DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) implies makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \Rightarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model I such that $C^I \neq \emptyset$
- concepts in negation normal form (NNF) \leftrightarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcup-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction
Treatment of Knowledge Bases

we condense the TBox into one concept:
for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, $C_T = \text{NNF}(\prod_{1 \leq i \leq n} \neg C_i \sqcup D_i)$

we extend the rules of the \mathcal{ALC} tableau algorithm:

\mathcal{T}-rule: for an arbitrary $v \in V$ with $C_T \notin L(v)$,
let $L(v) := L(v) \cup \{C_T\}$.

in order to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for every individual a in \mathcal{A}
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ iff $r(a, b) \in \mathcal{A}$
Extensions of the Logic

- plus inverses ($ALCI$): inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules
- plus functional roles ($ALCIF$): merging of nodes to account for functionality

blocking guarantees termination:
- ALC subset-blocking
- plus inverses ($ALCI$): equality blocking
- plus functional roles ($ALCIF$): pairwise blocking
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Optimizations

- Naïve implementation not performant enough
 - \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes
Optimizations

- Naïve implementation not performant enough
 - \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - …
Optimizations

• Naïve implementation not performant enough
 – \(T \)-regel adds one disjunction per axiom to the corresponding node
 – ontologies may contain \(> 1,000 \) axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
 – (Lazy) unfolding
 – Absorbtion
 – Dependency directed backtracking
 – Simplification and Normalization
 – Caching
 – Heuristics
 – …
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Unfolding

- \(\mathcal{T} \)-rule is not necessary if \(\mathcal{T} \) is unfoldable, i.e., every axiom is:
 - definitorial: form \(A \sqsubseteq C \) or \(A \equiv C \) for \(A \) a concept name
 \((A \equiv C \) corresponds to \(A \sqsubseteq C \) and \(C \sqsubseteq A \)\)
 - acyclic: \(C \) uses \(A \) neither directly nor indirectly
 - unique: only one such axiom exists for every concept name \(A \)
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\mathcal{T}:

\[
\begin{align*}
A & \sqsubseteq B \sqcap \exists r. C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r. D
\end{align*}
\]
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:$$

$$A \sqsubseteq B \sqcap \exists r.C$$
$$B \equiv C \sqcup D$$
$$C \sqsubseteq \exists r.D$$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:
A \sqsubseteq B \sqcap \exists r.C
B \equiv C \sqcup D
C \sqsubseteq \exists r.D$$

$$A \triangleleft A \sqcap B \sqcap \exists r.C$$
Unfolding Example

We check satisfiability of A w.r.t. the TBox T

\[
\begin{align*}
A & \\
\neg A \sqcap B \sqcap \exists r.C & \\
\neg A \sqcap (C \sqcup D) \sqcap \exists r.C
\end{align*}
\]

T

\[
\begin{align*}
A & \sqsubseteq B \sqcap \exists r.C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r.D
\end{align*}
\]
Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

\[
A
\leadsto A \sqcap B \sqcap \exists r. C \\
\leadsto A \sqcap (C \sqcup D) \sqcap \exists r. C \\
\leadsto A \sqcap ((C \sqcap \exists r. D) \sqcup D) \sqcap \exists r. (C \sqcap \exists r. D)
\]

T: \[
A \sqsubseteq B \sqcap \exists r. C \\
B \equiv C \sqcup D \\
C \sqsubseteq \exists r. D
\]

TU Dresden Deduction Systems
Unfolding Example

• We check satisfiability of \(A \) w.r.t. the TBox \(T \)

\[
\begin{align*}
T: & \\
A & \sqsubseteq B \sqcap \exists r.C \\
\sim A \sqcap B \sqcap \exists r.C \\
\sim A \sqcap (C \sqcup D) \sqcap \exists r.C \\
\sim A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\end{align*}
\]

• \(A \) is satisfiable w.r.t. \(T \) iff

\[
A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\]

is satisfiable w.r.t. the empty TBox
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \cap ((C \cap \exists r.D) \sqcup D) \sqcap \exists r.(C \cap \exists r.D)$:

$L(v_0) = \{U, A, (C \cap \exists r.D) \sqcup D, \\
\exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
C, \exists r.D\}$

$L(v_1) = \{C \cap \exists r.D, C, \exists r.D\}$

$L(v_2) = \{D\}$

$L(v_3) = \{D\}$
We obtain the following contradiction-free tableau for the satisfiability of $U = A \cap ((C \cap \exists r.D) \sqcup D) \cap \exists r.(C \cap \exists r.D)$:

