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Previously . . .

• The regret is the difference between a player’s best possible strategy andtheir actual strategy.
• A correlated equilibrium can be seen as providing players with privatesignals they can use to best-respond to each other’s strategies.
• The regret matching algorithm uses self-play to steer play towards theset of correlated equilibria.
• In the case of two-player zero-sum games, regret matching tends towardsthe set of (mixed) Nash equilibria.
• The counterfactual regret minimisation algorithm applies regretmatching to every information set of an (imperfect-information)extensive-form game (with perfect recall).
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Motivation

• Previous models have focussed on games that are played once.
• We also want to model repeated interactions (of the same individuals).
• A particular focus will be the emergence of cooperation:

– In the (one-shot) Prisoner’s Dilemma, Confess dominates Silent.– Yet people (and businesses, animals, . . . ) cooperate with each other. Why?(A) Incorrect modelling of preferences (e.g. not including integrity and fidelity).(B) Incorrect modelling of outcomes (e.g. not including in-game retaliation).(C) Not modelling anticipation of future (and memory of past) interactions.
• For simplicity, we assume (non-cooperative) games in normal form.

We will explore option (C) in this lecture.
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Overview

Fixed Repetition
Open-Ended Repetition
Modelling Noise
Evolutionary Game Theory
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Fixed Repetition
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Finite Repeated Game: Definition

Definition
A finite repeated game consists of a game G and a natural numberm ≥ 2.
• The value ofm indicates the number of repetitions (stages) of G.
• In each stage k with 1 ≤ k ≤ m, G is played with all players knowing all

actions (strategies) chosen by all players in the previous stage (if any).
• The overall utilities of the players are obtained as the arithmetic meanover stages:

ūi := ui(s(1)) + . . . + ui(s(m))
m

where s(k) denotes the joint action (strategy profile) chosen in stage k.
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Recall: Prisoner’s Dilemma
Prisoner’s Dilemma
Two robbers, Eli and Fyn, havebeen caught by police. Each canstay silent, i.e. Cooperate with theother player, or confess to police,i.e. Defect. If both cooperate, theyget the reward R; if both defect,they get the punishment P. If onecooperates and the other defects,one gets “sucker’s payoff” S and theother gets “temptation payoff” T .

(Eli, Fyn) Cooperate Defect

Cooperate (R,R) (S, T )
Defect (T , S) (P,P)

• To make this a dilemma, it must hold that S < P < R < T .
• For repeated play, we additionally require that S + T < 2R.
• For simplicity, we use our earlier values: S = 0, P = 1, R = 3, and T = 5.
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Repeated Prisoner’s Dilemma: Examples (1)
Consider the repeated games withm = 6 and C = Cooperate, D = Defect:

•
Stage k 1 2 3 4 5 6 Mean
Eli’s action sEli(k) C C C C C C
Fyn’s action sFyn(k) C C C C C C
Eli’s payoff uEli(s(k)) 3 3 3 3 3 3 3
Fyn’s payoff uFyn(s(k)) 3 3 3 3 3 3 3

•
Stage k 1 2 3 4 5 6 Mean
Eli’s action sEli(k) C C C C C C
Fyn’s action sFyn(k) C C C C D D
Eli’s payoff uEli(s(k)) 3 3 3 3 0 0 2
Fyn’s payoff uFyn(s(k)) 3 3 3 3 5 5 323
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Repeated Prisoner’s Dilemma: Examples (2)

•
Stage k 1 2 3 4 5 6 Mean
Eli’s action sEli(k) C C C D D D
Fyn’s action sFyn(k) C C D D D D
Eli’s payoff uEli(s(k)) 3 3 0 1 1 1 112
Fyn’s payoff uFyn(s(k)) 3 3 5 1 1 1 213

•
Stage k 1 2 3 4 5 6 Mean
Eli’s action sEli(k) C C C D D C
Fyn’s action sFyn(k) C C D D C C
Eli’s payoff uEli(s(k)) 3 3 0 1 5 3 212
Fyn’s payoff uFyn(s(k)) 3 3 5 1 0 3 212
What is a good (meta) strategy for the repeated prisoner’s dilemma?
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Repeated Prisoner’s Dilemma: Strategies
Definition
Ameta strategy for a repeated game states, for each possible history ofprevious joint actions, a probability distribution on possible actions.
Some possible (meta) strategies for player i ∈ {Eli, Fyn} are:
AllDefect: Play Defect in all stages.
TitForTat: Play Cooperate in stage k = 1. For stages k > 1, play s(k–1)–i .

