Computing Stable Extensions of Argumentation Frameworks
using Formal Concept Analysis

Sergei Obiedkov! Baris Sertkaya?

KBS Group, TU Dresden

2Frankfurt University of Applied Sciences

1/17

Outline

Formal Concept Analysis (FCA)

Argumentation frameworks in FCA terms

Enumerating stable extensions with FCA algorithms

Experimental evaluation

2/17

Formal Concept Analysis
(Ganter and Wille 1999)

Formal context K = (G, M, I)

» a set of objects G
> a set of attributes M
> objects are described with attributes: the binary relation / C G x M

3/17

Formal Concept Analysis
(Ganter and Wille 1999)

Formal context K = (G, M, I)

» a set of objects G
> a set of attributes M
> objects are described with attributes: the binary relation / C G x M

Derivation operators

For AC G and B C M:
>» Al={mecM|VgcA: (g,mel}
> Bt={gc G|VmecB:(g,m)el}

3/17

Formal Concept Analysis
(Ganter and Wille 1999)

Derivation operators

For AC G and B C M:
» Al={meM|VgecA: (g,mel}
» Bt={gc G|VYmecB:(g,m)el}

Formal concept (A, B)

> ACG » BC M

» AT=R > Bt=A

A is concept extent and B is concept intent.
(A,B)<(C,D)&ACC(&DCB)
The concept set of the context K forms a lattice B(K).

3/17

Example
adapted from (Brafman and Domshlak 2009)

Context Concept lattice
— .
Q1.2 |
p -
S| o] o |8
218|183
c CU X |.£ +
S 2| O =
e q>§ o - =
= > 25| x
=21 3|l<|<c| =
Eln| Y| z|8|o
a || x X X
1)) X X X
ca || % X | X
o] X | x X
cs || x X X

4/17

Argumentation framework (Dung 1995)

An argumentation framework is a directed
graph F = (A,R), where A is a finite set
of arguments and R C A x A is the attack
relation.

()
=@ O @E

5/17

Argumentation framework (Dung 1995)

An argumentation framework is a directed The induced formal context of (A, R) is

graph F = (A,R),

where A is a finite set

of arguments and R C A x A is the attack

relation.

O=® -

.0
O_@__©

K(A, R) = (A, A, (A x A)\ R).

[a[blcl[d]e]
a | x X
b X | X X
cll x| x| x X
d|l x| x

el x| x| x

5/17

Argumentation framework (Dung 1995)

An argumentation framework is a directed The induced formal context of (A, R) is
graph F = (A,R), where A is a finite set K(A,R) = (A, A, (Ax A)\ R).

of arguments and R C A x A is the attack

relation.

| l[afbf[cld]e]

/—\ O a X X | X

O=0 OO [E <l
cll x| x| x X
d|l x| x X
el x| x| x

St={tcA|VseS: (s,t) ¢ R}
is the set of arguments not attacked by S
{av b}T = {d’ e}

5/17

Argumentation framework (Dung 1995)

An argumentation framework is a directed The induced formal context of (A, R) is
graph F = (A,R), where A is a finite set K(A,R) = (A, A, (Ax A)\ R).

of arguments and R C A x A is the attack

relation.

| l[a[bfcld]e]

//////’—_—s\\\\x /A /A (1 a X X | X
OO OO0 G s
c|l x| x| x X
d| x| x X
e || X | x| x
St={tcA|VseS: (s,t) ¢ R} St={tcA|VseS:(ts)¢R}
is the set of arguments not attacked by S is the set of arguments that do not attack S
{a,b}T = {d, e} {a,b}¥ = {c,d, e}

5/17

Defending

ST are the arguments not attacked by S

()
O=® O ITT®

{a, e} defends d

S C A defends x € A if every argument
attacking x is attacked by S

S are the arguments not attacking S

d|e|

X

X

X

DIQ|(O|T|L

6/17

Defending

ST are the arguments not attacked by S St are the arguments not attacking S

| llafbfcld]e]

O X X X
O=® O ITT®

X | x| x| x
c |l x| x| x X
{a, e} defends d X | X X
e || X | x| x
S C A defends x € A if every argument
= stc {x}t

attacking x is attacked by S

6/17

Conflict-free sets

ST are the arguments not attacked by S

N T 0
O=® O 0O
{a, d} is conflict-free

S C A is conflict-free if S does not attack
any of its elements

St are the arguments not attacking S

d|e|

X

X

X

DIQ|O ||

7/17

Conflict-free sets

ST are the arguments not attacked by S

T T

(3
—=® " O_@__®

{a, d} is conflict-free

S C A is conflict-free if S does not attack
any of its elements

St are the arguments not attacking S

—

[a[blcld[e]
a |l x X
b X | X X
cll x| x| x X
d|| x| x

el x| x| x

SscsSt «— scst

7/17

Conflict-free sets

ST are the arguments not attacked by S St are the arguments not attacking S

| l[a[bfc]d]e]

,////’—-__5\\\\x A A (1 a X B <
=0 ©O_@_© bl [x [
C X X X X
{a, d} is conflict-free d| x| x X
e X X X