Only one disjunctive decision left!
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $T = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg(C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \land \neg C$ w.r.t. $\mathcal{T} = \{ C \sqsubseteq A \sqcap B \}$
 - unfolding: $C \land A \land B \land \neg(C \land A \land B)$
 - NNF + unfolding: $C \land A \land B \land (\neg C \sqcup \neg A \sqcup \neg B)$

- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $A \equiv C \leadsto A \sqsubseteq C$ and $A \sqsupseteq C$

\sqsubseteq-rule: For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}$, $A \in L(v)$ and $C \notin L(v)$
 let $L(v) := L(v) \cup C$.

\sqsupseteq-rule: For $v \in V$ such that $A \sqsupseteq C \in \mathcal{T}$, $\neg A \in L(v)$ and $\neg C \notin L(v)$
 let $L(v) := L(v) \cup \{\neg C\}$.

\neg-rule: For $v \in V$ such that $\neg C \in L(v)$ and NNF($\neg C$) $\notin L(v)$,
 let $L(v) := L(v) \cup \{\text{NNF}(\neg C)\}$.

TU Dresden Deduction Systems
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCI, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u

- Nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Absorption

- What if T is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - T_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - T_g is treated via the T-rule

- absorption decreases T_g and increases T_u
 1. take an axiom from T_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if T_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in T_g
 4. otherwise, if T_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to T_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCI, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \top-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ (A \sqsubseteq D and D \sqsupseteq A), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \sqsubseteq-rule
- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \subseteq D$ and $D \supseteq A$), then $A \subseteq C \sqcup \neg B$ cannot be absorbed; $A \subseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \subseteq C \sqcup \neg B$ resulting in $A \subseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \subseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

$v \quad \sqcap$-rule $L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\}$
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\(v \)

\(\sqcap \)-rule \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \)

\(\sqcup \)-rule \quad L(v) := L(v) \cup \{C_1\}

\vdots \quad \vdots \quad \vdots

\(\sqcup \)-rule \quad L(v) := L(v) \cup \{C_n\}
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \neg A \cap \forall r.A \in L(v)$

\[
\begin{align*}
\Box \text{-rule} \quad L(v) & := L(v) \cup \{\neg A, \forall r.A\} \\
\bigvee \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots & \quad \vdots \\
\bigvee \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
\n -rule & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
\exists -rule & \quad L(w) := \{\neg A\} \\
\forall -rule & \quad L(w) := \{-A, A\} \quad \text{clash}
\end{align*}
\]}
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap &- \text{rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
&\exists r. \neg A, \forall r. A\} \\
\sqcup &- \text{rule} \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup &- \text{rule} \quad L(v) := L(v) \cup \{C_n\} \\
\exists &- \text{rule} \quad L(w) := \{\neg A\} \\
\forall &- \text{rule} \quad L(w) := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \land \ldots \land (C_n \sqcup D_n) \land \exists r. \neg A \land \forall r. A \in L(v)$

v

\[\sqcap \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \]

\[\sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{C_1\} \]

\[\vdots \quad \vdots \quad \vdots \]

\[\sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{C_n\} \]

\[\exists \text{-rule} \quad L(v) := \quad \{\neg A\} \]

\[\forall \text{-rule} \quad L(v) := \quad \{\neg A, A\} \quad \text{clash} \]

\[\sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{D_n\} \]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\sqcap -\text{rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup -\text{rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup -\text{rule} & \quad L(v) := L(v) \cup \{C_n\} \\
\exists -\text{rule} & \quad L(w) := \{\neg A\} \\
\forall -\text{rule} & \quad L(w) := \{\neg A, A\} \quad \text{clash} \\
\sqcup -\text{rule} & \quad L(v) := L(v) \cup \{D_n\} \\
\exists -\text{rule} & \quad L(w) := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\[
\begin{align*}
\forall -rule \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup -rule \quad L(v) & := L(v) \cup \{C_1\} \\
\ldots & \ldots \ldots \\
\sqcup -rule \quad L(v) & := L(v) \cup \{D_n\} \\
\exists -rule \quad L(w) & := \{\neg A\} \\
\forall -rule \quad L(w) & := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\[
\begin{align*}
\text{\text{-rule}} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\text{\text{\sqcap-rule}} & \quad L(v) := L(v) \cup \{C_1\} \\
\text{\text{\sqcup-rule}} & \quad L(v) := L(v) \cup \{D_n\} \\
\text{\text{\exists-rule}} & \quad L(w) := \{\neg A\} \\
\text{\text{\forall-rule}} & \quad L(w) := \{\neg A, A\} \quad \text{clash} \\
\end{align*}
\]

