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The Bias-Complexity 

Tradeoff

Error Decomposition

3Slides 06



How should we choose 

a good hypothesis class?

• To answer this question we decompose the error of an 

ERMH predictor into two components as follows. 

• Let ℎ𝑆 be an ERMH hypothesis. Then, we can write

𝐿𝐷(ℎ𝑆) = app + est

• where  

app = min
ℎ∈𝐻

𝐿𝐷(ℎ)

est = 𝐿𝐷(ℎ𝑆) - app
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The Approximation Error app
• The approximation error is the minimum risk achievable 

by a predictor in the hypothesis class. This term 

measures how much risk we have because we restrict 

ourselves to a specific class, namely, how much inductive 

bias we have. 

• The approximation error does not depend on the sample 

size and is determined by the hypothesis class chosen. 

• Enlarging the hypothesis class can decrease the 

approximation error.

• Under the realizability assumption, the approximation 

error is zero. In the agnostic case, however, the 

approximation error can be large.
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The Estimation Error est

• The estimation error is the difference between the 

approximation error and the error achieved by the ERM 

predictor. 

• The estimation error occurs because the empirical risk 

(i.e., training error) is only an estimate of the true risk, and 

so the predictor minimizing the empirical risk is only an 

estimate of the predictor minimizing the true risk.

• The quality of this estimation depends on the training set 

size and on the size, or complexity, of the hypothesis 

class. 
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The Estimation Error est

• As we have studied, for a finite hypothesis class, est
increases (logarithmically) with |H| and decreases with m. 

• We can think of the size of H as a measure of its 

complexity. Later we will study another complexity 

measure of  hypothesis classes, called VC dimension.
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the bias-complexity tradeoff

• Since our goal is to minimize the total risk, we face a 

tradeoff, called the bias-complexity tradeoff. 

• On one hand, choosing H to be a very rich class 

decreases the approximation error but at the same time 

might increase the estimation error, as a rich H might 

lead to overfitting. 

• On the other hand, choosing H to be a very small set 

reduces the estimation error but might increase the 

approximation error or, in other words, might lead to 

underfitting. 
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the bias-complexity tradeoff

• A great choice for H is the class that contains only one 

classifier -- the Bayes optimal classifier. But the Bayes 

optimal classifier depends on the underlying distribution 

D, which we do not know. Indeed, learning would have 

been unnecessary if we had known D.

• Learning theory studies how rich we can make H while 

still maintaining reasonable estimation error. 

• In many cases, empirical research focuses on designing 

good hypothesis classes for a certain domain.
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The VC-Dimension

10Slides 06



Which classes H are PAC learnable?

• So far we have seen that finite classes are learnable, but 

that the class of all functions (over an infinite size domain) 

is not. 

• What makes one class learnable and the other not 

learnable? Can infinite-size classes be learnable, and, if 

so, what determines their sample complexity?
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Infinite-Size Classes Can Be Learnable

• To show that the size of the hypothesis class is not the 

right characterization of its sample complexity, we first 

present a simple example of an infinite-size hypothesis 

class that is learnable.
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Infinite-Size Classes Can Be Learnable

Example
• Let 𝐻 be the set of threshold functions over the real line, 

namely,

𝐻 = {ℎ𝑎: 𝑎 ∈ ℝ}

where ℎ𝑎 ∶ ℝ → {0,1} is a function such that

ℎ𝑎 𝑥 = 𝟏 𝑥<𝑎 =  
1 if 𝑥 < 𝑎
0 otherwise

• This 𝐻 is of infinite size. Nevertheless, the following 

lemma shows that 𝐻 is learnable in the PAC model using 

the ERM algorithm.
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Lemma 6.1

Let 𝐻 be the class of threshold functions as defined earlier. 

Then, 𝐻 is PAC learnable, using the ERM rule, with sample 

complexity of 

𝑚𝐻 𝜖, 𝛿 ≤
ln

2
𝛿
𝜖 .

Proof: [Exercise, see the textbook]
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Motivation for DC-dimension
• Lemma 6.1 shows that while finiteness of H is a 

sufficient condition for learnability, it is not a necessary 

condition. 

• We demonstrate that a property called the VC-dimension

of a hypothesis class gives the correct characterization 

of its learnability.

• In the proof of the No-Free-Lunch theorem, we have 

shown that without restricting the hypothesis class, for 

any learning algorithm, an adversary can construct a 

distribution for which the learning algorithm will perform 

poorly, while there is another learning algorithm that can 

succeed on the same distribution. To do so …
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Motivation for DC-dimension
• To do so, the adversary used a finite set C ⸦ X and 

considered a family of distributions that are concentrated 

on elements of C. Each distribution was derived from a 

“true” target function from C to {0,1}. 

• To make any algorithm fail, the adversary used the 

power of choosing a target function from the set of all

possible functions from C to {0,1}.

• When considering PAC learnability of a hypothesis class 

H, the adversary  is restricted to constructing 

distributions for which some hypothesis h  H achieves 

a zero risk. Since we are considering distributions that 

are concentrated on elements of C, we should study how 

H behaves on C, which leads to the following definition.
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If the restriction of H to C is the set of all functions from C to 

{0,1}, then we say that H shatters the set C.



Examples of shattering (1)

• Let 𝐻 be the class of threshold functions over ℝ. 

• Take a set 𝐶 = {𝑐1}. Now, if we take 𝑎 = 𝑐1 + 1, then 

we have ℎ𝑎(𝑐1) = 1, and if we take 𝑎 = 𝑐1 − 1, then 

we have ℎ𝑎(𝑐1) = 0. Therefore, 𝐻𝐶 is the set of all 

functions from 𝐶 to {0,1}, and 𝐻 shatters 𝐶. 

• Now take a set 𝐶 = {𝑐1, 𝑐2}, where 𝑐1 ≤ 𝑐2. No ℎ ∈
𝐻 can account for the labeling (0, 1), because any 

threshold that assigns the label 0 to 𝑐1 must assign the 

label 0 to 𝑐2 as well. Therefore not all functions from 𝐶 to 

{0,1} are included in 𝐻𝐶; hence 𝐶 is not shattered by 𝐻.
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Examples of shattering (2)

• Let 𝐻 be the class of intervals over ℝ, namely,

𝐻 = {ℎ𝑎,𝑏: 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏},

where ℎ𝑎,𝑏: ℝ → {0,1} is a function such that 

ℎ𝑎,𝑏(𝑥) = 𝟏 𝑥∈(𝑎,𝑏) .

• Take the set 𝐶 = {𝑐1, 𝑐2}, where 𝑐1 ≤ 𝑐2. Then 𝐻
shatters 𝐶. 

• Now take a set 𝐶 = 𝑐1, 𝑐2, 𝑐3 where 𝑐1 ≤ 𝑐2 ≤ 𝑐3. Then 

the labeling (1,0,1) cannot be obtained by an interval and 

therefore 𝐻 does not shatter 𝐶 .
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