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Abstract. Answer set programming (ASP) solvers have advanced in
recent years, with a variety of different specialisation and overall devel-
opment. Thus, even more complex and detailed programs can be solved.
A side effect of this development are growing solution spaces and the
problem of how to find those answer sets one is interested in. One gen-
eral approach is to give an overview in form of a small number of highly
diverse answer sets. By choosing a favourite and repeating the process,
the user is able to leap through the solution space. But finding highly
diverse answer sets is computationally expensive. In this paper we intro-
duce a new approach called Tunas for Trade Up Navigation for Answer
Sets to find diverse answer sets by reworking existing solution collec-
tions. The core idea is to collect diverse answer sets one after another by
iteratively solving and updating the program. Once no more answer sets
can be added to the collection, the program is allowed to trade answer
sets from the collection for different answer sets, as long as the collection
grows and stays diverse. Elaboration of the approach is possible in three
variations, which we implemented and compared to established methods
in an empirical evaluation. The evaluation shows that the Tunas ap-
proach is competitive with existing methods, and that efficiency of the
approach is highly connected to the underlying logic program.

Keywords: multi-shot answer set programming - navigation - diverse
answer sets

1 Introduction

Answer set programming (ASP) is a rising declarative programming paradigm
based on logic programming and non-monotonic reasoning [12]. ASP is partic-
ularly well suited to model and solve combinatorial search problems such as
scheduling [22, 1], planning [8, 11], and product configuration [24, 25]. Over the
last decade ASP solvers such as clingo [16], WASP [4] and dlv [2] have been
improved and further developed to solve and enumerate answer sets faster [17],
allow for more control over the grounding and solving process [14] and even
enhanced with theory reasoning capabilities [21].

Due to these developments ASP finds more and more it’s way into industrial
applications [19, 10]. Which reveals the issue that for real world applications the
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solution space can be extremely large. Recently Fichte et al. [13] introduced a
framework that allows to navigate the solution space by introducing weights on
atoms that occur in some but not all answer sets. Another way to tackle this
problem is to search for optimal solutions by formulating preferences [6,5] or
optimisation criteria [15, 3]. However, the user might not have a particular pref-
erence in mind. For example consider the product configuration domain, where
the producer models the product to configure in terms of ASP. This kind of com-
binatorial problem usually allows for many combinations of parts of the product,
together with a rather low number of constraints, leading to a combinatorial ex-
plosion of solutions (answer sets). For the potential customer it is not possible to
inspect all (possibly several million) configurations. Therefore, it would be ben-
eficial to be able to provide a small collection of highly diverse configurations,
such that the customer obtains an overview on the different characteristics of the
potential products. Eiter et al. [9] introduced several approaches how to com-
pute similar and diverse answer sets, ranging from post processing enumerations
over parallel solving to iterative solving. The approaches diverge in behaviour,
so is the parallel solving complete but becomes infeasible quickly while the fast
iterative solving often leads to suboptimal results.

In this work we revisit four problems formulated in [9] and propose a novel
approach for computing diverse answer sets based on reworking collections of
solutions. The main idea is to trade solutions from a collection is allowed as
long as the collection grows. Therefore the approach works iteratively, improv-
ing the result stepwise and thus can be interrupted at anytime. For our approach
we introduce the corresponding problem and analyse its complexity by forming
a many-one hierarchy. Furthermore we lay out three different elaborations to
implement the core functionality. We compare our approach with the methods
based on Eiter et al. [9] in an empirical evaluation, showing that the novel Tunas
approach is competitive. Also the implementations of the iterative approaches
benefit from the multi-shot functionality within the clingo solver, by updating
existing logic programs instead of re-grounding and solving from scratch. There-
fore a re-evaluation of the established methods using state-of-the art solvers and
wrappers is of interest as well.