- exponentially big search space is traversed
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with \(\emptyset \)
 - tableau rules combine and extend these tags
 - \(\sqcup \)-rule adds the tag \(\{d\} \) to the existing tag, where \(d \) is the \(\sqcup \)-depth (number of \(\sqcup \)-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \(\sqcup \)-rule
- irrelevant part of the search space is not considered
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\(\sqcup\) -rule

\[L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \lnot A \sqcap \forall r. A \in L(v) \tag{\text{tagged with } \emptyset} \]

\[\sqcap \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \lnot A, \forall r. A\} \tag{all with } \emptyset \]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_1\} \tag{\text{tagged with } \{1\}} \]

\[\vdots \tag{\text{\ldots}} \]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_n\} \tag{\text{tagged with } \{n\}} \]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with} \ \emptyset\]

\[L(v) \ := \ L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with} \ \emptyset\]

\[C_1 \quad \text{tagged with} \ \{1\}\]

\[L(v) \ := \ L(v) \cup \{C_1\}\]

\[L(w) \ := \ \{\neg A\} \quad A, r \quad \text{tagged with} \ \emptyset\]

\[C_n \quad \text{tagged with} \ \{n\}\]

TU Dresden Deduction Systems
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\sqcap -\text{rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \text{ all with } \emptyset\]

\[\sqcup -\text{rule } L(v) := L(v) \cup \{C_1\} \text{ } \text{ } C_1 \text{ tagged with } \{1\}\]

\[\vdots \text{ } \vdots \text{ } \vdots \]

\[\sqcup -\text{rule } L(v) := L(v) \cup \{C_n\} \text{ } \text{ } C_n \text{ tagged with } \{n\}\]

\[\exists -\text{rule } L(w) := \{-A\} \text{ } \text{ } A, r \text{ tagged with } \emptyset\]

\[\forall -\text{rule } L(w) := \{-A, A\} \text{ } \text{ } \neg A \text{ tagged with mit } \emptyset\]
Dependency-Directed Backtracking
Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with} \ \emptyset\]

\[\square\text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with} \ \emptyset\]

\[\square\text{-rule} \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with} \ \{1\}\]

\[\vdots \quad \vdots \quad \vdots\]

\[\square\text{-rule} \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with} \ \{n\}\]

\[\exists\text{-rule} \quad L(w) := \{-A\} \quad A, r \text{ tagged with} \ \emptyset\]

\[\forall\text{-rule} \quad L(w) := \{-A, A\} \quad \text{clash} \quad \neg A \text{ tagged with} \ \text{mit} \ \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\begin{array}{ll}
\sqcap \text{-rule } & L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset \\
\sqcup \text{-rule } & L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
& \vdots \quad \vdots \quad \vdots \\
\sqcup \text{-rule } & L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\
\exists \text{-rule } & L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule } & L(w) := \{-A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset \\
\end{array}\]

\[\bullet \quad \text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\begin{align*}
\square \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \text{ all with } \emptyset
\end{align*}\]

\[\begin{align*}
\square \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}
\end{align*}\]

\[\begin{align*}
& \vdots & \vdots & \vdots \\
& \begin{align*}
\square \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\
\exists \text{-rule} \quad L(w) & := \{-A\} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule} \quad L(w) & := \{-A, A\} \text{ clash} \quad \neg A \text{ tagged with mit } \emptyset
\end{align*}
\end{align*}\]

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcup\)-rules has contributed to the contradiction
Dependency-Directed Backtracking
Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\begin{align*}
\sqcap \text{-rule } L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset \\tag{1}
\end{align*}

\begin{align*}
\sqcup \text{-rule } L(v) & := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
\sqcap \text{-rule } L(v) & := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\tag{2}
\end{align*}

\begin{align*}
\exists \text{-rule } L(w) & := \{\neg A\} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule } L(w) & := \{\neg A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset
\end{align*}

- \(\text{tag}(A) \sqcup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcap\)-rules has contributed to the contradiction
- Output \textit{false} (unsatisfiable)
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Further Optimizations

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., \(A \cap (B \cap C) \equiv \cap \{A, B, C\} \), \(\forall r. C \equiv \neg \exists r. \neg C \)
 - simplification, e.g., \(\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot \), \(\exists r. \bot \equiv \bot \), \(\forall r. \top \equiv \top \)
Further Optimizations

