
1Foundations of Constraint Programming Incomplete Constraint Solvers

Lecture 5

Incomplete Constraint Solvers

2Foundations of Constraint Programming Incomplete Constraint Solvers

Outline

Introduce incomplete constraint solvers for

equality and disequality constraints

Boolean constraints

linear constraints over integer intervals and over
finite integer domains

arithmetic constraints over integer intervals

arithmetic constraints over reals

3Foundations of Constraint Programming Incomplete Constraint Solvers

Equality Rules

Consider equality and disequality constraints over arbitrary domains.

EQUALITY 1

EQUALITY 2

〈x=y ; x∈Dx , y ∈Dy 〉
〈 x=y ; x∈Dx∩Dy , y∈Dx∩Dy 〉

〈 x=x ; x∈D 〉
〈 ; x∈D 〉

4Foundations of Constraint Programming Incomplete Constraint Solvers

Disequality Rules

DISEQUALITY 1

DISEQUALITY 2

 (where Dx ∩ Dy = Â)

DISEQUALITY 3

 (where a ∈ D)

 Similarly with x ≠ y replaced by y ≠ x.

〈 x≠y ; x∈Dx , y ∈Dy 〉
〈 ; x∈Dx , y ∈Dy 〉

〈 x≠x ; x∈D 〉
〈 ; x∈Â 〉

〈 x≠y ; x∈D , y=a 〉
〈 ; x∈D−{a } , y=a 〉

5Foundations of Constraint Programming Incomplete Constraint Solvers

Characterization Result

Theorem

A CSP with only equality and disequality constraints is hyper-arc
consistent iff it is closed under the applications of the EQUALITY 1 – 2
and DISEQUALITY 1 – 3 rules.

6Foundations of Constraint Programming Incomplete Constraint Solvers

Boolean Constaints

Boolean variables: range over {0, 1}

Boolean domain expression: x ∈ D with D {0, 1}

Boolean expression: built out of Boolean variables using
¬ (negation), ∧ (conjunction), and ∨ (disjunction)

Boolean constraints:

s = t

where s, t Boolean expressions

7Foundations of Constraint Programming Incomplete Constraint Solvers

Simple Boolean Constraints

x = y

¬x = y

x ∧ y = z

x ∨ y = z

8Foundations of Constraint Programming Incomplete Constraint Solvers

Rules

Transformation Rules

Reduce Boolean constraints to simple constraints

Example:

where s is not a variable or is either x or z

Rules for Simple Constraints (Example)

Write as x ∧ y = z, z = 1 ➸ x = 1, y = 1

x∧s=z
x∧y=z ,s=y

〈 x∧y=z ; x∈Dx , y ∈Dy , z∈{1} 〉
〈 ; x∈Dx∩{1} , y ∈Dy∩{1} , z∈{1} 〉

9Foundations of Constraint Programming Incomplete Constraint Solvers

Domain Reduction Rules: BOOL

x = y, x = 1 ➸ y = 1

x = y, y = 1 ➸ x = 1

x = y, x = 0 ➸ y = 0

x = y, y = 0 ➸ x = 0

x ∧ y = z, x = 1, y = 1 ➸ z = 1

x ∧ y = z, x = 1, z = 0 ➸ y = 0

x ∧ y = z, y = 1, z = 0 ➸ x = 0

x ∧ y = z, x = 0 ➸ z = 0

x ∧ y = z, y = 0 ➸ z = 0

x ∧ y = z, z = 1 ➸ x = 1, y = 1

¬x = y, x = 1 ➸ y = 0

¬x = y, x = 0 ➸ y = 1

¬x = y, y = 1 ➸ x = 0

¬x = y, y = 0 ➸ x = 1

x ∨ y = z, x = 1 ➸ z = 1

x ∨ y = z, x = 0, y = 0 ➸ z = 0

x ∨ y = z, x = 0, z = 1 ➸ y = 1

x ∨ y = z, y = 0, z = 1 ➸ x = 1

x ∨ y = z, y = 1 ➸ z = 1

x ∨ y = z, z = 0 ➸ x = 0, y = 0

10Foundations of Constraint Programming Incomplete Constraint Solvers

Characterization Result

Theorem

A non-failed Boolean CSP is hyper-arc consistent iff it
is closed under the applications of the rules of BOOL.

