Lecture 5

Incomplete Constraint Solvers

Outline

Introduce incomplete constraint solvers for

- equality and disequality constraints
- Boolean constraints
- linear constraints over integer intervals and over finite integer domains
- arithmetic constraints over integer intervals
- arithmetic constraints over reals

Equality Rules

Consider equality and disequality constraints over arbitrary domains.

EQUALITY 1 $\frac{\langle x = x; x \in D \rangle}{\langle ; x \in D \rangle}$

EQUALITY 2

$$\langle x = y ; x \in D_x, y \in D_y \rangle$$

 $\langle x = y ; x \in D_x \cap D_y, y \in D_x \cap D_y \rangle$

Disequality Rules

DISEQUALITY 1

 $\frac{\langle \boldsymbol{x} \neq \boldsymbol{x} ; \boldsymbol{x} \in \boldsymbol{D} \rangle}{\langle ; \boldsymbol{x} \in \boldsymbol{\emptyset} \rangle}$

DISEQUALITY 2 $\frac{\langle x \neq y \, ; \, x \in D_x, \, y \in D_y \rangle}{\langle \, ; \, x \in D_x, \, y \in D_y \rangle} \quad \text{(where } D_x \cap D_y = \emptyset\text{)}$ DISEQUALITY 3 $\frac{\langle x \neq y \, ; \, x \in D, \, y = a \rangle}{\langle \, ; \, x \in D - \{a\}, \, y = a \rangle} \quad \text{(where } a \in D\text{)}$

Similarly with $x \neq y$ replaced by $y \neq x$.

Foundations of Constraint Programming

Incomplete Constraint Solvers

Characterization Result

Theorem

A CSP with only equality and disequality constraints is hyper-arc consistent iff it is closed under the applications of the EQUALITY 1 - 2 and DISEQUALITY 1 - 3 rules.

Boolean Constaints

Boolean variables: range over {0, 1}

Boolean domain expression: $x \in D$ with $D \subseteq \{0, 1\}$

Boolean expression: built out of Boolean variables using \neg (negation), \land (conjunction), and \lor (disjunction)

Boolean constraints:

s = twhere *s*, *t* Boolean expressions

Simple Boolean Constraints

Rules

Transformation Rules

Reduce Boolean constraints to simple constraints

Example:

 $\frac{X \wedge S = Z}{X \wedge Y = Z, S = Y}$

where s is not a variable or is either x or z

Rules for Simple Constraints (Example) $\frac{\langle x \land y = z; x \in D_x, y \in D_y, z \in \{1\} \rangle}{\langle ; x \in D_x \cap \{1\}, y \in D_y \cap \{1\}, z \in \{1\} \rangle}$ Write as $x \land y = z, z = 1 \Rightarrow x = 1, y = 1$

Domain Reduction Rules: BOOL

•
$$x = y, x = 1 \Rightarrow y = 1$$

- $x = y, y = 1 \Rightarrow x = 1$
- $x = y, x = 0 \Rightarrow y = 0$
- $x = y, y = 0 \Rightarrow x = 0$
- $x \wedge y = z, x = 1, y = 1 \Rightarrow z = 1$
- $x \wedge y = z, x = 1, z = 0 \Rightarrow y = 0$
- $x \wedge y = z, y = 1, z = 0 \Rightarrow x = 0$
- $x \wedge y = z, x = 0 \Rightarrow z = 0$
- $x \wedge y = z, y = 0 \Rightarrow z = 0$
- $x \wedge y = z, z = 1 \Rightarrow x = 1, y = 1$

- $\neg x = y, x = 1 \Rightarrow y = 0$
- $\neg x = y, x = 0 \Rightarrow y = 1$
- $\neg x = y, y = 1 \Rightarrow x = 0$

•
$$\neg x = y, y = 0 \Rightarrow x = 1$$

•
$$x \lor y = z, x = 1 \Rightarrow z = 1$$

• $x \lor y = z, x = 0, y = 0 \Rightarrow z = 0$

•
$$x \lor y = z, x = 0, z = 1 \Rightarrow y = 1$$

- $x \lor y = z, y = 0, z = 1 \Rightarrow x = 1$
- $x \lor y = z, y = 1 \Rightarrow z = 1$

•
$$x \lor y = z, z = 0 \Rightarrow x = 0, y = 0$$

Characterization Result

Theorem

A non-failed Boolean CSP is hyper-arc consistent iff it is closed under the applications of the rules of BOOL.