2 Preliminaries

2.1 Multi-Shot Answer Set Programming

A (disjunctive) program P in ASP is a set of rules r of the form:

155 Qm = Qmgls -5 Qny NOL Ay, ..., NOL Q.
where each atomn a; is of the form p(ty,...,tx), p is a predicate symbol of ar-
ity k and t1,...,t; are terms built using constants and variables. For k=0 p()

abbreviates to p. A naf (negation as failure) literal is of the form a or not a
for an atom a. A rule is called fact if m=o0=1, normal if m=1 and integrity
constraint if m=0. Each rule can be split into a head h(r) = {a1,...,am}
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and a body B(r) = {am+1,...,n0t a,}, which divides into a positive part
BT (r) = {amus1,--.,a,} and a negative part B7(r) = {any1,...,00}. A term,
atom, rule or program is said to be ground if it does not contain variables. For
a program P its ground instance Grd(P) is the set of all ground rules obtained
by substituting all variables in each rule with ground terms. Let M be a set of
ground atoms, for a ground rule r we say that M = r iff M N h(r) # 0 when-
ever BY(r) C M and B~ (r) N M = 0. M is a model of P if M = r for each
r € P. M is a stable model (also called answer set) iff M is a C-minimal model
satisfying the Gelfond-Lifschitz reduct of P w.r.t. M. The reduct is defined as
PM = {h(r) «+ Bt (r)IM N B~(r) = 0,r € P} [18].

For the solver clingo several meta-statements are available, such as the
#show directive to selectively include (and rename) atoms in the output. The
multi-shot [14] feature within clingo allows altering and rerunning logic pro-
grams by defining parametrised subprograms. Subprograms are identified by
a name sp and arity k and require a list of arguments (p1,...,px). Within the
logic program, the subprogram sp(pi, ..., px) starts after the directive #program
sp(p1,--.,pk). and ends before the next subprogram. If not declared the first
block is attached to base/0. Usually the multi-shot program is handled by a
wrapper script, communicating with the grounder and solver through a control
object. Subprograms can be altered dynamically, allowing for flexible implemen-
tation at runtime. Truth values of atoms can be pre-assigned for each solve call
via assumptions or external atoms. If used, assumptions need to be declared
explicitly for each solve call, while external values are set persistently.

2.2 Diverse Solutions

Problems The umbrella term similar/diverse covers a bouquet of problems
focusing mainly around four decision problems [9]. In our work we target the
diverse problem and therefore omit the (symmetric) similar co-problem. For
convenience, the problems are often referenced by their short notation (T'). The
term “P and A for P” abbreviates “an ASP program P that formulates a com-
putational problem P and a distance measure A that maps a set of solutions for
P to a nonnegative integer”. The complexity class is added to each problem.

(1) TA% - n k-DIVERSE SOLUTIONS: Given P and A for P and two nonnegative
integers n and k, decide whether a set .S of n solutions for P exists such that
A(S) = k. (Complexity: NP-complete)

(2) Tp4 - k-DISTANT SOLUTION: Given P and A for P, a set S of solutions
for P, and a nonnegative integer k, decide whether some solution s (s ¢ 5)
for P exists such that A(S U {s}) > k. (Complexity: NP-complete)

(3) I‘;g - n-MOST DIVERSE SOLUTIONS: Given P and A for P and a nonneg-
ative integer n, find a set S of n solutions for P with the maximum distance
A(S). (Complexity: FNP //log-complete)

(4) I‘;AT - MAXIMAL n k-DIVERSE SOLUTIONS: Given P and A for P and a
nonnegative integer k, find a C-maximal set S of at most n solutions for P s.t.
A(S)>k. (Complexity: FPN"-complete; FNP//log-complete if k is bounded)
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FﬁlA’“ addresses the core problem: finding a set S of n solutions for a given
program for which the distance measure is larger than k. The distance measure A
is a function which maps a set of solutions to a non-negative integer. In practice
A is usually monotone (A(S)=A(SUS’) for any sets S, S’ of solutions) and
can be customised. A default implementation is the minimum of the hamming
distance for any pair of solutions within the collection. I'p} asks for one solution
which is at least k-distant to each element of a provided solution set (collection).
Therefore I'p A can be utilised to semi-decide I'4%. The other two problems target
maximising k (F;CAT) and n (I, AT 1) and can be decided by repeatedly solving F7§‘Ak
for increasing k (resp. n).

