

International Center for Computational Logic

COMPLEXITY THEORY

[Lecture 9: Space Complexity](https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024))

[Markus Krotzsch](https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en) ¨ Knowledge-Based Systems

TU Dresden, 18 Nov 2024

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review: Space Complexity Classes

Recall our earlier definitions of space complexities:

Definition 9.1: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) DSpace($f(n)$) is the class of all languages **L** for which there is an *O*(*f*(*n*))-space bounded Turing machine deciding **L**.
- (2) NSpace($f(n)$) is the class of all languages **L** for which there is an *O*(*f*(*n*))-space bounded nondeterministic Turing machine deciding **L**.

Being *O*(*f*(*n*))-space bounded requires a (nondeterministic) TM

- to halt on every input and
- to use $\leq f(|w|)$ tape cells on every computation path.

Space Complexity Classes

Some important space complexity classes:

 $L = LogSpace = DSpace(log n)$ logarithmic space $PSpace = |$ *d*≥1 DSpace(n^d $ExpSpace = |$ *d*≥1 $DSpace(2^{n^d})$

) polynomial space

) exponential space

NL = NLogSpace = NSpace(log *n*) nondet. logarithmic space $NPSpace = |$ *d*≥1 NSpace(*n d* $NExpSpace = |$ *d*≥1 $NSpace(2^{n^d}$

) nondet. polynomial space

) nondet. exponential space

The Power of Space

Space seems to be more powerful than time because space can be reused.

Example 9.2: SAT can be solved in linear space: Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

Example 9.3: TAUTOLOGY can be solved in linear space: Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Linear Compression

Theorem 9.4: For every function $f : \mathbb{N} \to \mathbb{R}^+$, for all $c \in \mathbb{N}$, and for every f-space bounded (deterministic/nondeterministic) Turing machine M:

there is a $\max\{1, \frac{1}{c}f(n)\}$ -space bounded (deterministic/nondeterministic) Turing machine M' that accepts the same language as M .

Proof idea: Similar to (but much simpler than) linear speed-up. □

This justifies using *O*-notation for defining space classes.

Theorem 9.5: For every function $f : \mathbb{N} \to \mathbb{R}^+$ all $k \ge 1$ and $\mathbf{L} \subseteq \Sigma^*$:

If **L** can be decided by an *f*-space bounded *k*-tape Turing-machine, then it can also be decided by an *f*-space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to avoid linear increase. □ □

Note: We still use a separate read-only input tape to define some space complexities, such as LogSpace.

Time vs. Space

Theorem 9.6: For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

DTime(*f*) ⊆ DSpace(*f*) and NTime(*f*) ⊆ NSpace(*f*)

Proof: Visiting a cell takes at least one time step. □ □ □ □ □ □ □

Theorem 9.7: For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $DSpace(f) \subseteq DTime(2^{O(f)})$) and NSpace(*f*) ⊆ DTime(2^{*O(f*)})

Proof: Based on configuration graphs and a bound on the number of possible configurations. Proof: Build the configuration graph (time $2^{O(f(n))}$) and find a path from \Box the start to an accepting stop configuration (time $2^{O(f(n))}$).

Markus Krötzsch; 18 Nov 2024 [Complexity Theory](#page-0-0) slide 8 of 21

Number of Possible Configurations

Let $M := (Q, \Sigma, \Gamma, q_0, \delta, q_{start})$ be a 2-tape Turing machine (1 read-only input tape + 1 work tape)

Recall: A configuration of M is a quadruple (q, p_1, p_2, x) where

- $q \in Q$ is the current state,
- $p_i \in \mathbb{N}$ is the head position on tape *i*, and
- $x \in \Gamma^*$ is the tape content.

Let $w \in \Sigma^*$ be an input to M and $n := |w|$.

- Then also $p_1 \leq n$.
- If M is $f(n)$ -space bounded we can assume $p_2 \le f(n)$ and $|x| \le f(n)$

Hence, there are at most

$$
|Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)} = n \cdot 2^{O(f(n))} = 2^{O(f(n))}
$$

different configurations on inputs of length *n* (the last equality requires $f(n) > \log n$).

Markus Krötzsch: 18 Nov 2024 **[Complexity Theory](#page-0-0)** Complexity Theory slide 9 of 21

Configuration Graphs

The possible computations of a TM $\mathcal M$ (on input w) form a directed graph:

- Vertices: configurations that M can reach (on input *w*)
- Edges: there is an edge from C_1 to C_2 if $C_1 \rhd_M C_2$ $(C_2$ reachable from C_1 in a single step)

This yields the configuration graph:

- Could be infinite in general.
- For *f*(*n*)-space bounded 2-tape TMs, there can be at most $2^{O(f(n))}$ vertices and $(2^{O(f(n))})^2 = 2^{O(f(n))}$ edges

A computation of M on input *w* corresponds to a path in the configuration graph from the start configuration to a stop configuration.

Hence, to test if M accepts input *w*,

- construct the configuration graph and
- find a path from the start to an accepting stop configuration.