11Foundations of Constraint Programming Incomplete Constraint Solvers

Constraint Propagation using BOOL: Example

Full Adder Circuit

computes the binary sum i1 + i2 + i3 in the binary word o2o1

Example: Deduce that i1 = 1, i2 = 1 and o1 = 0
follows from i3 = 0 and o2 = 1

Two proof rules for XOR

XOR 1 x  y = z, x = 1, y = 1 ➸ z = 0
XOR 2 x  y = z, x = 0, y = 0 ➸ z = 0

12Foundations of Constraint Programming Incomplete Constraint Solvers

Constraint Propagation in Full Adder Circuit

13Foundations of Constraint Programming Incomplete Constraint Solvers

Linear Constraints on Integer Intervals

Consider the language with

two constants 0 and 1

unary function “–”

two binary functions “+” and “–”

Linear expression: term in this language

Linear constraint: a formula

 s op t

where s and t are linear expressions and op ∈ {<, ≤, =, ≠, ≥, >}

Abbreviations:

n ≔ 1 + ... + 1 (n times)

nx ≔ x + ... + x (n times)

Analogously for –n and –nx

14Foundations of Constraint Programming Incomplete Constraint Solvers

Simple Disequality Rules

SIMPLE DISEQUALITY 1

 (where b < c or d < a)

SIMPLE DISEQUALITY 2

SIMPLE DISEQUALITY 3

〈 x≠y ; x∈[a..b] , y ∈[c..d] 〉
〈 ; x∈[a..b] , y ∈[c..d] 〉

〈 x≠y ; x∈[a..b] , y=a 〉
〈 ; x∈[a1..b] , y=a 〉

〈 x≠y ; x∈[a..b] , y=b 〉
〈 ; x∈[a..b−1] , y=b 〉

15Foundations of Constraint Programming Incomplete Constraint Solvers

Domain Reduction (Example)

Consider

3x + 4y – 5z ≤ 7

with x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]

Rewrite as

Any value of x that satisfies this constraint also satisfies

Hence we can reduce [lx..hx] to

x≤7−4y5z
3

x≤
7−4ly5hz

3

[l x ..min ⌊
7−4ly5hz

3
⌋ , hx]

16Foundations of Constraint Programming Incomplete Constraint Solvers

Domain Reduction for Linear Equality

where l'j ≔ max(lj, ⌈j), ⌉ h'j ≔ min(hj, ⌊j) for ⌋ j ∈ POS

and l'j ≔ max(lj, ⌈j), ⌉ h'j ≔ min(hj, ⌊j) for ⌋ j ∈ NEG

and

〈∑i ∈POS
ai x i−∑i ∈NEG

ai x i=b ; x1∈[l 1 ..h1] , ... , xn∈[l n ..hn] 〉
〈∑i ∈POS

ai x i−∑i ∈NEG
ai x i=b ; x1∈[l ' 1 .. h '1] , ... , xn∈[l ' n ..h ' n]〉

 j≔
b−∑i ∈POS−{ j }

ai l i∑i ∈NEG
ai hi

a j

 j ≔
−b∑i∈POS

ai l i−∑i∈NEG−{ j }
ai hi

a j

 j≔
b−∑i ∈POS−{ j }

ai hi∑i ∈NEG
ai l i

a j

 j ≔
−b∑i∈POS

ai hi−∑i ∈NEG−{ j }
ai l i

a j

17Foundations of Constraint Programming Incomplete Constraint Solvers

Example: SEND + MORE = MONEY

 SEND

 + MORE

 MONEY

1. Use the transformation rules to transform “SEND + MORE = MONEY” constraint to
9000⋅M + 900 O + 90 N + Y – (91 E + D + 1000 S + 10 R) = 0⋅ ⋅ ⋅ ⋅ ⋅

2. Apply LINEAR EQUALITY reduction rule:
S = 9, E ∈ [0..9], N ∈ [0..9], D ∈ [0..9], M = 1, O ∈ [0..1], R ∈ [0..9], Y ∈ [0..9]