Related Work. In [9] the following approaches targeting I'% were introduced.

Offline solves FﬁAk directly by collecting some or all answer sets and picking
diverse answer sets in a detached process, which in principle solves the NP-
complete k — clique problem for a potentially exponential input. Since solutions
are generated in vaguely sorted order, restricting the output size will impact the
outcome drastically. Therefore Offline faces heavy drawbacks and will not be
covered in our evaluation.

Onlinel is based on manipulating the original logic program to solve n copies
of the problem at the same time while satisfying constraints on the distance
measure, targeting I‘ﬁAk in a single shot. Onlinel is a complete approach.

Online2 tries to solve the main problem I'}){ by repeatedly solving I i. The
program generates a solution and wrapper script adds it to the program, forcing
the next solution to be diverse to the collected solutions. This process repeats
until the collection has the desired quantity or the program becomes unsatis-
fiable. Additional to the original program and a wrapper script, this approach
requires a method to add distance constraints. Online2 semi-decides 1"7;’Ak.

Online3 works similar to Online2 but the functionality is embedded into the
solver instead of a script. [9] presented clasp-nk, a branch-development of clasp
1.1.3 which included hard-coding a distance calculation for one freely selectable
predicate. Since this solver is not competitive with current generation solvers,
we did not include Online3 despite showing comparable results to Online2.

Further Related Work. Romero et al. [23] propose a multi-shot framework
for computing diverse preferred answer sets for asprin. The paper presents three
advanced diversification techniques for programs with preferences, which are
generalised methods based on [9], partly utilising preferences into the solving
process. Since Romero et al. are using preferences, the methods are not directly
empirical comparable to our work.

3 Iterative Reworking Strategies

So far there exist four problems and two promising approaches. The parallel
approach (Onlinel) lifts the original program to solve I')2¥, while the iterative

1 ng asks for C-maximal sets and restricts the maximal value to bound output size.
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approach (Online2) collects solutions by repeatedly solving and updating the
logic program. Once the program becomes unsatisfiable, the diverse collection is
subset-maximal and can not grow in any further. In our iterative reworking strat-
egy, we aim to surpass this subset-maximal boundary by trading m>0 solutions
from a given collection S for at least m+1 new solutions. This novel approach
does not target any of the introduced problems directly, therefore we define and
analyse the corresponding problem before introducing the actual approach.

3.1 Problem Definition and Complexity

Based on the notations from Section 2.2 we describe a new problem, which
introduces the possibility of replacing at most m solutions from a given collection
S with at least m~+1 solutions to form an improved diverse collection S’.

(5) T54" - M-DIFFERENT k-DISTANT SET: Given P and A for P, a set S of
solutions for P, two nonnegative integer k and m with m<|S|, decide if a
set S” of solutions for P exists s.t. |S’|>]S], |S\S'|<m and A(S")>k.

In other words: we try to expand the given, potentially empty collection S of
solutions by exchanging up to m solutions for a greater number of solutions. It
is valid to exchange less than m solutions as long as the collection grows. While
sharing similarities with T2¥ and Tpz, [54" introduces a new parameter m, cre-
ating |S|+1 possible sub-problems for a given set S of solutions. For convenience
we will write “I5" with m=t" as T'5% for any non-negative integer ¢. We will
proceed to show equality of I's4 and I'5? (Lemma 1) as well as interchange-
ability of 1"7;2"' and F;X ~1 (Lemma 2). We will furthermore establish a hierarchy
within 51" (Lemma 3) to show NP-completeness (Theorem 1). For the proofs
we assume A to be monotone (A(S)>A(SUS’) for any sets S, S’ of solutions).

