Computing Stable Extensions of Argumentation Frameworks using Formal Concept Analysis

Sergei Obiedkov¹ Barış Sertkaya²

¹KBS Group, TU Dresden

²Frankfurt University of Applied Sciences

Outline

Formal Concept Analysis (FCA)

Argumentation frameworks in FCA terms

Enumerating stable extensions with FCA algorithms

Experimental evaluation

Formal Concept Analysis

(Ganter and Wille 1999)

Formal context $\mathbb{K} = (G, M, I)$

- ▶ a set of objects G
- a set of attributes M
- ▶ objects are described with attributes: the binary relation $I \subseteq G \times M$

Formal Concept Analysis

(Ganter and Wille 1999)

Formal context $\mathbb{K} = (G, M, I)$

- ▶ a set of objects G
- a set of attributes M

▶ objects are described with attributes: the binary relation $I \subseteq G \times M$

Derivation operators

For $A \subseteq G$ and $B \subseteq M$:

Formal Concept Analysis (Ganter and Wille 1999)

Derivation operators

For $A \subseteq G$ and $B \subseteq M$:

▶
$$A^{\uparrow} = \{m \in M \mid \forall g \in A \colon (g, m) \in I\}$$

▶ $B^{\downarrow} = \{g \in G \mid \forall m \in B \colon (g, m) \in I\}$

Formal concept (A, B)

$$A \subseteq G \qquad \qquad P \subseteq M \\ A^{\uparrow} = B \qquad \qquad P \subseteq M \\ B^{\downarrow} = A \\ P = A \\$$

A is concept extent and B is concept intent. $(A, B) \leq (C, D) \Leftrightarrow A \subseteq C \ (\Leftrightarrow D \subseteq B)$ The concept set of the context K forms a lattice $\mathfrak{B}(\mathbb{K})$.

Example

adapted from (Brafman and Domshlak 2009)

An argumentation framework is a directed graph F = (A, R), where A is a finite set of arguments and $R \subseteq A \times A$ is the attack relation.

An argumentation framework is a directed graph F = (A, R), where A is a finite set of arguments and $R \subseteq A \times A$ is the attack relation.

The induced formal context of (A, R) is $\mathbb{K}(A, R) = (A, A, (A \times A) \setminus R)$.

	а	b	С	d	е
а	×			×	\times
b		×	×	×	×
С	×	×	\times		×
d	×	×		×	
е	×	×	×		

An argumentation framework is a directed graph F = (A, R), where A is a finite set of arguments and $R \subseteq A \times A$ is the attack relation.

The induced formal context of
$$(A, R)$$
 is $\mathbb{K}(A, R) = (A, A, (A \times A) \setminus R)$.

	а	b	С	d	е
а	×			×	\times
b		×	×	\times	\times
С	×	×	\times		\times
d	×	×		×	
е	×	×	×		

< ロト < 同ト < ヨト < ヨト

 $S^{\uparrow} = \{t \in A \mid \forall s \in S \colon (s, t) \notin R\}$ is the set of arguments not attacked by S $\{a, b\}^{\uparrow} = \{d, e\}$

An argumentation framework is a directed graph F = (A, R), where A is a finite set of arguments and $R \subseteq A \times A$ is the attack relation.

$$S^{\uparrow} = \{t \in A \mid orall s \in S \colon (s,t)
ot \in R\}$$

is the set of arguments not attacked by S
 $\{a,b\}^{\uparrow} = \{d,e\}$

The induced formal context of (A, R) is $\mathbb{K}(A, R) = (A, A, (A \times A) \setminus R)$.

	а	b	С	d	е
а	×			×	\times
b		×	×	×	×
С	\times	\times	\times		×
d	×	×		×	
е	×	×	×		

 $S^{\downarrow} = \{t \in A \mid \forall s \in S : (t, s) \notin R\}$ is the set of arguments that do not attack S $\{a, b\}^{\downarrow} = \{c, d, e\}$ Defending

 S^{\uparrow} are the arguments not attacked by S

 $\{a, e\}$ defends d

 $S \subseteq A$ defends $x \in A$ if every argument attacking x is attacked by S

	а	b	С	d	е
а	×			×	×
b		×	×	×	\times
С	×	×	\times		\times
d	×	×		×	
е	×	×	×		

Defending

 S^{\downarrow} are the arguments not attacking S

	а	b	С	d	е
а	\times			×	×
b		×	\times	\times	×
С	×	\times	\times		×
d	×	×		×	
е	×	×	\times		

 $\{a, e\}$ defends d

 $S \subseteq A$ defends $x \in A$ if every argument attacking x is attacked by S

 $\iff S^{\uparrow} \subseteq \{x\}^{\downarrow}$

Conflict-free sets

 S^{\uparrow} are the arguments not attacked by S

 $\{a, d\}$ is conflict-free

 $S \subseteq A$ is conflict-free if S does not attack any of its elements

	а	b	С	d	е
а	×			×	×
b		×	×	×	×
С	×	×	\times		×
d	×	×		×	
е	×	×	×		

Conflict-free sets

 S^{\uparrow} are the arguments not attacked by S

 S^{\downarrow} are the arguments not attacking S

 $\{a, d\}$ is conflict-free

 $S \subseteq A$ is conflict-free if S does not attack any of its elements

	а	Ь	С	d	е
а	×			×	×
b		×	×	×	×
С	×	×	\times		×
d	×	×		×	
е	×	×	×		

 $\iff \quad S \subseteq S^{\uparrow} \quad \Longleftrightarrow \quad S \subseteq S^{\downarrow}$

Conflict-free sets

 S^{\uparrow} are the arguments not attacked by S

 $\{a, d\}$ is conflict-free

- $S \subseteq A$ is conflict-free if S does not attack any of its elements
- $S \subseteq A$ is a maximal conflict-free set