Constraint Propagation using BOOL: Example

computes the binary sum $i_1 + i_2 + i_3$ in the binary word $o_2 o_1$

- Example: Deduce that $i_1 = 1$, $i_2 = 1$ and $o_1 = 0$ follows from $i_3 = 0$ and $o_2 = 1$
- Two proof rules for *XOR*

Constraint Propagation in Full Adder Circuit

Foundations of Constraint Programming

Incomplete Constraint Solvers

Linear Constraints on Integer Intervals

Consider the language with

- two constants 0 and 1
- unary function "–"
- two binary functions "+" and "-"

Linear expression: term in this language

```
Linear constraint: a formula

s \text{ op } t

where s and t are linear expressions and op \in \{<, \leq, =, \neq, \geq, >\}

Abbreviations:

n \coloneqq 1 + ... + 1 (n \text{ times})

nx \coloneqq x + ... + x (n \text{ times})

Analogously for -n and -nx
```

Simple Disequality Rules

SIMPLE DISEQUALITY 1 $\frac{\langle x \neq y ; x \in [a..b], y \in [c..d] \rangle}{\langle ; x \in [a..b], y \in [c..d] \rangle} \text{ (where } b < c \text{ or } d < a)$ SIMPLE DISEQUALITY 2 $\frac{\langle x \neq y; x \in [a..b], y = a \rangle}{\langle ; x \in [a+1..b], y = a \rangle}$ SIMPLE DISEQUALITY 3 $\frac{\langle x \neq y ; x \in [a..b], y = b \rangle}{\langle ; x \in [a..b-1], y = b \rangle}$

Domain Reduction (Example)

Consider

 $3x + 4y - 5z \le 7$ with $x \in [l_x ... h_x]$, $y \in [l_y ... h_y]$, $z \in [l_z ... h_z]$ Rewrite as

$$x \leq \frac{7 - 4y + 5z}{3}$$

Any value of x that satisfies this constraint also satisfies

$$x \leq \frac{7 - 4I_y + 5h_z}{3}$$

Hence we can reduce $[I_x ... h_x]$ to

$$[I_x .. min(\lfloor \frac{7-4I_y+5h_z}{3} \rfloor, h_x)]$$

Domain Reduction for Linear Equality

$$\frac{\left\langle \sum_{i \in POS} a_i x_i - \sum_{i \in NEG} a_i x_i = b; x_1 \in [I_1 \dots I_1], \dots, x_n \in [I_n \dots I_n] \right\rangle}{\left\langle \sum_{i \in POS} a_i x_i - \sum_{i \in NEG} a_i x_i = b; x_1 \in [I'_1 \dots I'_1], \dots, x_n \in [I'_n \dots I'_n] \right\rangle}$$

where $I'_{j} \coloneqq max(I_{j}, [\gamma_{j}]), h'_{j} \coloneqq min(h_{j}, [\alpha_{j}]) \text{ for } j \in POS$ and $I'_{j} \coloneqq max(I_{j}, [\beta_{j}]), h'_{j} \coloneqq min(h_{j}, [\delta_{j}]) \text{ for } j \in NEG$

and

$$\alpha_{j} \coloneqq \frac{b - \sum_{i \in POS - \{j\}} a_{i} I_{i} + \sum_{i \in NEG} a_{i} h_{i}}{a_{j}}$$

$$\beta_{j} \coloneqq \frac{-b + \sum_{i \in POS} a_{i} I_{i} - \sum_{i \in NEG - \{j\}} a_{i} h_{i}}{a_{j}}$$

$$\gamma_{j} \coloneqq \frac{b - \sum_{i \in POS - \{j\}} a_{i} h_{i} + \sum_{i \in NEG} a_{i} I_{i}}{a_{j}}}{a_{j}}$$

$$\delta_{j} \coloneqq \frac{-b + \sum_{i \in POS} a_{i} h_{i} - \sum_{i \in NEG - \{j\}} a_{i} I_{i}}{a_{j}}}{a_{j}}$$