Lemma 1. IZA(S, k) iff I5R(S, k).

Proof. TpA(S, k) = T50(S, k): if there exists a solution s s.t. A(SU{s}) > k then
the set S'=SU{s} satisfies |S’|>|S], |S\S'|<0 and A(S")>k.

58S, k) = Tpa(S, k): if there exists a set of solutions S’ s.t. |S'|>|S], |S\S'|<0
and A(S")>k then SCS" and for all s€(S'\S): A(S U {s}) > k. O

Lemma 2. I35 (n, k) and I50 "' (S, k) are interchangeable for |S| = n—1.

Proof. Tk (n, k) = TpX ™" (S, k) with |S|=n—1: if there exists a set of solutions
S’ s.t. |8 |=n and A(S’)>k then for any possible set S of solutions with |S|=n—1:
|S"|>]S], |S\S'|<n—1 and A(S")>k. 2

Ton (S, k) = DBk (n, k): given a set S of at least n—1 solutions, if there exists
a set S’ of solutions s.t. |S’|>|S|=n—1 and A(S")>k then there exists S” C S’
where |S”|=n and A(S") > k. O

We covered complexity for Tt (S, k) for m=0 and m=|S|, for the remaining
0<m<|S| we can build a hierarchy using a poly-time many-one-reduction.

2 This implication even holds if S and S’ share elements (S NS’ # () or if A(S)<k.
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Lemma 3. I3 (S, k) <, I35 (S, k) (poly-time many-one-reduction)

Proof. T53*(S, k) has the problem instance (P, A, S, k) which we will convert
to (P*, A*, S* k*) for F;Q‘Ali (S*, k%) by introducing two artificial, unique
solutions € and e . The program P is altered to accept € and €, forming P*. A+
is derived from A by adding distance information for ¢ and €: ¢ has distance
0 to any solution and ¢ has distance k+1 to any original solution. To avoid
loopholes regarding k=0, the distance value for each original solution pair is
increased by 1 for AT, therefore k has to be updated as well (k* = k+1). The
“negative” solution € is added to the initial solution set S* = S U {¢ }, whereas
the “positive” solution € remains as potential solution to compensate for the
forced selection of €. Both instances return the same value for their problem:

Lo (S, k) = TSk (S*®, k%): if there is a solution set S’ for s.t. |S'|>]S],
|S\S’|<m and A(S")=k with €, ¢ & (SUS’) then the solution set S*/ = S’'U{¢'}
satisfies all criteria for T3 1 (SU{e}, k+1): [SE| > [SU{e }], [(SU{e )\ SH| <
m+1 and A*(ST) > k+1.

Lot (SE,k%) = Tpa'(S,k): if there is a solution set S*' such that
|SE|>1Su{e Y], |(SU{e )\ S*'| < m+1 and AT (S*') > k+1 (implying € , € ¢ S
and € ¢ S*’) then S’ = S*'\{e} satisfies |S'|>|S|, |S\ S| < m and A(S")>k.
This implication holds for both cases € €S* and ¢ S+,

O

Theorem 1. Problem I5X" - m-DIFFERENT k-DISTANT SET is NP-complete.