3. Apply SIMPLE DISEQUALITY rule to M ≠ O to conclude O = 0

18Foundations of Constraint Programming Incomplete Constraint Solvers

Example: SEND + MORE = MONEY, ctd

4. Repeatedly use M = 1, O = 0, S = 9 and SIMPLE DISEQUALITY rules.
This eventually yields
S = 9, E ∈ [2..8], N ∈ [2..8], D ∈ [2..8], M = 1, O = 0, R ∈ [2..8], Y ∈ [2..8]

5. 5 iterations of LINEAR EQUALITY rule yield
E ∈ [2..7], N ∈ [3..8]
E ∈ [3..7], N ∈ [3..8]
E ∈ [2..7], N ∈ [4..8]
E ∈ [4..7], N ∈ [4..8]
E ∈ [4..7], N ∈ [5..8]
The other ranges remain unchanged.

19Foundations of Constraint Programming Incomplete Constraint Solvers

Arithmetic Constraints on Integer Intervals

Consider the language with

two constants 0 and 1

unary function “–”

three binary functions “+”, “–”, and “⋅” (new)

Arithmetic constraint: a formula

 s op t

where s and t are terms and op {<, ≤, =, ≠, ≥, >}∈

Example:

x5⋅y2⋅z4 + 3x⋅y3⋅z5 ≤ 10 + 4x4⋅y6⋅z2 – y2⋅x5⋅z4

20Foundations of Constraint Programming Incomplete Constraint Solvers

Approach Based on Atomic Arithmetic Constraints

Atomic arithmetic constraint:

a linear constraint or

x⋅y = z

Note: Every arithmetic constraint can be reduced to a sequence of atomic constraints.

Transformation rule (Example):

where v1, ..., vn are auxiliary variables

∑i =1

n
mi op b

∑i=1

n
v i op b ,m1=v1, ... , mn=v n

21Foundations of Constraint Programming Incomplete Constraint Solvers

Interval Multiplication

X, Y sets of integers

Multiplication:

X⋅Y ≔ {x⋅y | x ∈ X, y ∈ Y}

Note: X⋅Y does not have to be an interval even if X and Y are

Example: [0..2]⋅[1..2] = {0, 1, 2, 4}

(for sets of integers A)

int A≔{smallest int. interval⊇A if it exists
ℤ otherwise

22Foundations of Constraint Programming Incomplete Constraint Solvers

Multiplication Rule 1

MULTIPLICATION 1

Example:

〈x  y = z ; x ∈ [0..2], y ∈ [1..2], z ∈ [4..6]〉

int([0..2][1..2]) = [0..4] and [4..6] ∩ [0..4] = [4..4], so we get

〈x  y = z ; x ∈ [0..2], y ∈ [1..2], z ∈ [4..4]〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩ int Dx⋅Dy  〉

23Foundations of Constraint Programming Incomplete Constraint Solvers

Multiplication Rules 2, 3

Interval division:
Z / Y = {x ∈ ℤ | ∃y ∈ Y∃z ∈ Z x⋅y = z}

Note: Z / Y does not have to be an interval even if Z, Y are

Example: [3..5] / [–1..2] = {–5, –4, –3, 2, 3, 4, 5}

MULTIPLICATION 2

MULTIPLICATION 3

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩ int Dz /Dy  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈D x , y ∈D y ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩ int Dz/Dx  , z∈Dz 〉

24Foundations of Constraint Programming Incomplete Constraint Solvers

Example

〈x  y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉

Applying MULTIPLICATION 2 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [9..11], z ∈ [155..161]〉

since [155..161] / [9..11] = [16..16] and [1..20] ∩ int([16..16]) = [16..16]

Applying MULTIPLICATION 3 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [155..161]〉

since [155..161] / [16..16] = [10..10] and [9..11] ∩ int([10..10]) = [10..10]

Applying MULTIPLICATION 1 rule yields

〈x  y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉

since [16..16]  [10..10] = [160..160] and [155..161] ∩ int([160..160]) = [160..160]

