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Outline

Introduce incomplete constraint solvers for

equality and disequality constraints

Boolean constraints

linear constraints over integer intervals and over 
finite integer domains

arithmetic constraints over integer intervals

arithmetic constraints over reals
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Equality Rules

Consider equality and disequality constraints over arbitrary domains.

EQUALITY 1

EQUALITY 2

〈x=y ; x∈Dx , y ∈Dy 〉
〈 x=y ; x∈Dx∩Dy , y∈Dx∩Dy 〉

〈 x=x ; x∈D 〉
〈 ; x∈D 〉
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Disequality Rules

DISEQUALITY 1

DISEQUALITY 2

 (where Dx ∩ Dy = Â)

DISEQUALITY 3

  (where a ∈ D)

 Similarly with x ≠ y replaced by y ≠ x.

〈 x≠y ; x∈Dx , y ∈Dy 〉
〈 ; x∈Dx , y ∈Dy 〉

〈 x≠x ; x∈D 〉
〈 ; x∈Â 〉

〈 x≠y ; x∈D , y=a 〉
〈 ; x∈D−{a } , y=a 〉
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Characterization Result

Theorem

A CSP with only equality and disequality constraints is hyper-arc 
consistent iff it is closed under the applications of the EQUALITY 1 – 2 
and DISEQUALITY 1 – 3 rules.
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Boolean Constaints

Boolean variables: range over {0, 1}

Boolean domain expression: x ∈ D with D  {0, 1}

Boolean expression: built out of Boolean variables using 
¬ (negation), ∧ (conjunction), and ∨ (disjunction)

Boolean constraints:

s = t

where s, t Boolean expressions
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Simple Boolean Constraints

x = y

¬x = y

x ∧ y = z

x ∨ y = z
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Rules

Transformation Rules

Reduce Boolean constraints to simple constraints

Example:

where s is not a variable or is either x or z

Rules for Simple Constraints (Example)

Write as x ∧ y = z, z = 1 ➸ x = 1, y = 1

x∧s=z
x∧y=z ,s=y

〈 x∧y=z ; x∈Dx , y ∈Dy , z∈{1} 〉
〈 ; x∈Dx∩{1} , y ∈Dy∩{1} , z∈{1} 〉
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Domain Reduction Rules: BOOL

x = y, x = 1  ➸ y = 1

x = y, y = 1  ➸ x = 1

x = y, x = 0  ➸ y = 0

x = y, y = 0  ➸ x = 0

x ∧ y = z, x = 1, y = 1  ➸ z = 1

x ∧ y = z, x = 1, z = 0  ➸ y = 0

x ∧ y = z, y = 1, z = 0  ➸ x = 0

x ∧ y = z, x = 0  ➸ z = 0

x ∧ y = z, y = 0  ➸ z = 0

x ∧ y = z, z = 1  ➸ x = 1, y = 1

¬x = y, x = 1 ➸ y = 0

¬x = y, x = 0 ➸ y = 1

¬x = y, y = 1 ➸ x = 0

¬x = y, y = 0 ➸ x = 1

x ∨ y = z, x = 1 ➸ z = 1

x ∨ y = z, x = 0, y = 0 ➸ z = 0

x ∨ y = z, x = 0, z = 1 ➸ y = 1

x ∨ y = z, y = 0, z = 1 ➸ x = 1

x ∨ y = z, y = 1 ➸ z = 1

x ∨ y = z, z = 0 ➸ x = 0, y = 0
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Characterization Result

Theorem

A non-failed Boolean CSP is hyper-arc consistent iff it 
is closed under the applications of the rules of BOOL.
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Constraint Propagation using BOOL: Example

Full Adder Circuit

computes the binary sum i1 + i2 + i3 in the binary word o2o1

Example: Deduce that i1 = 1, i2 = 1 and o1 = 0
follows from i3 = 0 and o2 = 1 

Two proof rules for XOR

XOR 1   x  y = z, x = 1, y = 1 ➸ z = 0
XOR 2   x  y = z, x = 0, y = 0 ➸ z = 0
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Constraint Propagation in Full Adder Circuit
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Linear Constraints on Integer Intervals

Consider the language with

two constants 0 and 1

unary function “–”

two binary functions “+” and “–”