Proof. As proven in Lemma 3 there exists a hierarchy within I'51" where
L5t <, Ti*t. Since the problem for the lowest m (m=0) corresponds to
the NP-complete problem I‘P*Al (Lemma 1), all problems are NP-hard. And
since the top-most problem (m=|S|) corresponds to the NP-complete problem
Ik (Lemma 2) all problems in the hierarchy lie within NP. Since lower and up-
per bound are NP-complete, all problems in F7§Am are NP-complete as well. O

3.2 Reworking Methods

The Trade Up Navigation for Answer Sets (short Tunas) approach is a frame-
work that allows to solve ]."7;2’C by iteratively solving I‘7§Am. The core idea is to
remove up to m solutions from a collection to gain a larger collection, therefore
improving the result. Since F7§Am is easier to compute than F;Am‘ L the approach
starts for m=0 and ends at a given maximal value M. Like this, building a col-
lection starts just like Online2, only when the program becomes unsatisfiable,
the actual reworking process starts. An outline of the general implementation
can be seen in Algorithm 1. The different implementations of the core function
replace M( ctl, m, pool, idz), which provides deletion candidates and new solutions,
are explained afterwards.

Some notes to the general framework: The logic program itself is handled by
the control structure ctl which allows for grounding and solving as well as for
additional functionality such as managing external atoms. The wrapper script
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Algorithm 1: Tunas Framework

Input: A fitting multi-shot logic program P, minimum distance measure K,
number of solutions N, maximum Number M of deletion candidates, set
Init of subprograms to ground initially, implementation of replace M
1 ctl.load(P)
2 ctl.ground(Init) // ground original program
3 idr<+1
4 pool < {}
5 do:
for m <0 to M:
(delS, newsS, idz) + replaceM(ctl, m, pool, idzx) // core function
if newS# 0:
for del € delS:
10 | ctl.release_external(visible(del)) // remove from collection
11 pool < ( pool\ delS) U newS
12 break
13 while (|pool] < N) and (newS # 0)

© w0 N o

uses indices to reference solutions, the set pool holds all indices from the current
collection. The basic framework consists mainly of two loops: one to enlarge the
collection and one to escalate the current m up to the maximum M. A core
function is called (line 7) to solve the current problem which returns indices of
deletion candidates (delS) and indices of new solutions (newS) to be added to
the collection. If a solution for the current m was found, the deletion is made
permanent by releasing corresponding atoms (line 10) and updating the set pool
which represents the collection. Also the current escalation of m is disrupted to
start over from 0.

Since the basic framework is explained, let us have a detailed look into the
possible implementations of replaceM. Each implemtation requires a base pro-
gram in the form of subprogram calls (Init, line 2).

TunasMND implements generating multiple (M) solutions and nondetermin-
istic (ND) choosing of deletion candidates. In other words: the logic program
guesses the deletion candidates and generates all new solutions in a single call.
An outline of the wrapper functionality can be seen in Algorithm 2 implementing
replaceM from the framework in Algorithm 1. The initial program (see Init from
Algorithm 2) contains the subprogram names of the modified original program.
For TunasMND this is comparable to Onlinel to compute up to M+1 diverse
solutions.

The amount m of deletion candidates (and consequently m+1 new solutions)
is predetermined by the wrapper and passed onto the logic program via an
assumption over a corresponding predicate (line 1). An internal mechanism
induces the temporary concealment of exactly m solutions. If successful, their
indices can be extracted from the model (line 8). Also the model contains m+1
new solutions. The #show directive (line 2) within the logic program is used to
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Algorithm 2: TunasMND - replaceM(ctl, m, pool, idz) : (delS, newS, idz)

Input: A control structure ctl which handles the current logic program, a number
m=0 of deletion candidates, a set pool of indices representing established
solutions, the next solution index idx

Output: A set of indices referencing to deletion candidates, a set of indices

referencing to new solutions, the next solution index

if mdl <+ ctl.solve(assumption = {(chooseNum(m), true)}):

grnd < {p(idz+i, t1,....,tx) : p(i, t1, ..., tx) € mdl A #show(p(i,t1, ..., tx)) € Init}

registerPredicates(ctl, grnd )

ctl.ground( grnd)

for i <~ 0 to m:

ctl.ground( {itDistM(idz+1i))} )
ctl.assign_external(visible(idz+1), true)

return({i : choose(i) € mdl}, {idz, ..., idz+m}, ide+m+1)

return((, 0, idz)

© 0 N O R W N R

distinguish between solution defining atoms (goal atoms) and auxiliary atoms.
Since generated solutions proceed to become collected solutions, their index is
updated before grounding them back into the logic program (line 2).