Foundations of Constraint Programming

Incomplete Constraint Solvers

Example: SEND + MORE = MONEY

SEND

+ MORE

MONEY

- 1. Use the transformation rules to transform "SEND + MORE = MONEY" constraint to $9000 \cdot M + 900 \cdot O + 90 \cdot N + Y (91 \cdot E + D + 1000 \cdot S + 10 \cdot R) = 0$
- 2. Apply LINEAR EQUALITY reduction rule: S = 9, E \in [0..9], N \in [0..9], D \in [0..9], M = 1, O \in [0..1], R \in [0..9], Y \in [0..9]
- 3. Apply SIMPLE DISEQUALITY rule to $M \neq O$ to conclude O = 0

Example: SEND + MORE = MONEY, ctd

- 4. Repeatedly use M = 1, O = 0, S = 9 and SIMPLE DISEQUALITY rules. This eventually yields S = 9, E ∈ [2..8], N ∈ [2..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8]
- 5. 5 iterations of LINEAR EQUALITY rule yield
 - $E \in [2..7], N \in [3..8]$ $E \in [3..7], N \in [3..8]$ $E \in [2..7], N \in [4..8]$ $E \in [4..7], N \in [4..8]$ $E \in [4..7], N \in [5..8]$

The other ranges remain unchanged.

Arithmetic Constraints on Integer Intervals

Consider the language with

- two constants 0 and 1
- unary function "–"
- three binary functions "+", "-", and " \cdot " (new)

Arithmetic constraint: a formula

s op t

where *s* and *t* are terms and $op \in \{<, \leq, =, \neq, \geq, >\}$

Example:

$$x^5 \cdot y^2 \cdot z^4 + 3x \cdot y^3 \cdot z^5 \le 10 + 4x^4 \cdot y^6 \cdot z^2 - y^2 \cdot x^5 \cdot z^4$$

Approach Based on Atomic Arithmetic Constraints

Atomic arithmetic constraint:

- a linear constraint or
- $x \cdot y = z$

Note: Every arithmetic constraint can be reduced to a sequence of atomic constraints.

Transformation rule (Example):

$$\frac{\sum_{i=1}^{n} m_{i} \text{ op } b}{\sum_{i=1}^{n} v_{i} \text{ op } b, m_{1} = v_{1}, \dots, m_{n} = v_{n}}$$

where $v_1, ..., v_n$ are auxiliary variables

Interval Multiplication

- *X*, *Y* sets of integers
- Multiplication:

 $X \cdot Y \coloneqq \{x \cdot y \mid x \in X, y \in Y\}$

Note: $X \cdot Y$ does not have to be an interval even if X and Y are

Example: [0..2]·[1..2] = {0, 1, 2, 4}

 $int(A) \coloneqq \begin{cases} smallest int. interval \supseteq A & if it exists \\ \mathbb{Z} & otherwise \end{cases}$

(for sets of integers *A*)

Multiplication Rule 1

MULTIPLICATION 1

$$\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle$$

 $\overline{\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \cap int(D_x \cdot D_y) \rangle}$

Example:

 $\langle x \cdot y = z ; x \in [0..2], y \in [1..2], z \in [4..6] \rangle$ $int([0..2] \cdot [1..2]) = [0..4] and [4..6] \cap [0..4] = [4..4], so we get$ $\langle x \cdot y = z ; x \in [0..2], y \in [1..2], z \in [4..4] \rangle$

Multiplication Rules 2, 3

Interval division:
 Z / Y = {x ∈ Z | ∃y ∈ Y∃z ∈ Z x ⋅ y = z}

Note: Z / Y does not have to be an interval even if Z, Y are

Example: [3..5] / [-1..2] = {-5, -4, -3, 2, 3, 4, 5}

Example

 $\langle x \cdot y = z ; x \in [1..20], y \in [9..11], z \in [155..161] \rangle$

Applying MULTIPLICATION 2 rule yields

 $\langle x \cdot y = z ; x \in [16..16], y \in [9..11], z \in [155..161] \rangle$

since [155..161] / [9..11] = [16..16] and [1..20] ∩ *int*([16..16]) = [16..16]

Applying MULTIPLICATION 3 rule yields

 $\langle x \cdot y = z ; x \in [16..16], y \in [10..10], z \in [155..161] \rangle$

since [155..161] / [16..16] = [10..10] and [9..11] ∩ *int*([10..10]) = [10..10]

Applying MULTIPLICATION 1 rule yields

 $\langle x \cdot y = z; x \in [16..16], y \in [10..10], z \in [160..160] \rangle$ since $[16..16] \cdot [10..10] = [160..160]$ and $[155..161] \cap int([160..160]) = [160..160]$

Arithmetic Constraints on Reals

Consider the language with

- each real number as a constant (new)
- unary function "–"
- In three binary functions "+", "−", and "."