Admissible and preferred extensions

 S^{\uparrow} are the arguments not attacked by S

{b} is admissible

 $S \subseteq A$ is admissible if S is conflict-free and S defends all its elements

Admissible and preferred extensions

 S^{\uparrow} are the arguments not attacked by S

{b} is admissible

 $S \subseteq A$ is admissible if S is conflict-free and S defends all its elements

 S^{\downarrow} are the arguments not attacking S

 $\iff \qquad S \subseteq S^{\uparrow} \subseteq S^{\downarrow}$

Admissible and preferred extensions

 S^{\uparrow} are the arguments not attacked by S

 $\{b, c\}$ is preferred

 $S \subseteq A$ is admissible if S is conflict-free and S defends all its elements

 $S \subseteq A$ is preferred if it is a maximal admis- \implies $S = S^{\downarrow\uparrow}$ is a concept intent sible extension

$$\iff \qquad S \subseteq S^{\uparrow} \subseteq S^{\downarrow}$$

Stable extensions

 S^{\uparrow} are the arguments not attacked by S

 $\{a, d\}$ is stable

 $S \subseteq A$ is stable if S is conflict-free and S attacks every $a \in A \setminus S$

	а	b	С	d	е
а	×			×	×
b		×	\times	×	\times
С	×	×	\times		\times
d	×	×		×	
е	×	×	×		

Stable extensions

 S^{\uparrow} are the arguments not attacked by S

 $\{a, d\}$ is stable

 $S \subseteq A$ is stable if S is conflict-free and S attacks every $a \in A \setminus S$

 S^{\downarrow} are the arguments not attacking S

	а	b	С	d	е
а	\times			×	×
b		×	\times	×	×
С	×	\times	\times		×
d	\times	×		×	
е	×	×	×		

 $\implies \qquad S^{\uparrow}=S$

Extensions in the concept lattice

c

d

• stable extensions

а

• other preferred extensions

• other conflict-free intents

Lattice-construction algorithms for enumeration of stable extensions

- Conflict-free intents form an order filter in the concept lattice.
- Stable extensions form an antichain.
- ▶ We use FCA algorithms to enumerate all conflict-free concept intents.
- ▶ We prune a computation branch when we encounter a maximal conflict-free intent.
- If such intent is stable, we output it.

Lattice-construction algorithms for enumeration of stable extensions

We adapted two algorithms:

NEXT CLOSURE (Ganter 1984)

- Enumerates all concept intents with a polynomial delay.
- Lists intents contained in intent S before it produces S.
- Needs memory linear in the number of arguments.

Incremental algorithm (Norris 1978)

- Processes attributes one by one.
- Stores all generated concepts to ease generation of new concepts.
- May need exponential amount of memory, but, when it is available, is usually fast.

- ▶ We ran experiments for the task of counting stable extensions (CE-ST).
 - Results for the task of finding a single extension are in the paper.
- ▶ We used random Erdős–Rényi–Gilbert graphs (G(n, p) model) for testing.
- ▶ For comparison, we used the following tools from ICCMA 2021:
 - A-Folio-DPDB
 - PYGLAF
 - μ-toksia
- Experimental setup: Ubuntu Linux / 32 core-CPU / 2.9 GHz / 256 GB
- Time limit: 600 sec

G(1000, p), average time in seconds

p =	0.5	0.6	0.7	0.8	0.9	0.98
PYGLAF	-	_	_	_	_	_
μ -toksia	-	-	-	155	131	183
A-Folio-DPDB	-	-	114	30.2	17.7	12.1
Next Closure	435	31.4	3.89	0.72	0.24	0.16
Norris	263	19.4	1.93	0.31	0.15	0.14

None of the tools terminated within limit for $p \leq 0.4$.

G(n, p), average time in seconds

	n = 5000			n	= 100	000	n = 20000		
p =	0.8	0.9	0.98	0.8	0.9	0.98	0.8	0.9	0.98
PYGLAF	-	_	287	-	_	—	-	_	_
μ -toksia	-	—	-	-	-	_	-	-	-
A-Folio-DPDB	-	—	-	-	-	-	-	-	—
Next Closure	405	35.3	6.03	-	510	39.4	-	_	589
Norris	303	25.2	4.42	-	360	25.6	-	—	167

G(n, p), average time in seconds

	<i>n</i> = 50				n = 250)	n = 500		
p =	0.01	0.2	0.5	0.01	0.2	0.5	0.01	0.2	0.5
PYGLAF	0.07	0.04	0.04	0.08	40.6	3.86	0.08	-	73
μ -toksia	0.01	0.005	0.01	0.01	60.3	8.82	0.32	-	116
A-Folio-DPDB	4.84	4.81	4.82	5	40.4	6.73	5.08	-	52.5
Next Closure	0.004	0.03	0.003	-	-	0.35	-	-	10.1
Norris	0.003	0.02	0.003	-	-	0.13	-	-	5.29

Conclusion

The main takeaway

FCA algorithms are efficient for the enumeration of stable extensions in dense frameworks (which induce sparse contexts with relatively few concepts and even fewer conflict-free intents).

Conclusion

The main takeaway

FCA algorithms are efficient for the enumeration of stable extensions in dense frameworks (which induce sparse contexts with relatively few concepts and even fewer conflict-free intents).

Further work

- Adapt the algorithms to other semantics
- Test the algorithms on differently generated frameworks
- Improve the algorithms, e.g., using ordering heuristics
- Adapt other FCA algorithms to argumentation tasks
- Compare with other lattice-based approaches
 - Elaroussi, M., Nourine, L. & Radjef, M.S. Lattice point of view for argumentation framework. Ann Math Artif Intell (2023)