Linear expression: term in this language

Linear constraint: a formula

 s op t

where s and t are linear expressions and op ∈ {<, ≤, =, ≠, ≥, >}

Abbreviations:

n ≔ 1 + ... + 1 (n times)

nx ≔ x + ... + x (n times)

Analogously for –n and –nx
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Simple Disequality Rules

SIMPLE DISEQUALITY 1

  (where b < c or d < a) 

SIMPLE DISEQUALITY 2

 

SIMPLE DISEQUALITY 3

  

〈 x≠y ; x∈[a..b ] , y ∈[c..d ] 〉
〈 ; x∈[a..b ] , y ∈[c..d ] 〉

〈 x≠y ; x∈[a..b ] , y=a 〉
〈 ; x∈[a1..b] , y=a 〉

〈 x≠y ; x∈[a..b ] , y=b 〉
〈 ; x∈[a..b−1] , y=b 〉
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Domain Reduction (Example)

Consider

3x + 4y – 5z ≤ 7

with x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]

Rewrite as

Any value of x that satisfies this constraint also satisfies

Hence we can reduce [lx..hx] to

x≤7−4y5z
3

x≤
7−4ly5hz

3

[ l x ..min ⌊
7−4ly5hz

3
⌋ , hx]
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Domain Reduction for Linear Equality

where l'j ≔ max(lj, ⌈j ), ⌉ h'j ≔ min(hj, ⌊j ) for ⌋ j ∈ POS

and l'j ≔ max(lj, ⌈j ), ⌉ h'j ≔ min(hj, ⌊j ) for ⌋ j ∈ NEG

and

〈∑i ∈POS
ai x i−∑i ∈NEG

ai x i=b ; x1∈[ l 1 ..h1] , ... , xn∈[ l n ..hn] 〉
〈∑i ∈POS

ai x i−∑i ∈NEG
ai x i=b ; x1∈[ l ' 1 .. h '1] , ... , xn∈[l ' n ..h ' n]〉

 j≔
b−∑i ∈POS−{ j }

ai l i∑i ∈NEG
ai hi

a j

 j ≔
−b∑i∈POS

ai l i−∑i∈NEG−{ j }
ai hi

a j

 j≔
b−∑i ∈POS−{ j }

ai hi∑i ∈NEG
ai l i

a j

 j ≔
−b∑i∈POS

ai hi−∑i ∈NEG−{ j }
ai l i

a j



17Foundations of Constraint Programming Incomplete Constraint Solvers

Example: SEND + MORE = MONEY

 SEND

 + MORE

 ------

 MONEY

1. Use the transformation rules to transform “SEND + MORE = MONEY” constraint to
9000⋅M + 900 O + 90 N + Y – (91 E + D + 1000 S + 10 R) = 0⋅ ⋅ ⋅ ⋅ ⋅

2. Apply LINEAR EQUALITY reduction rule:
S = 9, E ∈ [0..9], N ∈ [0..9], D ∈ [0..9], M = 1, O ∈ [0..1], R ∈ [0..9], Y ∈ [0..9]

3. Apply SIMPLE DISEQUALITY rule to M ≠ O to conclude O = 0
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Example: SEND + MORE = MONEY, ctd

4. Repeatedly use M = 1, O = 0, S = 9 and SIMPLE DISEQUALITY rules.
This eventually yields
S = 9, E ∈ [2..8], N ∈ [2..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8]

5. 5 iterations of LINEAR EQUALITY rule yield
E ∈ [2..7], N ∈ [3..8]
E ∈ [3..7], N ∈ [3..8]
E ∈ [2..7], N ∈ [4..8]
E ∈ [4..7], N ∈ [4..8]
E ∈ [4..7], N ∈ [5..8]
The other ranges remain unchanged.
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Arithmetic Constraints on Integer Intervals

Consider the language with

two constants 0 and 1

unary function “–”

three binary functions “+”, “–”, and “⋅” (new)

Arithmetic constraint: a formula

 s op t

where s and t are terms and op  {<, ≤, =, ≠, ≥, >}∈

Example:

x5⋅y2⋅z4 + 3x⋅y3⋅z5 ≤ 10 + 4x4⋅y6⋅z2 – y2⋅x5⋅z4



20Foundations of Constraint Programming Incomplete Constraint Solvers

Approach Based on Atomic Arithmetic Constraints

Atomic arithmetic constraint:

a linear constraint or

x⋅y = z

Note: Every arithmetic constraint can be reduced to a sequence of atomic constraints.