Arithmetic constraint: a formula

s op t

where *s* and *t* are terms and $op \in \{<, \leq, =, \neq, \geq, >\}$

Example:

 $2.4 \cdot x^5 \cdot y^2 \cdot z^4 + 3.6 \cdot x \cdot y^3 \cdot z^5 \leq 10.1 + 4.2 \cdot x^4 \cdot y^6 \cdot z^2$

Domains: Extend Intervals

 $\mathbb{R}^+ \coloneqq \mathbb{R} \cup \{-\infty, \infty\}$ Extend < from \mathbb{R} to \mathbb{R}^+ as expected Extend interval: expression $\langle a, b \rangle$ where $a, b \in \mathbb{R}^+$ Meaning: $\langle a, b \rangle = \{r \in \mathbb{R} \mid a \le r \le b\}$ Note: For $a, b \in \mathbb{R}$ $\langle a, a \rangle = \{a\}$ $\langle -\infty, b \rangle = \{r \in \mathbb{R} \mid r \leq b\}$ $\langle a, \infty \rangle = \{r \in \mathbb{R} \mid a \leq r\}$ $\langle -\infty, \infty \rangle = \mathbb{R}$

Interval Arithmetic

X, Y sets of reals

•
$$X + Y := \{x + y \mid x \in X, y \in Y\}$$

•
$$X - Y \coloneqq \{x - y \mid x \in X, y \in Y\}$$

•
$$X \cdot Y \coloneqq \{x \cdot y \mid x \in X, y \in Y\}$$

•
$$X / Y \coloneqq \{u \in \mathbb{R} \mid \exists x \in X \exists y \in Y u \cdot y = x\}$$

For real
$$r$$
 and $op \in \{+, -, \cdot, /\}$
 $r \ op \ X \coloneqq \{r\} \ op \ X$
 $X \ op \ r \coloneqq X \ op \ \{r\}$

Interval Arithmetic, ctd

X, Y extended intervals, r a real

- $X \cap Y, X+Y, X-Y$ and $X \cdot Y$ are extended intervals
- X / {r} is an extended interval
- X / Y does not have to be an extended interval

Example:

$$\langle 2, 16 \rangle / \langle -\infty, -2 \rangle = \{ r \in \mathbb{R} \mid -8 \le r < 0 \}$$

 $int(A) \coloneqq$ smallest extended interval containing A for sets of reals A

Atomic Arithmetic Constraints

•
$$\sum_{i=1}^{n} a_i x_i = b$$

- n > 0
- a_1, ..., a_n non-zero reals
- x_1, ..., x_n different variables
- b is a real
• $x \neq y$
• $x \cdot y = z$

Note:

Every arithmetic constraint can be reduced to a sequence of atomic constraints.

Domain Reduction Rules

Intuition:
$$\sum_{i=1}^{n} a_{i} x_{i} = b \text{ implies that for } j \in [1..n]: x_{j} = \frac{b - \sum_{i \in [1..n] - \{j\}} a_{i} x_{i}}{a_{j}}$$

$$\mathbb{R}\text{-LINEAR EQUALITY}$$

$$\frac{\left\langle \sum_{i=1}^{n} a_{i} x_{i} = b; x_{1} \in D_{1}, \dots, x_{n} \in D_{n} \right\rangle}{\left\langle \sum_{i=1}^{n} a_{i} x_{i} = b; \dots, x_{j} \in D'_{j}, \dots \right\rangle}$$
where $j \in [1..n]$ and $D'_{j} := D_{j} \cap \frac{b - \sum_{i \in [1..n] - \{j\}} a_{i} \cdot D_{i}}{a_{j}}$

$$DISEQUALITY 2$$

$$\frac{\left\langle x \neq y; x \in D_{x}, y \in D_{y} \right\rangle}{\left\langle ; x \in D_{x}, y \in D_{y} \right\rangle} \quad \text{where } D_{x} \cap D_{y} = \emptyset$$