25Foundations of Constraint Programming Incomplete Constraint Solvers

Arithmetic Constraints on Reals

Consider the language with

each real number as a constant (new)

unary function “–”

three binary functions “+”, “–”, and “⋅”

Arithmetic constraint: a formula

 s op t

where s and t are terms and op ∈ {<, ≤, =, ≠, ≥, >}

Example:

2.4⋅x5⋅y2⋅z4 + 3.6⋅x⋅y3⋅z5 ≤ 10.1 + 4.2⋅x4⋅y6⋅z2

26Foundations of Constraint Programming Incomplete Constraint Solvers

Domains: Extend Intervals

 ℝ+ ≔ ℝ {–∞, ∞}∪

Extend < from ℝ to ℝ+ as expected

Extend interval: expression

 〈a, b〉

where a, b ∈ ℝ+

Meaning: 〈a, b = {〉 r ∈ ℝ | a ≤ r ≤ b}

Note: For a, b ∈ ℝ

 〈a, a = {a}〉

 –∞〈 , b = {〉 r ∈ ℝ | r ≤ b}

 〈a, ∞ = {〉 r ∈ ℝ | a ≤ r}

 〈–∞, ∞ = 〉 ℝ

27Foundations of Constraint Programming Incomplete Constraint Solvers

Interval Arithmetic

X, Y sets of reals

X + Y ≔ {x + y | x ∈ X, y ∈ Y}

X – Y ≔ {x – y | x ∈ X, y ∈ Y}

X ⋅Y ≔ {x⋅y | x ∈ X, y ∈ Y}

X / Y ≔ {u ∈ ℝ | ∃x ∈ X∃y ∈ Y u⋅y = x}

For real r and op ∈ {+, –, ,⋅ / }

 r op X ≔ {r} op X

 X op r ≔ X op {r}

28Foundations of Constraint Programming Incomplete Constraint Solvers

Interval Arithmetic, ctd

X, Y extended intervals, r a real

X∩Y, X+Y, X–Y and X ⋅Y are extended intervals

X / {r} is an extended interval

X / Y does not have to be an extended interval

Example:

〈2, 16 / 〉 〈–∞, –2 = {〉 r ∈ ℝ | –8 ≤ r < 0}

int(A) ≔ smallest extended interval containing A for sets of reals A

29Foundations of Constraint Programming Incomplete Constraint Solvers

Atomic Arithmetic Constraints

- n > 0
- a1, ..., an non-zero reals
- x1, ..., xn different variables
- b is a real

x ≠ y

x y = z⋅

Note:

Every arithmetic constraint can be reduced to a
sequence of atomic constraints.

∑
i=1

n

ai x i=b

30Foundations of Constraint Programming Incomplete Constraint Solvers

Domain Reduction Rules

Intuition: implies that for j ∈ [1..n]:

ℝ-LINEAR EQUALITY

where j ∈ [1..n] and

DISEQUALITY 2

 where Dx ∩ Dy = Â

∑
i=1

n

ai x i=b

〈∑i=1

n
ai x i=b ; x1∈D1 , ... , xn∈Dn 〉

〈∑i=1
ai x i=b ; ... , x j∈D ′ j , ... 〉

〈 x≠y ; x∈Dx , y ∈Dy 〉
〈 ; x∈Dx , y ∈Dy 〉

x j=
b−∑i∈[1..n]−{ j }

ai x i

a j

D ′ j≔D j ∩
b−∑i ∈[1..n]− { j }

ai⋅D i

a j

31Foundations of Constraint Programming Incomplete Constraint Solvers

Multiplication Rules

〈 x⋅y=z ; x∈D x , y ∈Dy ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩Dx⋅Dy 〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩ int Dz /Dy  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈D x , y ∈D y ,z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩ int Dz/Dx  , z∈Dz 〉

ℝ-MULTIPLICATION 1

ℝ-MULTIPLICATION 2

ℝ-MULTIPLICATION 3

32Foundations of Constraint Programming Incomplete Constraint Solvers

Example

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –∞, –2 , 〈 〉 z ∈ –∞, 161〈 〉〉