For multi-shot programs, adding atoms to a program is possible by defining
sub-programs which contain the atoms. We implemented the function
registerPredicates to construct and register those subprograms automatically,
allowing flexible and dynamic handling of heterogenous goal atoms. Afterwards
the distance constraints for the new solutions are grounded (line 6), which be-
come active, when setting the corresponding external atom to true (line 7).

If successful the set of indices for the deletion candidates and the newly
generated solutions are returned (line 8). Otherwise empty sets are returned.

TunasMIT implements generating multiple (M) solutions and iterative (IT)
choosing of deletion candidates: all new solutions are generated at once, while the
deletion candidates are provided by the wrapper. In comparison to TunasMND,
two mayor changes are required: disabling the choosing mechanism and handling
the deletion candidates before solving. The candidates are selected by iterating
over all combinations of size m from the set pool. The current set of deletion can-
didates is temporarily excluded from the collection by setting the corresponding
external key predicate (visible/1) to false before solving the current program. If
no solution could be found, the deletion candidates are made visible again and
the wrapper continues with the next combination of m deletion candidates.
We will use TunasM to address TunasMIT and TunasMND at once.

TunasS implements the single (S) generating, iterative choosing (IT) approach.
The underlying logic program is an extension of the logic program for Online2 -
in fact Online2 and TunasS are equivalent for M =0. In comparison to TunasMIT
the solve call is embedded into another loop because each solve call generates
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only one instead of m+1 solutions. The currently generated solution streak is
held in limbo until either all m+1 solutions could be computed or the program
becomes unsatisfiable, resulting in the deletion of the current streak.

We left out the single solving (S), nondeterministic choosing (ND) approach
due to contradiction in progression: The (ongoing) suggestion of deletion can-
didates requires the program to stay unaltered in case the generating part fails
and different deletion candidates need to be derived. Yet at the same time the
program needs to be updated and solved to generate solutions. Splitting the
program into two separate programs boils down to TunasS.

4 Experimental Evaluation

To show feasibility of our approach, we compare it with the established meth-
ods Onlinel and Online2. The evaluation focuses around solving Fgg— N-MOST
DIVERSE SOLUTIONS, which combines highest complexity along with highest rele-
vance for applications. We analyse the behaviour of the approaches regarding the
following questions: Q1: Is the Tunas approach competitive with existing meth-
ods in terms of solving the problem Fﬁg? Q2: How do the approaches perform
in time? Q3: How reliable are the methods?

Software: We implemented our approaches along with Onlinel and a multi-
shot version of Online2. Onlinel was extended to maximise for k£ to solve Fgg.
The other approaches required repetitive solving FﬁLA’“ (n, k) for increasing k since
they only semi-decide TN (n, k): if T8 (n, k) was satisfied, &k is incremented.
This repeats infinitely but can be interrupted at any time (timeout).

Setup and Hardware: Our environment is a virtual machine (Debian
5.10.46, 64Bit, Intel Xeon Gold, 3GHz, clingo 5.5, python 3.8.8). We tested for
n € {3,5,10, 15,25}, timeout at 300s sharp. Each configuration was repeated 20
times. We use random generated seeds (random frequency: 10%). The test-setup
including all data is available for download [7].

Test instances: We used 5 instances for our evaluation: (I1) Phylogenesis
(ancestry tress for languages) and (I2) blocks-world (planing problem) from
[9], (I8) PC configurator (configuration problem) from [20] (with 2 instead of
the default 10 hardware instances), (I4) an encoding of stable extensions and
(I5) preferred extensions, both for the same argumentation framework (AF)
instance [13]. I1 uses a custom distance (nodal), all other use hamming distance.
The first three instances have a vast search space (>10° answer sets). The AF
instances I4 and I5 share an identical and comparatively small solution space
(7696 answer sets), but the problem classes differ in complexity.