Pavlov: Play Cooperate for k = 1 and whenever s(k–1)–i = s
(k–1)
i

for k > 1.
GrimTrigger: Play Cooperate for k = 1 and for k > 1 as long as s(k–1)–i = Cooperate.

If s(k′)–i = Defect for some k′ < m, play Defect for all k′ < k′′ ≤ m.
What is the “best” (meta) strategy for the finite repeated prisoner’s dilemma?
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Repeated Finite Prisoner’s Dilemma: Analysis

Stage k 1 2 . . . m – 2 m – 1 m Mean
sEli

(k) C C . . . C C C
sFyn

(k) C C . . . C C C
uEli(s(k)) 3 3 . . . 3 3 3 3
uFyn(s(k)) 3 3 . . . 3 3 3 3

Repetition does not lead to cooperation if the number of stages is known!
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Repeated Finite Prisoner’s Dilemma: Equilibria
Theorem
In a finite repeated prisoner’s dilemma, (AllDefect, AllDefect) is the strictNash equilibrium.
Proof.
• (AllDefect, AllDefect) is a Nash equilibrium: Let Eli play AllDefect. If

Fyn plays anything other than AllDefect, then there is some k ≤ m with
sFyn

(k) = C. But then sFyn(k) = D yields a higher payoff, so Fyn does not playa best response. So only AllDefect is a best response to AllDefect.
• Let (σEli,σFyn) be a (mixed) Nash equilibrium and assume σEli(k)(C) > 0.Define σ′

Eli by
σ

′
Eli

(ℓ) :=
{
σEli

(ℓ) if ℓ < k,
D otherwise.

Now σ′
Eli yields a higher (than σEli) payoff against σFyn, contradiction.
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Open-Ended Repetition
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Random Repeated Game: Definition

Definition
A random repeated game consists of a game G and a number δ ∈ [0, 1).
• In each stage, G is played with full knowledge about previous stages.
• δ is the continuation probability:At stage k, the game passes into stage k + 1 with probability δ.
• Overall utilities are again the arithmetic mean over stages.
Observation
The expected number of stages is 1 + δ + δ2 + . . . = 11–δ .
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Random Repeated Prisoner’s Dilemma (1)
Theorem
In the random repeated prisoner’s dilemma, (GrimTrigger, GrimTrigger) isa Nash equilibrium for sufficiently large δ.
Proof.
• If both play GrimTrigger, they get overall payoff R.
• To obtain a higher payoff, Elimust Defect at some stage k (and later).
• If it pays to Defect in some stage, it pays to Defect from the first stage on.
• Thus Eli’s payoff against GrimTrigger is 1

m
· (T + (m – 1) · P) form = 11–δ .• Therefore GrimTrigger is a best response to itself whenever

(1 – δ) · T + δ · P ≤ R, or equivalently T – R
T – P ≤ δ.

• Since P < R implies T – R < T – P, it follows that δ can be suitably chosen.
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Random Repeated Prisoner’s Dilemma (2)
• (AllDefect, AllDefect) continues to be an equilibrium for all δ.• There are various other non-punitive outcomes, e.g. (Pavlov, Pavlov) or(TitForTat, TitForTat) (for sufficiently large δ).• In fact, the equilibrium concept makes very unspecific predictions:
Theorem (“Folk Theorem”)
Let (a,b) be an overall payoff pair with a,b > P.
For every ε > 0 and sufficiently large continuation probability δ, there existsa Nash equilibrium of the random repeated prisoner’s dilemma with meanexpected payoff pair (c,d) such that |a – c| < ε and |b – d| < ε.
Example
To achieve a = 23 · R + 13 · T and b = 23 · R + 13 · S, Eli and Fyn play as follows:
• Eli repeats C, C, D as long as Fyn cooperates; Eli only plays D otherwise.
• Fyn plays C as long as Eli plays the pattern CCD; Fyn repeats D otherwise.
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Modelling Noise

Repeated Play (Lecture 9)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 17 of 30 Computational
Logic ∴ Group