Time vs. Space

Theorem 9.6: For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

DTime(*f*) ⊆ DSpace(*f*) and NTime(*f*) ⊆ NSpace(*f*)

Proof: Visiting a cell takes at least one time step. □ □ □ □ □ □ □

Theorem 9.7: For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $DSpace(f) \subseteq DTime(2^{O(f)})$) and NSpace(*f*) ⊆ DTime(2^{*O(f*)})

Proof: Based on configuration graphs and a bound on the number of possible configurations. Proof: Build the configuration graph (time $2^{O(f(n))}$) and find a path from \Box the start to an accepting stop configuration (time $2^{O(f(n))}$).

Markus Krötzsch; 18 Nov 2024 [Complexity Theory](#page-0-0) slide 11 of 21

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted $P \subseteq \text{coNP} \subseteq \text{PSpace}$.

Open questions:

- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM:

Most believe that $P \subset NP$

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch's Theorem, 1970): For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $NSpace(f(n)) \subseteq DSpace(f^2(n)).$

That is: nondeterminism adds almost no power to space-bounded TMs!

Consequences of Savitch's Theorem

Theorem 9[.8](#page-11-0) (Savitch's Theorem, 1970): For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \geq \log n$:

```
NSpace(f(n)) \subseteq DSpace(f^2(n)).
```
Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a polynomial is still a polynomial. □

Similarly for "bigger" classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL \subseteq DSpace($O(\log^2 n)$).

Note that $\log^2(n) \notin O(\log n)$, so we do not obtain NL = L from this.

Proving Savitch's Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space! **What to do?**

Things we can do:

- Store one configuration:
	- one configuration requires $\log n + O(f(n))$ space
	- $−$ if $f(n) ≥ log n$, then this is $O(f(n))$ space
- Store $f(n)$ configurations (remember we have $f^2(n)$ space)
- Iterate over all configurations (one by one)

Proving Savitch's Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slightly more general question:

Yieldability

Input: TM configurations C_1 and C_2 , integer k

Problem: Can TM get from C_1 to C_2 in at most *k* steps?

Approach: check if there is an intermediate configuration C' such that

- (1) C_1 can reach C' in $k/2$ steps and
- (2) C' can reach C_2 in $k/2$ steps
- \rightsquigarrow Deterministic: we can try all C' (iteration)
- \rightarrow Space-efficient: we can reuse the same space for both steps

An Algorithm for Yieldability

```
01 CANYIELD(C_1, C_2, k) {
02 if k = 1 :
03 return (C_1 = C_2) or (C_1 \vdash_M C_2)04 else if k > 1 :<br>05 for each com
       for each configuration C of M for input size n :
06 if \text{CanY}(\text{C}_1, C, k/2) and
07 CANYIELD(C, C_2, k/2) :
08 return true
09 // eventually, if no success:
10 return false
11 }
```
• We only call CanYield only with *k* a power of 2, so *k*/2 ∈ N

Space Requirement for the Algorithm

```
01 CANYIELD(C_1, C_2, k) {
02 if k = 1 :
03 return (C_1 = C_2) or (C_1 \vdash_M C_2)04 else if k > 1 :<br>05 for each con
       for each configuration C of M for input size n :
06 if \text{CanY}IELD(C_1, C, k/2) and
07 CANYIELD(C, C_2, k/2) :
08 return true
09 // eventually, if no success:
10 return false
11 }
```
- During iteration (line 05), we store one *C* in *O*(*f*(*n*))
- Calls in lines 06 and 07 can reuse the same space
- Maximum depth of recursive call stack: $\log_2 k$

Overall space usage: $O(f(n) \cdot \log k)$

Simulating Nondeterministic Space-Bounded TMs

Input: TM M that runs in NSpace($f(n)$); input word w of length n Algorithm:

- Modify M to have a unique accepting configuration C_{acent} : when accepting, erase tape and move head to the very left
- Select *d* such that $2^{df(n)} \geq |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$
- Return CanYield(C_{start} , C_{accept} , k) with $k = 2^{df(n)}$

Space requirements: CanYield runs in space

 $O(f(n) \cdot \log k) = O(f(n) \cdot \log 2^{df(n)}) = O(f(n) \cdot df(n)) = O(f^2(n))$

Did We Really Do It?

"Select *d* such that $2^{df(n)} \geq |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)n}$

How does the algorithm actually do this?

- *f*(*n*) was not part of the input!
- Even if we knew *f*, it might not be easy to compute!

Solution: replace $f(n)$ by a parameter ℓ and probe its value

- (1) Start with $\ell = 1$
- (2) Check if M can reach any configuration with more than ℓ tape cells (iterate over all configurations of size $\ell + 1$; use CanYield on each)
- (3) If yes, increase ℓ by 1; goto (2)
- (4) Run algorithm as before, with $f(n)$ replaced by ℓ

Therefore: we don't need to know *f* at all. This finishes the proof. □

Summary: Relationships of Space and Time

Summing up, we get the following relations:

```
L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime
```
We also noted $P \subseteq \text{coNP} \subseteq \text{PSpace}$.

Open questions:

- Is Savitch's Theorem tight?
- Are there any interesting problems in these space classes?
- We have PSpace = NPSpace = coNPSpace. But what about L, NL, and coNL?

 \rightarrow the first: nobody knows (YCTBF); the others: see upcoming lectures