Multiplication Rules

$$R-MULTIPLICATION 1$$

$$\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle$$

$$\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \cap D_x \cdot D_y \rangle$$

$$\mathbb{R}\text{-MULTIPLICATION 2}$$

$$\frac{\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle}{\langle x \cdot y = z; x \in D_x \cap int(D_z/D_y), y \in D_y, z \in D_z \rangle}$$

$$\begin{array}{c} \text{IR-MULTIPLICATION 3} \\ & \left\langle x \cdot y = z \, ; \, x \in D_x, \, y \in D_y, \, z \in D_z \right\rangle \\ \hline & \left\langle x \cdot y = z \, ; \, x \in D_x, \, y \in D_y \cap int\left(D_z/D_x\right), \, z \in D_z \right\rangle \end{array}$$

Example

 $\langle x \cdot y = z ; x \in \langle -\infty, -1 \rangle, y \in \langle -\infty, -2 \rangle, z \in \langle -\infty, 161 \rangle \rangle$

By IR-MULTIPLICATION 1 rule

 $\langle x \cdot y = z; x \in \langle -\infty, -1 \rangle, y \in \langle -\infty, -2 \rangle, z \in \langle 2, 161 \rangle \rangle$

since $\langle -\infty, -1 \rangle \cdot \langle -\infty, -2 \rangle = \langle 2, \infty \rangle$ and hence $\langle -\infty, 161 \rangle \cap \langle 2, \infty \rangle = \langle 2, 161 \rangle$

By IR-MULTIPLICATION 3 rule

 $\langle x \cdot y = z ; x \in \langle -\infty, -1 \rangle, y \in \langle -161, -2 \rangle, z \in \langle 2, 161 \rangle \rangle$ since $\langle 2, 161 \rangle / \langle -\infty, -1 \rangle = \{r \in \mathbb{R} \mid -161 \leq r < 0\}$ and hence $int(\langle 2, 161 \rangle / \langle -\infty, -1 \rangle) = \langle -161, 0 \rangle$ and $\langle -\infty, -2 \rangle \cap \langle -161, 0 \rangle = \langle -161, -2 \rangle$

Example, ctd

 $\langle x \cdot y = z ; x \in \langle -\infty, -1 \rangle, y \in \langle -161, -2 \rangle, z \in \langle 2, 161 \rangle \rangle$

By IR-MULTIPLICATION 2 rule

 $\langle x \cdot y = z; x \in \langle -80.5, -1 \rangle, y \in \langle -161, -2 \rangle, z \in \langle 2, 161 \rangle \rangle$ since $\langle 2, 161 \rangle / \langle -161, -2 \rangle = \langle -80.5, -2 / 161 \rangle$ and hence $\langle -\infty, -1 \rangle \cap int(\langle -80.5, -2 / 161 \rangle) = \langle -80.5, -1 \rangle$

Last CSP is closed under the MULTIPLICATION rules

Arithmetic Constraints on Reals: Implementation Issues

Step 1: Extend arithmetic operations from IR to IR⁺

- \perp : undefined operation
- PR: a positive real
- NR: a negative real

			X							X	
	x + y	$-\infty$	NR	0	\mathbf{PR}	∞		x - y	$-\infty$	NR	0
	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	\perp	-	$-\infty$		∞	∞
	NR		NR	NR	\mathcal{R}	∞	-	NR	$-\infty$	\mathcal{R}	PR
V	0			0	PR	∞	V	0	$-\infty$	NR	0
•	\mathbf{PR}				PR	∞	.	PR	$-\infty$	NR	NR
	∞					∞	_	∞	$-\infty$	$-\infty$	$-\infty$

			X			
	$x \cdot y$	$-\infty$	NR	0	\mathbf{PR}	∞
	$-\infty$	∞	∞	\perp	$-\infty$	$-\infty$
	NR		PR	0	NR	$-\infty$
y	0			0	0	\perp
•	\mathbf{PR}				\mathbf{PR}	∞
	∞					∞