The average maximal k for I3, I4 and I5 are listed in Table 1. For I1 and
I2 all approaches reached the maximal k, and thus they will not be discussed
further here. We ordered the methods from non-deterministic to iterative, where
each Tunas method is evaluated for Me{1,2}. The entries can be ranked for
each instance and n, for example for I4 and n=>5, Onlinel has the highest value
(63.0), whereas the Online2 has the lowest value (58.6), implying better results
from Onlinel than Online2 for this setting.
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PC1I3 n=3 n=>5 n =10 n=15 n =25
Onlinel 46.5 37.7 29.3 23.7 9.3
TunasMND | 42.5 (43.2) | 39.5 (40.0) | 36.2 (36.3) | 33.8 (33.9) | 23.4 (22.3)
TunasMIT 42.0 (43.0) | 39.8 (39.6) | 36.4 (36.1) | 34.0 (34.0) | 30.6 (30.9)

TunasS 41.9 (42.0) | 39.8 (39.7) | 36.5 (36.4) | 34.0 (34.0) | 31.1 (30.9)
Online2 42.0 39.8 36.2 33.9 30.9
AF stable 14 n=3 n=>5 n =10 n =15 n =25
Onlinel 81.0* 63.0 47.9 40.9 34.3
TunasMND 81.0 (81.0) | 61.8 (61.7) | 48.8 (48.3) 42.0 (42.0) | 36.0 (35.5)
TunasMIT 81.0 (81.0) | 61.7 (62.2) | 48.4 (48.9) 42.2 (42.3) | 36.0 (35.9)
TunasS 81.0 (81.0) | 61.6 (62.1) | 48.4 (48.8) 42.3 (43.0) | 36.0 (35.9)
Online2 75.1 58.6 46.4 41.0 35.0
AF pref. I5 n=3 n=>5 n =10 n=15 n =25
Onlinel 54.9 35.1 23.2 15.1 5.1

TunasMND | 77.6 (73.7) | 54.0 (54.1) | 435 (43.9) | 37.9 (37.7) | 31.4 (31.1)
TunasMIT | 77.8 (73.2) | 54.5 (54.4) | 43.2 (43.9) | 37.9 (37.6) | 31.2 (30.9)
TunasS 70.7 (72.2) | 55.4 (55.9) | 44.3 (44.0) | 38.1 (38.1) | 31.9 (31.4)
Online2 71.9 56.7 45.0 39.1 33.1
Table 1: maximal k for Fgg(n) for 3 instances, average over 20 runs. For Tu-
nas numbers outside (resp. inside) of brackets reference to M=1 (resp. M=2).
* marks a proven maximal value by Onlinel, best results are bold.

In general we observe that Onlinel performs best for smaller n, which is
not surprising since the size of the problem encoding is related to n. For 13
all iterative methods perform on the same level (except TunasMND for n=25).
Notably is the lead for Onlinel for n=3, which results from low chances to guess
a solution which can form a diverse collection of size 3. A closer look at the data
reveals that I3 has no repeating attempts, implying high time cost for returning
unsatisfiable. This explains the equal performance of the iterative methods, since
all Tunas methods start with m=0 and are unable to progress to m=1.

The upper bounds of k for 14 and I5 are identical since they share an identical
solution space, but belong to different complexity classes. Onlinel shows good
results for I4, even leading for n<5 but performs worst for I5. Online2 performs
unexpected sub-optimal for 14 but leads for I5. For I4 all Tunas methods perform
at similar levels. For I5 TunasS performs slightly better than TunasM with
exception for n=3 where TunasM outperforms all other methods. To better
understand the results, the median® run time can be seen in Figure 1 for n=5.
The maximal value on the x-axis for each curve corresponds to the data in
Table 1 while the y-axis reflects the median time to reach the corresponding k.
The optimal curves are wide and flat: large k£ values for low execution times.
The plot visualises also different results for different timeouts. For Example
with timeout=10s TunasS has a larger k for both AF instances as Online2,

3 Not all timelines cover the same k due to the time limit, distorting the mean value.
The median is robust against those outliers by setting missing data to the time limit.