Noisy Repeated Game: Definition
Definition
A noisy repeated game consists of a game G and the following:
• a continuation probability δ ∈ [0, 1),
• a perception error probability ξ ∈ [0, 1], and
• an implementation error probability η ∈ [0, 1].
In each stage k, the game G is played such that for each i ∈ P:
• Player i’s chosen action is being used with probability (1 – η), and
• a different action is being used with probability η.
• With probability (1 – ξ), player i perceives the actual outcome, and
• with probability ξ, player i perceives a different outcome.• A (meta) strategy for player i in a noisy repeated game only considers:– intended and implemented actions of i (but not how those were perceived),– joint actions s–i as perceived by i (but not intentions or actual actions).
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Noisy Repeated Game: Example
Eli and Fyn are both trying to play TitForTat in a noisy repeated game:

Stage k 1 2 3 4 5 6 Mean
Eli’s intended action C C D C D D
Eli’s implemented action C C D C D D
Eli’s action as perceived by Fyn C C D C D D
Fyn’s intended action C C C D C D
Fyn’s implemented action C D C D C D
Fyn’s action as perceived by Eli C D C D D D
Eli’s payoff 3 0 5 0 5 1 213
Fyn’s payoff 3 5 0 5 0 1 213

• Nash equilibria make no specific predictions.
• A “noisy version” of the folk theorem exists.
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Evolutionary Game Theory
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Evolutionary Game Theory: Setting
Evolutionary Game Theory: Basic Modelling Assumptions
• Organisms (individuals) in a population interact (compete for resources).
• Two individuals of the (infinite) population are chosen at random . . .
• . . . and play a symmetric (u1(s1, s2) = u2(s2, s1) for all s1, s2 ∈ S1 = S2) game.
• The game’s payoffs will increase/decrease the individuals’ fitness . . .
• . . . and thereby the (individual’s) strategy’s frequency in the population via:
• replication, where payoffs increase fitness to reproduce (create identicalcopies of the individual, playing the same strategy); or
• imitation, where individuals observe payoffs of others and adoptstrategies that yield higher utilities.
Questions: 1. How do distributions of strategies evolve over time?

2. Which strategies are resilient to mutant invasions?
We will briefly consider 2. in the remainder of this lecture.
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Example: Hawks v. Doves
Hawks v. Doves
Two individuals compete for a resource.Obtaining the resource leads to a fitness in-crease of V ; losing a fight leads to a fitnessdecrease of C. A Hawk will win the resourceagainst a Dove. If two Doves play each other,they will split the resource equally. If two
Hawks play each other, they will both fight,with equal chances of winning.

(1, 2) Hawk Dove

Hawk V–C2 V

Dove 0 V2

• (Dove, Dove) is not a Nash equilibrium whenever V > V2 .• (Hawk, Hawk) is a Nash equilibrium whenever V ≥ C.
Which (mixed) strategies are resilient to mutant invasions?
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Evolutionarily Stable Strategies: Definition
• Suppose a fraction 1 – ε of individuals (incumbents) that play strategy π;
• the remaining fraction ε of individuals (mutants) play strategy ρ.
Idea: Strategy π is stable if the expected payoff of π is higher than that of all
ρ ̸= π, for sufficiently small ε.
• Denote the expected (one-shot) payoff of playing π against ρ by U(π|ρ).
• The (overall) expected payoff of an incumbent: (1 – ε) ·U(π|π) + ε ·U(π|ρ)
• The (overall) expected payoff of a mutant: (1 – ε) ·U(ρ|π) + ε ·U(ρ|ρ)
Definition
A (mixed) strategy π is an evolutionarily stable strategy (ESS) iff for every(mixed) strategy ρ ̸= π, there exists an ερ such that for all 0 < ε < ερ:

(1 – ε) ·U(π|π) + ε ·U(π|ρ) > (1 – ε) ·U(ρ|π) + ε ·U(ρ|ρ)
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Evolutionarily Stable Strategies: Variant
Observation (1)
A strategy π is evolutionarily stable if and only if, for all ρ ̸= π, either:
• U(π|π) > U(ρ|π), or
• U(π|π) = U(ρ|π) and U(π|ρ) > U(ρ|ρ).
Thus if π is an ESS, then:
• U(π|π) ≥ U(ρ|π) for all ρ ̸= π, whence
• π is a best response to itself, and
• (π,π) is a Nash equilibrium.
Example: Hawks v. Doves
• If V > C, then V–C2 > 0 and Hawk is an ESS.
• (Dove, Dove) is not a Nash equilibrium, so Dove is not an ESS.