X

 \mathbf{PR}

 ∞

PR

PR

 \mathcal{R}

 $-\infty$

 ∞

 ∞

 ∞

 ∞

 ∞

00	ΝŔ	0	\mathbf{PR}	∞
\perp	0	0	0	\vdash
∞	PR	0	NR	$-\infty$
\perp	\perp	\bot	\perp	\perp
$-\infty$	NR	0	PR	∞
\perp	0	0	0	\perp
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$\begin{array}{c c} \bot & 0 \\ \infty & PR \\ \bot & \bot \\ -\infty & NR \\ \bot & 0 \end{array}$	$\begin{array}{c c} \bot & 0 & 0 \\ \hline \infty & PR & 0 \\ \hline \bot & \bot & \bot \\ \hline -\infty & NR & 0 \\ \hline \bot & 0 & 0 \end{array}$	$\begin{array}{c cccc} \bot & 0 & 0 & 0 \\ \hline \infty & PR & 0 & NR \\ \hline \bot & \bot & \bot & \bot \\ \hline -\infty & NR & 0 & PR \\ \hline & 0 & 0 & 0 \end{array}$

Implementation Issues, ctd

Step 2: Implement intersection, addition, subtraction of extended intervals

Note: For non-empty extended intervals $\langle a, b \rangle$ and $\langle c, d \rangle$

- $\langle a, b \rangle \cap \langle c, d \rangle = \langle max(a, c), min(b, d) \rangle$
- $\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$
- $\langle a, b \rangle \langle c, d \rangle = \langle a d, b c \rangle$

Classification of Non-Empty Extended Intervals

Depends on the position of 0 w.r.t. such an interval

class of <i>⟨a, b⟩</i>	at least one negative	at least one positive	signs of endpoints
М	yes	yes	$a < 0 \land b > 0$
Z	no	no	$a = 0 \land b = 0$
Р	no	yes	<i>a</i> ≥ 0 ∧ <i>b</i> > 0
P ₀	no	yes	<i>a</i> = 0 ∧ <i>b</i> > 0
<i>P</i> ₁	no	yes	<i>a</i> > 0 ∧ <i>b</i> > 0
N	yes	no	$a < 0 \land b \leq 0$
N ₀	yes	no	<i>a</i> < 0 ∧ <i>b</i> = 0
N ₁	yes	no	<i>a</i> < 0 ∧ <i>b</i> < 0

Implementation of Multiplication

Step 3: Implement multiplication of extended intervals

 $\langle a, b \rangle$ and $\langle c, d \rangle$: non-empty extended intervals

class of 〈a, b〉	class of ⟨ <i>c</i> , <i>d</i> ⟩	$\langle a, b angle \cdot \langle c, d angle$
Р	Р	⟨a·c, b·d⟩
Р	М	$\langle b \cdot c, b \cdot d \rangle$
Р	N	$\langle b \cdot c, a \cdot d \rangle$
М	Р	⟨a·d, b·d⟩
М	М	$\langle min(a \cdot d, b \cdot c), max(a \cdot c, b \cdot d) \rangle$
М	N	$\langle b \cdot c, a \cdot c \rangle$
N	Р	⟨a·d, b·c⟩
N	М	⟨a·d, a·c⟩
Ν	N	⟨b·d, a·c⟩
Ζ	P, M, N, Z	$\langle 0, 0 \rangle$
P, M, N	Z	$\langle 0, 0 \rangle$

Example

 $\langle -3, 2 \rangle \cdot \langle -4, 5 \rangle$

Both intervals are of class *M*, so the entry

class of 〈a, b〉	class of $\langle c, d \rangle$	$\langle a, b \rangle \cdot \langle c, d \rangle$
М	М	$\langle min(a \cdot d, b \cdot c), max(a \cdot c, b \cdot d) \rangle$

applies. Thus

$$\langle -3, 2 \rangle \cdot \langle -4, 5 \rangle =$$

 $\langle min((-3) \cdot 5, 2 \cdot (-4)), max((-3) \cdot (-4), 2 \cdot 5) \rangle =$
 $\langle min(-15, -8), max(12, 10) \rangle =$
 $\langle -15, 12 \rangle$

Implementation of Division

Step 4: Implement division of extended intervals.