By ℝ-MULTIPLICATION 1 rule

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –∞, –2 , 〈 〉 z ∈ 2, 161〈 〉〉

 since –∞, –1 –∞, –2 = 2, ∞ and hence –∞, 161 ∩ 2, ∞ = 2, 161〈 〉⋅〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

By ℝ-MULTIPLICATION 3 rule

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –161, –2 , 〈 〉 z ∈ 2, 161〈 〉〉

 since 2, 161 / –∞, –1 = {〈 〉 〈 〉 r ∈ ℝ | –161 ≤ r < 0}

 and hence int(2, 161 / –∞, –1) = –161, 0 and –∞, –2 ∩ –161, 0 = –161, –2〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

33Foundations of Constraint Programming Incomplete Constraint Solvers

Example, ctd

 〈x  y = z ; x ∈ –∞, –1 , 〈 〉 y ∈ –161, –2 , 〈 〉 z ∈ 2, 161〈 〉〉

By ℝ-MULTIPLICATION 2 rule

 〈x  y = z ; x ∈ –80.5, –1 , 〈 〉 y ∈ –161, –2 , 〈 〉 z ∈ 2, 161〈 〉〉

 since 2, 161 / –161, –2 = –80.5, –2 / 161 〈 〉 〈 〉 〈 〉

 and hence –∞, –1 ∩ 〈 〉 int(–80.5, –2 / 161) = –80.5, –1〈 〉 〈 〉

Last CSP is closed under the MULTIPLICATION rules

34Foundations of Constraint Programming Incomplete Constraint Solvers

Arithmetic Constraints on Reals: Implementation Issues

Step 1: Extend arithmetic operations from ℝ to ℝ+

⊥: undefined operation

PR: a positive real

NR: a negative real

ℝ: outcome can be an arbitrary realx

y

y

y

y

xx

x

35Foundations of Constraint Programming Incomplete Constraint Solvers

Implementation Issues, ctd

Step 2: Implement intersection, addition, subtraction of extended intervals

Note: For non-empty extended intervals 〈a, b〉 and 〈c, d〉
〈a, b ∩ 〉 〈c, d = 〉 〈max(a, c), min(b, d)〉

〈a, b + 〉 〈c, d = 〉 〈a + c, b + d〉

〈a, b – 〉 〈c, d = 〉 〈a – d, b – c〉

36Foundations of Constraint Programming Incomplete Constraint Solvers

Classification of Non-Empty Extended Intervals

Depends on the position of 0 w.r.t. such an interval

M yes yes
Z no no
P no yes

no yes

no yes
N yes no

yes no

yes no

class of
〈a, b〉

at least one
negative

at least one
positive

signs of
endpoints

a < 0 ∧ b > 0
a = 0 ∧ b = 0
a ≥ 0 ∧ b > 0

P0 a = 0 ∧ b > 0
P1 a > 0 ∧ b > 0

a < 0 ∧ b ≤ 0
N0 a < 0 ∧ b = 0
N1 a < 0 ∧ b < 0

37Foundations of Constraint Programming Incomplete Constraint Solvers

Implementation of Multiplication

Step 3: Implement multiplication of extended intervals

〈a, b and 〉 〈c, d : non-empty extended intervals〉

P P
P M
P N
M P
M M
M N
N P
N M
N N
Z 0, 0〈 〉

Z 0, 0〈 〉

class of
〈a, b〉

class of
〈c, d〉 〈a, b〉⋅〈c, d〉

〈a⋅c, b⋅d〉
〈b⋅c, b⋅d〉
〈b⋅c, a⋅d〉
〈a⋅d, b⋅d〉
〈min(a⋅d, b⋅c), max(a⋅c, b⋅d)〉
〈b⋅c, a⋅c〉
〈a⋅d, b⋅c〉
〈a⋅d, a⋅c〉
〈b⋅d, a⋅c〉

P, M, N, Z
P, M, N

38Foundations of Constraint Programming Incomplete Constraint Solvers

Example

 –〈 3, 2 –4, 5〉⋅〈 〉

Both intervals are of class M, so the entry

applies. Thus

 –〈 3, 2 –4, 5 =〉⋅〈 〉

 〈min((–3) 5, 2 (–4)), ⋅ ⋅ max((–3) (–4), 2 5) =⋅ ⋅ 〉

 〈min(–15, –8), max(12, 10) =〉

 –〈 15, 12〉

M M

class of
〈a, b〉

class of
〈c, d〉 〈a, b〉⋅〈c, d〉

〈min(a⋅d, b⋅c), max(a⋅c, b⋅d)〉

39Foundations of Constraint Programming Incomplete Constraint Solvers

Implementation of Division

Step 4: Implement division of extended intervals.