Transformation rule (Example):

where v1, ..., vn are auxiliary variables

∑i =1

n
mi op b

∑i=1

n
v i op b ,m1=v1, ... , mn=v n
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Interval Multiplication

X, Y sets of integers

Multiplication:

X⋅Y ≔ {x⋅y | x ∈ X, y ∈ Y}

Note: X⋅Y does not have to be an interval even if X and Y are

Example: [0..2]⋅[1..2] = {0, 1, 2, 4}

(for sets of integers A)

int A≔{smallest int. interval⊇A if it exists
ℤ otherwise
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Multiplication Rule 1

MULTIPLICATION 1

Example:

〈x  y = z ; x ∈ [0..2], y ∈ [1..2], z ∈ [4..6]〉

int([0..2][1..2]) = [0..4] and [4..6] ∩ [0..4] = [4..4], so we get

〈x  y = z ; x ∈ [0..2], y ∈ [1..2], z ∈ [4..4]〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩ int Dx⋅Dy  〉



23Foundations of Constraint Programming Incomplete Constraint Solvers

Multiplication Rules 2, 3

Interval division:
Z / Y = {x ∈ ℤ | ∃y ∈ Y∃z ∈ Z x⋅y = z}

Note: Z / Y does not have to be an interval even if Z, Y are

Example: [3..5] / [–1..2] = {–5, –4, –3, 2, 3, 4, 5} 

MULTIPLICATION 2

MULTIPLICATION 3

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩ int Dz /Dy  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈D x , y ∈D y ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩ int Dz/Dx  , z∈Dz 〉
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Example

〈x  y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉

Applying MULTIPLICATION 2 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [9..11], z ∈ [155..161]〉

since [155..161] / [9..11] = [16..16] and [1..20] ∩ int([16..16]) = [16..16]

Applying MULTIPLICATION 3 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [155..161]〉

since [155..161] / [16..16] = [10..10] and [9..11] ∩ int([10..10]) = [10..10]

Applying MULTIPLICATION 1 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉

since [16..16]  [10..10] = [160..160] and [155..161] ∩ int([160..160]) = [160..160]
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Arithmetic Constraints on Reals

Consider the language with

each real number as a constant (new)

unary function “–”

three binary functions “+”, “–”, and “⋅”

Arithmetic constraint: a formula

 s op t

where s and t are terms and op ∈ {<, ≤, =, ≠, ≥, >}

Example:

2.4⋅x5⋅y2⋅z4 + 3.6⋅x⋅y3⋅z5 ≤ 10.1 + 4.2⋅x4⋅y6⋅z2
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Domains: Extend Intervals

 ℝ+  ≔ ℝ  {–∞, ∞}∪

Extend < from ℝ to ℝ+ as expected

Extend interval: expression

 〈a, b〉

where a, b ∈ ℝ+

Meaning: 〈a, b  = {〉 r ∈ ℝ | a ≤ r ≤ b}

Note: For a, b ∈ ℝ

 〈a, a  = {a}〉

 –∞〈 , b  = {〉 r ∈ ℝ | r ≤ b}

 〈a, ∞  = {〉 r ∈ ℝ | a ≤ r}

 〈–∞, ∞  = 〉 ℝ
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Interval Arithmetic

X, Y sets of reals

X + Y ≔ {x + y | x ∈ X, y ∈ Y}

X – Y ≔ {x – y | x ∈ X, y ∈ Y}

X ⋅Y ≔ {x⋅y | x ∈ X, y ∈ Y}

X / Y ≔ {u ∈ ℝ | ∃x ∈ X∃y ∈ Y u⋅y = x}

For real r and op ∈ {+, –, ,⋅  / }

 r op X ≔ {r} op X

 X op r ≔ X op {r}
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Interval Arithmetic, ctd

X, Y extended intervals, r a real

X∩Y, X+Y, X–Y and X ⋅Y are extended intervals

X / {r} is an extended interval

X / Y does not have to be an extended interval 

Example:

〈2, 16  / 〉 〈–∞, –2  = {〉 r ∈ ℝ | –8 ≤ r < 0}

int(A) ≔ smallest extended interval containing A for sets of reals A
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Atomic Arithmetic Constraints

- n > 0
- a1, ..., an non-zero reals
- x1, ..., xn different variables
- b is a real

x ≠ y

x y = z⋅

Note:

Every arithmetic constraint can be reduced to a 
sequence of atomic constraints.