 $\langle a, b \rangle$ and $\langle c, d \rangle$: non-empty extended intervals

class of $\langle a, b \rangle$	class of $\langle c, d \rangle$	$\langle a, b \rangle$ / $\langle c, d \rangle$
<i>P</i> ₁	<i>P</i> ₁	⟨ <i>a / d</i> , <i>b / c</i> ⟩ \ {0}
<i>P</i> ₁	P ₀	⟨ <i>a</i> / <i>d</i> , ∞⟩ \ {0}
P_0	<i>P</i> ₁	$\langle 0, b / c \rangle$
М	<i>P</i> ₁	⟨a / c, <i>b / c</i> ⟩
N ₀	<i>P</i> ₁	〈a / c, 0〉
N ₁	<i>P</i> ₁	⟨a / c, b / d⟩ \ {0}
<i>N</i> ₁	P ₀	⟨-∞, <i>b / d</i> ⟩ \ {0}
<i>P</i> ₁	М	(⟨-∞, <i>a / c</i> ⟩ ∪ ⟨ <i>a / d</i> , ∞⟩) \ {0}

Implementation of Division, ctd

class of $\langle a, b \rangle$	class of $\langle c, d \rangle$	$\langle a, b angle$ / $\langle c, d angle$
M, Z, P ₀ , N ₀	M, Z, P ₀ , N ₀	$\langle -\infty, +\infty \rangle$
N ₁	М	$(\langle -\infty, b / d \rangle \cup \langle b / c, \infty \rangle) \setminus \{0\}$
P ₁	N ₁	⟨ <i>b</i> / <i>d</i> , <i>a</i> / <i>c</i> ⟩ \ {0}
P ₁	N ₀	⟨-∞, <i>a / c</i> ⟩ \ {0}
P ₀	N ₁	$\langle b / d, 0 \rangle$
М	N ₁	⟨b / d, a / d⟩
N ₀	N ₁	$\langle 0, a / d \rangle$
N ₁	N ₁	⟨ <i>b</i> / <i>c</i> , <i>a</i> / <i>d</i> ⟩ \ {0}
N ₁	N ₀	⟨ <i>b</i> / <i>c</i> , ∞⟩ \ {0}
Z	P ₁ , N ₁	⟨0, 0⟩
P ₁ , N ₁	Z	Ø

Example

 $\langle 2,\,16
angle$ / $\langle -\infty,\,-2
angle$

The intervals are of class P_1 and N_1 , so the entry

class of $\langle a, b \rangle$	class of $\langle c, d \rangle$	$\langle a,b angle$ / $\langle c,d angle$
<i>P</i> ₁	N ₁	⟨ <i>b</i> / <i>d</i> , <i>a</i> / <i>c</i> ⟩ \ {0}

applies. Thus

$$\langle 2, 16 \rangle / \langle -\infty, -2 \rangle =$$

 $\langle 16 / (-2), 2 / (-\infty) \rangle \setminus \{0\} =$
 $\{r \in \mathbb{R} \mid -8 \le r < 0\}$

Using Floating-point Numbers

Step 5: Introduce Floating-Point Numbers

Motivation: We want to represent solutions to $9 \cdot x^2 = 1$ over $\langle -1, 1 \rangle$ as $x \in \langle -0.33334, -0.33333 \rangle$ and $x \in \langle 0.33333, 0.33334 \rangle$

Assume finite subset \mathcal{F} of \mathbb{R}^+ containing $-\infty$ and ∞

Elements of \mathcal{F} : floating-point numbers

Floating-point interval:

⟨*a*, *b*⟩

a, *b* floating-point numbers $\Gamma(A)$: the least floating-point interval containing A

Amended Multiplication Rules

 $\mathcal{F}\text{-MULTIPLICATION 1}$ $\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle$ $\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \cap \Gamma(D_x \cdot D_y) \rangle$

$$\mathcal{F}\text{-MULTIPLICATION 2}$$

$$\frac{\langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle}{\langle x \cdot y = z; x \in D_x \cap \Gamma(D_z/D_y), y \in D_y, z \in D_z \rangle}$$

$$\mathcal{F}\text{-MULTIPLICATION 3} \langle x \cdot y = z; x \in D_x, y \in D_y, z \in D_z \rangle \overline{\langle x \cdot y = z; x \in D_x, y \in D_y \cap \Gamma(D_z/D_x), z \in D_z \rangle}$$

- Combined with the implementation $\Gamma(X \cdot Y)$ and $\Gamma(X / Y)$ for the floating-point intervals X, Y
- Similar modification of other domain reduction rules

Foundations of Constraint Programming

Incomplete Constraint Solvers

Objectives

Introduce incomplete constraint solvers for

- equality and disequality constraints
- Boolean constraints
- linear constraints over integer intervals and over finite integer domains
- arithmetic constraints over integer intervals
- arithmetic constraints over reals