, P., Roman, D. (eds.) Rule Technologies. Research, Tools, and Applications.
pp. 19–33. Springer International Publishing, Cham (2016)

11. Boley, H., Osmun, T.M., Craig, B.L.: Wellnessrules: A web 3.0 case study in ruleml-based
prolog-n3 profile interoperation. In: Governatori, G., Hall, J., Paschke, A. (eds.) Rule Inter-
change and Applications. pp. 43–52. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

12. Bonte, P., Ongenae, F.: Roxi: a framework for reactive reasoning. In: ESWC2023, the First
International Workshop on Semantic Web on Constrained Things (2023)

https://www.perspicuous-computing.science/
https://www.secai.org/
https://www.secai.org/
https://digitalhealth.tu-dresden.de/projects/kimeds/
https://digitalhealth.tu-dresden.de/projects/kimeds/
https://www.scads.de/
https://www.scads.de/
https://doi.org/10.1016/j.websem.2019.04.001
https://doi.org/10.1016/j.websem.2019.04.001
https://w3c.github.io/N3/reports/20230703/semantics.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/TeamSubmission/n3/
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1017/S1471068407003213

Notation3 as an Existential Rule Language 15

13. de Bruijn, J., Heymans, S.: Logical foundations of (e)rdf(s): Complexity and reasoning. In:
Aberer, K., Choi, K.S., Noy, N., Allemang, D., Lee, K.I., Nixon, L., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) The Semantic Web.
pp. 86–99. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

14. Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in Datalog+/-. In:
Hitzler, P., Lukasiewicz, T. (eds.) Proc. 4th Int. Conf. on Web Reasoning and Rule Systems
(RR 2010). LNCS, vol. 6333, pp. 1–17. Springer (2010)

15. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: Vlog: A rule en-
gine for knowledge graphs. In: International Semantic Web Conference. pp. 19–35. Springer
(2019)

16. Carral, D., Krötzsch, M.: Rewriting the description logic ALCHIQ to disjunctive existen-
tial rules. In: Bessiere, C. (ed.) Proceedings of the 29th International Joint Conference on
Artificial Intelligence, IJCAI 2020. pp. 1777–1783. ijcai.org (2020)

17. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity notions for existential rules and their application to query answering in ontologies.
J. of Artificial Intelligence Research 47, 741–808 (2013)

18. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D.
(eds.) Proc. 27th Symposium on Principles of Database Systems (PODS’08). pp. 149–158.
ACM (2008)

19. Ebbinghaus, H.D., Flum, J., Thomas, W.: Semantics of First-Order Languages, pp. 27–57.
Springer New York, New York, NY (1994)

20. Fiorentino, A., Zangari, J., Manna, M.: DaRLing: A Datalog rewriter for OWL 2 RL onto-
logical reasoning under SPARQL queries. Theory and Practice of Logic Programming 20(6),
958–973 (2020)

21. Harth, A., Käfer, T.: Rule-based programming of user agents for linked data. In: Proceedings
of the 11th International Workshop on Linked Data on the Web at the Web Conference (27th
WWW). CEUR-WS (April 2018)

22. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (10 February 2004), available at
http://www.w3.org/TR/rdf-mt/

23. Ivliev, A., Ellmauthaler, S., Gerlach, L., Marx, M., Meißner, M., Meusel, S., Krötzsch, M.:
Nemo: First glimpse of a new rule engine. In: 39th on Logic Programming, ICLP 2023
Technical Communications. EPTCS (to appear)

24. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel: Database-driven reasoning for OWL 2 profiles.
In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd Int. Workshop on Description Log-
ics (DL’10). CEUR Workshop Proceedings, vol. 573, pp. 114–124. CEUR-WS.org (2010)

25. Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase. In: Barceló, P.,
Calautti, M. (eds.) Proc. 22nd Int. Conf. on Database Theory (ICDT’19). LIPIcs, vol. 127,
pp. 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)

26. Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T., Gabarró, J.:
The Pragmatic Proof: Hypermedia API Composition and Execution. Theory and Practice of
Logic Programming (1), 1–48 (2017). https://doi.org/10.1017/S1471068416000016

27. Verborgh, R., De Roo, J.: Drawing Conclusions from Linked Data on the Web: The EYE
Reasoner. IEEE Software (5), 23–27 (2015). https://doi.org/10.1109/MS.2015.63

28. Woensel, W.V., Arndt, D., Champin, P.A., Tomaszuk, D., Kellogg, G.: Notation3 language
(Jul 2023), https://w3c.github.io/N3/reports/20230703/

https://doi.org/10.1017/S1471068416000016
https://doi.org/10.1017/S1471068416000016
https://doi.org/10.1109/MS.2015.63
https://doi.org/10.1109/MS.2015.63
https://w3c.github.io/N3/reports/20230703/