∑
i=1

n

ai x i=b
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Domain Reduction Rules

Intuition:                      implies that for j ∈ [1..n]: 

ℝ-LINEAR EQUALITY

where j ∈ [1..n] and

DISEQUALITY 2

 where Dx ∩ Dy = Â

∑
i=1

n

ai x i=b

〈∑i=1

n
ai x i=b ; x1∈D1 , ... , xn∈Dn 〉

〈∑i=1
ai x i=b ; ... , x j∈D ′ j , ... 〉

〈 x≠y ; x∈Dx , y ∈Dy 〉
〈 ; x∈Dx , y ∈Dy 〉

x j=
b−∑i∈[1..n]−{ j }

ai x i

a j

D ′ j≔D j ∩
b−∑i ∈[1..n]− { j }

ai⋅D i

a j



31Foundations of Constraint Programming Incomplete Constraint Solvers

Multiplication Rules

〈 x⋅y=z ; x∈D x , y ∈Dy ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩Dx⋅Dy 〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩ int Dz /Dy  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈D x , y ∈D y ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩ int Dz/Dx  , z∈Dz 〉

ℝ-MULTIPLICATION 1

ℝ-MULTIPLICATION 2

ℝ-MULTIPLICATION 3
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Example

  〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –∞, –2  , 〈 〉 z ∈ –∞, 161〈 〉〉

By ℝ-MULTIPLICATION 1 rule

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –∞, –2  , 〈 〉 z ∈ 2, 161〈 〉〉

 since –∞, –1 –∞, –2  = 2, ∞  and hence –∞, 161  ∩ 2, ∞  = 2, 161〈 〉⋅〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

By ℝ-MULTIPLICATION 3 rule

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –161, –2  , 〈 〉 z ∈ 2, 161〈 〉〉

 since 2, 161  / –∞, –1  = {〈 〉 〈 〉 r  ∈ ℝ | –161  ≤ r < 0}

 and hence int( 2, 161  / –∞, –1 ) = –161, 0  and –∞, –2  ∩ –161, 0  = –161, –2〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉
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Example, ctd

  〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –161, –2  , 〈 〉 z ∈ 2, 161〈 〉〉

By ℝ-MULTIPLICATION 2 rule

 〈x  y = z ; x ∈ –80.5, –1 , 〈 〉 y ∈ –161, –2  , 〈 〉 z ∈ 2, 161〈 〉〉

 since 2, 161  / –161, –2  = –80.5, –2 / 161  〈 〉 〈 〉 〈 〉

 and hence –∞, –1  ∩ 〈 〉 int( –80.5, –2 / 161 ) = –80.5, –1〈 〉 〈 〉

Last CSP is closed under the MULTIPLICATION rules
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Arithmetic Constraints on Reals: Implementation Issues

Step 1: Extend arithmetic operations from ℝ to ℝ+

⊥: undefined operation

PR: a positive real

NR: a negative real

ℝ: outcome can be an arbitrary realx

y

y

y

y

xx

x
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Implementation Issues, ctd

Step 2: Implement intersection, addition, subtraction of extended intervals

Note: For non-empty extended intervals 〈a, b〉 and 〈c, d〉
〈a, b  ∩ 〉 〈c, d  = 〉 〈max(a, c), min(b, d)〉

〈a, b  + 〉 〈c, d  = 〉 〈a + c, b + d〉

〈a, b  – 〉 〈c, d  = 〉 〈a – d, b – c〉
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Classification of Non-Empty Extended Intervals

Depends on the position of 0 w.r.t. such an interval

M yes yes
Z no no
P no yes

no yes

no yes
N yes no

yes no

yes no

class of 
〈a, b〉

at least one 
negative

at least one 
positive

signs of 
endpoints

a < 0 ∧ b > 0
a = 0 ∧ b = 0
a ≥ 0 ∧ b > 0

P0 a = 0 ∧ b > 0
P1 a > 0 ∧ b > 0

a < 0 ∧ b ≤ 0
N0 a < 0 ∧ b = 0
N1 a < 0 ∧ b < 0
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Implementation of Multiplication