Tunas - Fishing for Diverse Answer Sets 11

median timelines PC n=5 median timelines AF stable (solid color) and preferred (light color), n=5
—— Onlinel ‘ |
100 3 —— TunasMND l
—— TunasMIT i1
) w TunasS ‘_|j J
2 E 107l onine2 T e
k<1 5 13
1 1
€ €
014,
0 10 20 30 40 50 60
current k current k

Fig.1: Median timelines of current k for 20 runs, n=>5. Tunas methods: solid
lines for M =2, striped lines for M=1. The right figure includes AF stable (solid
colors) and AF preferred (light colors).

implying better performance for this timeout. Timelines for TunasS and Online2
progress similar, while TunasM requires more time for larger M. In contrast to
the iterative methods, Onlinel has unsteady escalation times. One interesting
curve is Online2 for I4: at around k=56 Online2 struggles to keep the pace,
implying lower probability of satisfying I‘ﬂAk (n, k). This effect can be seen for the
Tunas methods as well but for higher k. The curves for I3 (PC, n=5) hint an
explanation to the performance drop of TunasMND for n=25: since TunasMND
progresses significantly slower it is expected to be the first to suffer a performance
decline for increased difficulty or lower timeout.

Now, let us answer the question. Q1: None of the evaluated methods is supe-
rior, all methods lead at least once for maximal k. The outcome depends highly
on the instance, n and the timeout. Q2: Onlinel is fastest for lower n. Also it is
the only terminating approach, since the other approaches are allowed to start
over. Online2 is the fastest method, providing good results in a short amount
of time. TunasS behaves similar as Online2: in most cases they are comparable
in speed and performance. Depending on instance, n and timeout one performs
better than the other. The TunasM methods proceed comparatively slow but
perform surprisingly good in some cases, such as I5 for n=3. The value of M
seems to have no major impact for TunasS, but for TunasM; the performance
differs most for n=3. Also a higher M is often related to higher computation
time, which is important for low timeouts. Q3: Onlinel is suited for smaller n
but can not guarantee providing any result, since grounding and solving may
require excessive time in comparison to the original problem. Online2 generates
good results but not for all instances: for I4 Online2 shows the weakest results,
for n=3 it is the only method not reaching the maximum. The performance for
the Tunas methods in comparison with Online2 seems to be tied to the perfor-
mance of Onlinel: The more a program is suited for Onlinel, the better perform
the Tunas methods, often surpassing both, Onlinel and Online2. This implies
the combination of traits of both methods, which makes sense when interpreting
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Tunas as the progression from Online2 to Onlinel. Therefore for an unknown
program, TunasS states a good choice, since it inherits a similar time behaviour
as Online2 but can surpass Online2 if the program would be suited for Onlinel.

5 Conclusion and Future Work

We presented a novel and competitive approach to compute diverse answer sets
of logic programs based on reworking methods. To characterise the base mech-
anism, we introduced a new problem related to the approach and prove NP-
completeness. Basic analysis of the approach leads to three elaborations, which
we implemented along with two methods from Eiter et al. [9] (as multi-shot
variant). Our empirical evaluation to find n-MOST DIVERSE SOLUTIONS reveals
no superior method, since problem instance, number n of solutions and timeout
highly influence the performance. However the Tunas methods show promising
results, especially for large solution spaces and typical NP problems.

For future work, we believe investigating the connection of facet counting
weights [13] and diverse answer sets is a promising direction. Furthermore, the
extension to preferred logic programs would be of interest [23].
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