〈a, b and 〉 〈c, d : non-empty extended intervals〉

M

M

class of
〈a, b〉

class of
〈c, d〉 〈a, b / 〉 〈c, d〉

P1 P1 〈a / d, b / c \ {0}〉
P1 P0 〈a / d, ∞ \ {0}〉
P0 P1 〈0, b / c〉

P1 〈a / c, b / c〉
N0 P1 〈a / c, 0〉
N1 P1 〈a / c, b / d \ {0}〉
N1 P0 〈-∞, b / d \ {0}〉
P1 (-∞, 〈 a / c 〉 ∪ 〈a / d, ∞) \ {0}〉

40Foundations of Constraint Programming Incomplete Constraint Solvers

Implementation of Division, ctd

-∞,+∞〈 〉

M

M

Z

Z Â

class of 〈a, b〉 class of 〈c, d〉 〈a, b / 〉 〈c, d〉

M, Z, P0, N0 M, Z, P0, N0

N1 (-∞, 〈 b / d 〉 ∪ 〈b / c, ∞) \ {0}〉
P1 N1 〈b / d, a / c \ {0}〉
P1 N0 〈-∞, a / c \ {0}〉
P0 N1 〈b / d, 0〉

N1 〈b / d, a / d〉
N0 N1 〈0, a / d〉
N1 N1 〈b / c, a / d \ {0}〉
N1 N0 〈b / c, ∞ \ {0}〉

P1, N1 〈0, 0〉
P1, N1

41Foundations of Constraint Programming Incomplete Constraint Solvers

Example

 〈2, 16 / –∞, –2〉 〈 〉

The intervals are of class P1 and N1, so the entry

applies. Thus

 〈2, 16 / –∞, –2 =〉 〈 〉

 〈16 / (–2), 2 / (–∞) \ {0} =〉

 {r ∈ ℝ | –8 ≤ r < 0}

a, b / c, d〈 〉 〈 〉
class of
〈a, b〉

class of
〈c, d〉

P1 N1 〈b / d, a / c \ {0}〉

42Foundations of Constraint Programming Incomplete Constraint Solvers

Using Floating-point Numbers

Step 5: Introduce Floating-Point Numbers

Motivation: We want to represent solutions to 9⋅x2 = 1 over –1, 1〈 〉 as

 x ∈ –0.33334, –0.33333 and 〈 〉 x ∈ 0.33333, 0.33334〈 〉

Assume finite subset F of ℝ+ containing –∞ and ∞

Elements of F: floating-point numbers

Floating-point interval:

 〈a, b〉

a, b floating-point numbers

(A): the least floating-point interval containing A

43Foundations of Constraint Programming Incomplete Constraint Solvers

Amended Multiplication Rules

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz∩Dx⋅Dy  〉

〈 x⋅y=z ; x∈Dx , y ∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx∩Dz /D y  , y ∈Dy , z∈Dz 〉

〈 x⋅y=z ; x∈Dx , y∈Dy , z∈Dz 〉
〈 x⋅y=z ; x∈Dx , y ∈Dy∩Dz/Dx  , z∈Dz 〉

F-MULTIPLICATION 1

F-MULTIPLICATION 2

F-MULTIPLICATION 3

Combined with the implementation (X⋅Y) and (X / Y)
for the floating-point intervals X , Y

Similar modification of other domain reduction rules

44Foundations of Constraint Programming Incomplete Constraint Solvers

Objectives

Introduce incomplete constraint solvers for

equality and disequality constraints

Boolean constraints

linear constraints over integer intervals and over
finite integer domains

arithmetic constraints over integer intervals

arithmetic constraints over reals

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44