Step 3: Implement multiplication of extended intervals

〈a, b  and 〉 〈c, d : non-empty extended intervals〉

P P
P M
P N
M P
M M
M N
N P
N M
N N
Z 0, 0〈 〉

Z 0, 0〈 〉

class of 
〈a, b〉

class of 
〈c, d〉 〈a, b〉⋅〈c, d〉

〈a⋅c, b⋅d〉
〈b⋅c, b⋅d〉
〈b⋅c, a⋅d〉
〈a⋅d, b⋅d〉
〈min(a⋅d, b⋅c), max(a⋅c, b⋅d)〉
〈b⋅c, a⋅c〉
〈a⋅d, b⋅c〉
〈a⋅d, a⋅c〉
〈b⋅d, a⋅c〉

P, M, N, Z
P, M, N
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Example

 –〈 3, 2 –4, 5〉⋅〈 〉

Both intervals are of class M, so the entry

applies. Thus

 –〈 3, 2 –4, 5  =〉⋅〈 〉

 〈min((–3) 5, 2 (–4)), ⋅ ⋅ max((–3) (–4), 2 5)  =⋅ ⋅ 〉

 〈min(–15, –8), max(12, 10)  =〉

 –〈 15, 12〉

M M

class of 
〈a, b〉

class of 
〈c, d〉 〈a, b〉⋅〈c, d〉

〈min(a⋅d, b⋅c), max(a⋅c, b⋅d)〉
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Implementation of Division

Step 4: Implement division of extended intervals.

〈a, b  and 〉 〈c, d : non-empty extended intervals〉

M

M

class of 
〈a, b〉

class of 
〈c, d〉 〈a, b  / 〉 〈c, d〉

P1 P1 〈a / d, b / c  \ {0}〉
P1 P0 〈a / d, ∞  \ {0}〉
P0 P1 〈0, b / c〉

P1 〈a / c, b / c〉
N0 P1 〈a / c, 0〉
N1 P1 〈a / c, b / d  \ {0}〉
N1 P0 〈-∞, b / d  \ {0}〉
P1 ( -∞, 〈 a / c  〉 ∪ 〈a / d, ∞ ) \ {0}〉
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Implementation of Division, ctd

-∞,+∞〈 〉

M

M

Z

Z Â

class of 〈a, b〉 class of 〈c, d〉 〈a, b  / 〉 〈c, d〉

M, Z, P0, N0 M, Z, P0, N0

N1 ( -∞, 〈 b / d  〉 ∪ 〈b / c, ∞ ) \ {0}〉
P1 N1 〈b / d, a / c  \ {0}〉
P1 N0 〈-∞, a / c  \ {0}〉
P0 N1 〈b / d, 0〉

N1 〈b / d, a / d〉
N0 N1 〈0, a / d〉
N1 N1 〈b / c, a / d  \ {0}〉
N1 N0 〈b / c, ∞  \ {0}〉

P1, N1  〈0, 0〉
P1, N1
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Example

 〈2, 16  / –∞, –2〉 〈 〉

The intervals are of class P1 and N1, so the entry

applies. Thus

 〈2, 16  / –∞, –2  =〉 〈 〉

 〈16 / (–2), 2 / (–∞)  \ {0} =〉

 {r ∈ ℝ | –8  ≤ r < 0}

a, b  / c, d〈 〉 〈 〉
class of 
〈a, b〉

class of 
〈c, d〉

P1 N1 〈b / d, a / c  \ {0}〉
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Using Floating-point Numbers

Step 5: Introduce Floating-Point Numbers

Motivation: We want to represent solutions to 9⋅x2 = 1 over –1, 1〈 〉 as

 x ∈ –0.33334, –0.33333  and 〈 〉 x ∈ 0.33333, 0.33334〈 〉

Assume finite subset F of  ℝ+ containing –∞ and ∞

Elements of F: floating-point numbers

Floating-point interval:

 〈a, b〉

a, b floating-point numbers

(A): the least floating-point interval containing A
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Amended Multiplication Rules

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩Dx⋅Dy  〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩Dz /D y  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈Dx , y∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩Dz/Dx  , z∈Dz 〉

F-MULTIPLICATION 1

F-MULTIPLICATION 2

F-MULTIPLICATION 3

Combined with the implementation (X⋅Y) and (X / Y)
for the floating-point intervals X , Y

Similar modification of other domain reduction rules
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Objectives

Introduce incomplete constraint solvers for

equality and disequality constraints

Boolean constraints

linear constraints over integer intervals and over 
finite integer domains

arithmetic constraints over integer intervals

arithmetic constraints over reals
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