Repeated Play (Lecture 9)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 24 of 30 Computational
Logic ∴ Group



ESSs and Nash Equilibria
Theorem
Let G be a two-player normal-form game with symmetric payoffs U(·|·).
A mixed strategy π is an evolutionarily stable strategy for G if and only if:
1. (π,π) is a Nash equilibrium of G, and
2. for every best response ρ to π with ρ ̸= π, we have U(π|ρ) > U(ρ|ρ).
Example: Hawks v. Doves
• Assume V ≤ C and C > 0 then π =

{
Hawk 7→ V

C
, Dove 7→ 1 – V

C

} is an ESS:
• U(Hawk|π) = V

C
· V–C2 + (1 – V

C
) · V = V2–VC+2CV–2V22C = CV–V22C = U(π|π)

• U(Dove|π) = (1 – V

C
) · V2 = CV–V22C = U(π|π)

• Any ρ = {Hawk 7→ r, Dove 7→ 1 – r} is a best response to π;
r ̸= V

C
allows to verify U(π|ρ) > U(ρ|ρ).
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Computational Complexity of ESS
Observation
Not every normal-form game has an evolutionarily stable strategy.
Example: Rock-Paper-Scissors
• The unique Nash equilibrium is π∗ =

(13 , 13 , 13
) with U(π∗|π∗) = 0.

• Every ρ = {Rock 7→ x, Paper 7→ y, Scissors 7→ z} is a best response to π∗.
• U(π∗|ρ) = U(ρ|π∗) = 0 by symmetry and since the game is zero-sum.
• Finally, U(ρ|ρ) = 0 as well, thus π∗ is no ESS.
Thus the following decision problem is relevant:

Exists-ESS
Given: A two-player symmetric game G in normal form.

Question: Does G have an ESS?
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Computational Complexity of ESS (1)
Theorem
Exists-ESS is both NP-hard and coNP-hard.
Proof (Sketch, I).
• We reduce from the following problemMax-Clique:

Given: An undirected Graph (V , E) and a number k ∈ N.
Question: Does (V , E) have a maximal clique of size exactly k?

• The nodes V will become pure strategies.
• The edges E will determine pairs of pure strategies with positive payoff.
• An ESS must play well against itself, so must prefer edges of the graph.
• Playing strategies that mix the nodes of a clique serves to achieve this.

Repeated Play (Lecture 9)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 27 of 30 Computational
Logic ∴ Group



Computational Complexity of ESS (2)

Proof (Sketch, II).
• Assume w.l.o.g. that V = {1, 2, . . . ,n}.
• To define G(V ,E), set S1 = S2 = V ∪ {0} and define U(·|·) as follows:

U(si|sj) :=

1 if i, j ̸= 0 and i ̸= j and (i, j) ∈ E,
0 if i, j ̸= 0 and i ̸= j and (i, j) /∈ E,
12 if i, j ̸= 0 and i = j,
1 – 12k otherwise, that is, i = 0 or j = 0.

• It remains to show that G(V ,E) has an ESS if and only if the largest clique in(V , E) has a size other than k.
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Computational Complexity of ESS (3)

Proof (Sketch, III).
• If C is a maximal clique in (V , E) of size k′ > k and π is the uniformdistribution on C, then π is an ESS.
• If the maximal clique of (V , E) has size k′ < k, then pure strategy 0 is an ESS.
• If the maximal clique of (V , E) has size at least k, then 0 is not an ESS.
• If the maximal clique of (V , E) has size at most k, then any strategy otherthan 0 is not an ESS.
⇝ Even when an ESS exists, it is unlikely that a finite population will quicklyconverge to it.
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Conclusion
Summary
• In a finite repeated game, a two-player normal-form game is repeatedfor a fixed number of times; cooperation cannot be expected in this case.
• In a random repeated game, the end of interaction can not be predictedfor sure; cooperation can emerge for large enough continuationprobabilities, but equilibria make no specific predictions.
• A noisy repeated gamemay have implementation/perception errors.
• An evolutionarily stable strategy is a Nash equilibrium that performsbetter against “mutants” than the “mutants” against themselves.
• Deciding whether a game has an ESS is NP-hard and coNP-hard.
Action Points
Prove that π on slide 25 is an ESS by showing U(π|ρ) > U(ρ|ρ).
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