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The Blas-Complexity
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How should we choose
a good hypothesis class?

« To answer this question we decompose the error of an
ERM,, predictor into two components as follows.

* Let hy be an ERM,, hypothesis. Then, we can write

LD(hS) — Sapp + Cest
* where

Eapp = Min Ly (h)

heH

Sest — LD (hS) - 8app
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The Approximation Error g, ,

The approximation error is the minimum risk achievable
by a predictor in the hypothesis class. This term
measures how much risk we have because we restrict
ourselves to a specific class, namely, how much inductive
bias we have.

The approximation error does not depend on the sample
size and is determined by the hypothesis class chosen.

Enlarging the hypothesis class can decrease the
approximation error.

Under the realizability assumption, the approximation
error is zero. In the agnostic case, however, the
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The Estimation Error ¢,

« The estimation error Is the difference between the
approximation error and the error achieved by the ERM
predictor.

« The estimation error occurs because the empirical risk
(I.e., training error) is only an estimate of the true risk, and
so the predictor minimizing the empirical risk is only an
estimate of the predictor minimizing the true risk.

« The quality of this estimation depends on the training set
size and on the size, or complexity, of the hypothesis
class.
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The Estimation Error ¢,

* As we have studied, for a finite hypothesis class, ¢,
Increases (logarithmically) with |H| and decreases with m.

« We can think of the size of H as a measure of its

complexity. Later we will study another complexity
measure of hypothesis classes, called
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the bias-complexity tradeoff

« Since our goal is to minimize the total risk, we face a
tradeoff, called the bias-complexity tradeoft.

* On one hand, choosing H to be a very rich class
decreases the approximation error but at the same time
might increase the estimation error, as a rich H might
lead to overfitting.

« On the other hand, choosing H to be a very small set
reduces the estimation error but might increase the
approximation error or, in other words, might lead to
underfitting.

Slides 06



the bias-complexity tradeoff

« A great choice for H Is the class that contains only one
classifier -- the Bayes optimal classifier. But the Bayes
optimal classifier depends on the underlying distribution
D, which we do not know. Indeed, learning would have
been unnecessary if we had known D.

« Learning theory studies how rich we can make H while
still maintaining reasonable estimation error.

* In many cases, empirical research focuses on designing
good hypothesis classes for a certain domain.
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The VC-Dimension
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Which classes H are PAC learnable?

e So far we have seen that finite classes are learnable, but
that the class of all functions (over an infinite size domain)
IS not.

 What makes one class learnable and the other not
learnable? Can infinite-size classes be learnable, and, if
so, what determines their sample complexity?
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Infinite-Size Classes Can Be Learnable

To show that the size of the hypothesis class is not the
right characterization of its sample complexity, we first

present a simple example of an infinite-size hypothesis
class that is learnable.
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Infinite-Size Classes Can Be Learnable

Example

 Let H be the set of threshold functions over the real line,
namely,
H = {h,: a € R}

where h, : R — {0,1} is a function such that

1 ifx<a

Ro(x) = Lxca) = { 0 otherwise

« This H is of infinite size. Nevertheless, the following
lemma shows that H is learnable in the PAC model using
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Lemma 6.1

Let H be the class of threshold functions as defined eatrlier.
Then, H i1s PAC learnable, using the ERM rule, with sample

complexity of
ln(z)
my(€,6) < |—9Z.

€

Proof: [Exercise, see the textbook]
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Motivation for DC-dimension

 Lemma 6.1 shows that while finiteness of H is a
sufficient condition for learnability, it is not a necessary
condition.

« We demonstrate that a property called the VC-dimension
of a hypothesis class gives the correct characterization
of its learnability.

 In the proof of the No-Free-Lunch theorem, we have
shown that without restricting the hypothesis class, for
any learning algorithm, an adversary can construct a
distribution for which the learning algorithm will perform
poorly, while there is another learning algorithm that can
succeed on the same distribution. To do so ...
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Motivation for DC-dimension

« To do so, the adversary used a finite set C < X and
considered a family of distributions that are concentrated
on elements of C. Each distribution was derived from a
“true” target function from C to {0,1}.

« To make any algorithm fall, the adversary used the
power of choosing a target function from the set of
possible functions from C to {0,1}.

* When considering PAC learnability of a hypothesis class
H, the adversary is restricted to constructing
distributions for which some hypothesis h € H achieves
a zero risk. Since we are considering distributions that
are concentrated on elements of C, we should study how
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DEFINITION 6.2 (Restriction of H to C') Let H be a class of functions from &
to {0,1} and let C' = {¢y,... e} C€ A. The restriction of H to C is the set of
functions from C to {0,1} that can be derived from H. That is,

He = {(h(er),. .. hiey)) : h € H},

where we represent each function from C to {0, 1} as a vector in {0, 1}/¢1.

If the restriction of H to C Is the set of all functions from C to
{0,1}, then we say that H shatters the set C.

DEFINITION 6.3 (Shattering) A hypothesis class H shatters a finite set C' C A

if the restriction of H to C is the set of all functions from C' to {0,1}. That is,
He| = 2191

T

Slides 06



Examples of shattering (1)

 Let H be the class of threshold functions over R.

« TakeasetC = {c.}.Now, if we take a = ¢, + 1, then
we have h (c,) = 1,andifwetakea = ¢, — 1, then
we have h, (c,) = 0. Therefore, H, is the set of all
functions from C to {0,1}, and H shatters C.

 Nowtakeaset(C = {c,c,},wherec, < c,. NOh €
H can account for the labeling (0, 1), because any
threshold that assigns the label O to ¢, must assign the
label O to ¢, as well. Therefore not all functions from C to
{0,1} are included in H.; hence C Is not shattered by H.
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Examples of shattering (2)

« Let H be the class of intervals over R, namely,
H = {hgp: a,b €R,a < b},

where h, ,: R - {0,1} Is a function such that

ha,b(x) — 1[xe(a,b)]-
- Take thesetC = {c,c,},wherec; < c,. Then H
shatters C.

* Now take asetC = {c,c, c; }wherec, <c, < c;. Then

the labeling (1,0,1) cannot be obtained by an interval and
therefore H does not shatter C .
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