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}$, $\forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- caching
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
Further Optimizations

• Simplification and Normalization
 – quick recognition of trivial contradictions
 – normalization, z.B., $A \cap (B \cap C) \equiv \cap \{A, B, C\}$, $\forall r.C \equiv \neg \exists r. \neg C$
 – simplification, e.g., $\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

• caching
 – prevents the repeated construction of equal subtrees
 – $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 – check if satisfiability status is cached, otherwise
 – check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

• heuristics
 – try to find good orders for the “don’t care” nondeterminism
 – e.g., \cap, \forall, \cup, \exists
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap \{A, B, C\}$, $\forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., $\cap, \forall, \sqcup, \exists$

- ...
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - if \top is unsatisfiable: subsumption holds (no counter-model exists)
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \leadsto if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \leadsto if \top is unsatisfiable: subsumption holds (no counter-model exists)

- naïve approach needs n^2 subsumption checks for n concept names
- normally cached in the concept hierarchy graph
Concept Hierarchy Graph

- ⊤
 - Disease
 - JuvDisease
 - Arthritis
 - JuvArthritis
 - Joint
 - JointDisease
Optimizing Classification

most wide-spread technique is called enhanced traversal
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
Optimizing Classification

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts

If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,

$B \sqsubseteq C \rightarrow A \sqsubseteq D$

and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of \sqsubseteq used to save checks

- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \rightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

- \top
- Disease
 - JuvDisease
 - Arthritis
 - JointDisease
 - Joint
- \bot

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease $\subseteq ?$ Disease

Bottom-Up Phase:

- JuvArthritis \subseteq JointDisease
- JuvDisease $\not\subseteq$ JointDisease
- Arthritis \subseteq JointDisease

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

\[\top \]

\[\text{Disease} \]
\[\text{Joint} \]
\[\text{JuvDisease} \]
\[\text{JointDisease} \]
\[\text{Arthritis} \]
\[\text{JuvArthritis} \]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq \text{Disease}
- JointDisease \sqsubseteq \text{JuvDisease}

Bottom-Up Phase:

- JuvArthritis \sqsubseteq \text{JointDisease}
- JuvDisease \not\sqsubseteq \text{JointDisease}
- Arthritis \sqsubseteq \text{JointDisease}
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease ⊑ Disease
• JointDisease ⊨ JuvDisease
• JointDisease ⊑ Arthritis

Bottom-Up Phase:

• JuvArthritis ⊑ JointDisease
• JuvDisease ⊨ JointDisease
• Arthritis ⊑ JointDisease

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease $\sqsubseteq ?$ Joint

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

\[\top \]

\[
\begin{align*}
\text{Disease} & \quad \text{Joint} \\
\text{JuvDisease} & \quad \text{JointDisease} \quad \text{Arthritis} \\
& \quad \text{JuvArthritis}
\end{align*}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease $\not\sqsubseteq$ Joint

Bottom-Up Phase:

- JuvArthritis $\sqsubseteq^?$ JointDisease
Enhanced Traversal Example

already created hierarchy:

```
⊤
Disease
  JuvDisease
    JointDisease
  Arthritis
  JuvArthritis
```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊉ JuvDisease
- JointDisease ⊉ Arthritis
- JointDisease ⊉ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ⊑? JointDisease
Enhanced Traversal Example

already created hierarchy:

- ⊤
- Disease
- Joint
- JuvDisease
- JointDisease
- Arthritis
- JuvArthritis

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊬ JuvDisease
- JointDisease ⊬ Arthritis
- JointDisease ⊬ Joint

Bottom-Up Phase:
- JuvArthritis ⊑ JointDisease
- JuvDisease ⊬ JointDisease
- Arthritis ⊬? JointDisease
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊄ JuvDisease
- JointDisease ⊄ Arthritis
- JointDisease ⊄ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ⊄ JointDisease
- Arthritis ⊑ JointDisease
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Summary

• we have a tableau algorithm for $ALCIF$ knowledge bases
 – ABox treated like for ALC
 – number restrictions are treated similar to functionality and existential quantifiers
• termination via cycle detection
 – becomes harder as the logic becomes more expressive
• naive tableau algorithm not sufficiently performant
• diverse optimizations improve average case
• specific methods for classification
 – enhanced traversal
• tableaux algorithms or variants modifications thereof are the basis of OWL reasoners