S C A is conflict-free if S does not attack
any of its elements

S C A'is a maximal conflict-free set — S=S"nStn{xeA|lxe{x}}}

7/17

Admissible and preferred extensions

ST are the arguments not attacked by S

(V
=0 OO
A S * *
{b} is admissible
S C Ais admissible if S is conflict-free and
S defends all its elements

S+ are the arguments not attacking S

X

DIQlO ||V

8/17

Admissible and preferred extensions

ST are the arguments not attacked by S

()
k) O @E

{b} is admissible

S C Ais admissible if S is conflict-free and
S defends all its elements

S+ are the arguments not attacking S

[a[b]c]|
a |l x X
b X | X X
cll x| x| x X
d|| x | X
el x| x| x
scstcst

8/17

Admissible and preferred extensions

ST are the arguments not attacked by S

N T 0
Q=0 OO
{b, c} is preferred

S C Ais admissible if S is conflict-free and
S defends all its elements

S C Ais preferred if it is a maximal admis-
sible extension

S+ are the arguments not attacking S

!

!

| [albfcld[e]
a |l x X | %
b X | X X
cll x| x| x X
d|| x| X

el x| x| x
scstcst

S = S+ is a concept intent

8/17

Stable extensions

ST are the arguments not attacked by S

()
@ OO E

{a, d} is stable

S C A is stable if S is conflict-free and S
attacks every a€ A\ S

S are the arguments not attacking S

d|e|

X

X

X

DIQ|(O|T|L

9/17

Stable extensions

ST are the arguments not attacked by S

,/////”—__\\\\\\a S S (1
= O_W_©
{a, d} is stable

S C A is stable if S is conflict-free and S
attacks every a€ A\ S

S are the arguments not attacking S

—

[a[blcld[e]
a | x X
b X | X X
cll x| x| x X
d|| x| X

el x| x| x
st=s5

9/17

Lattice-construction algorithms for enumeration of stable extensions

v

Conflict-free intents form an order filter in the concept lattice.

v

Stable extensions form an antichain.

v

We use FCA algorithms to enumerate all conflict-free concept intents.

» We prune a computation branch when we encounter a maximal conflict-free intent.

v

If such intent is stable, we output it.

11/17

Lattice-construction algorithms for enumeration of stable extensions

We adapted two algorithms:
NEXT CLOSURE (Ganter 1984)

» Enumerates all concept intents with a polynomial delay.
> Lists intents contained in intent S before it produces S.

» Needs memory linear in the number of arguments.

Incremental algorithm (Norris 1978)

P> Processes attributes one by one.
> Stores all generated concepts to ease generation of new concepts.

» May need exponential amount of memory, but, when it is available, is usually fast.

12/17

Experiments

» We ran experiments for the task of counting stable extensions (CE-ST).
» Results for the task of finding a single extension are in the paper.
» We used random Erd8s—Rényi—Gilbert graphs (G(n, p) model) for testing.
» For comparison, we used the following tools from ICCMA 2021:
> A-Folio-DPDB
> PYGLAF
> -toksia
» Experimental setup: Ubuntu Linux / 32 core-CPU / 2.9 GHz / 256 GB
> Time limit: 600 sec

13/17

Experiments
G(1000, p), average time in seconds

p=] 05 [06 | 07 0.8 0.9 0.98
PYGLAF - - - - - -
p-toksia - - - 155 131 183
A-Folio-DPDB - - | 114 30.2 17.7 12.1
Next Closure || 435 31.4 3.89 0.72 0.24 0.16
Norris || 263 19.4 1.93 0.31 0.15 0.14

None of the tools terminated within limit for p < 0.4.

14 /17

Experiments

G(n, p), average time in seconds

n = 5000 n = 10000 n = 20000
p=1]08] 09] 098 [[0.8] 09098 08]0.9]0.98

PYGLAF | - -—]287 - -1 -1 -1 -1 -
p-toksia - - - - - - - - -
A-FolioDPDB | - | -| - e e e
Next Closure || 405 [35.3 | 6.03 -[510[394] -| -] 589
Norris || 303 | 25.2 | 4.42 -1360 256 -| —| 167

15/17

Experiments

G(n, p), average time in seconds

n =50 n = 250 n =500
p=1]001 [02 [05 [001][02 [05 [[001][02] 05
PYGLAF [0.07 [0.04 [004 [[0.08]406[386008[- [73
pi-toksia || 0.01 | 0.005 | 0.01 || 0.01 | 60.3 | 8.82 || 0.32 | - | 116
A-Folio-DPDB || 484 | 481 | 482 |5 |404|6.73|508|- | 525
Next Closure || 0.004 [0.03 [0.003 (|- |- [035[- [- | 101
Norris || 0.003 | 0.02 | 0.003 || - |- |013| - |- 5.29

16 /17

Conclusion

The main takeaway

FCA algorithms are efficient for the enumeration of stable extensions in dense
frameworks (which induce sparse contexts with relatively few concepts and even fewer
conflict-free intents).

17/17

Conclusion

The main takeaway

FCA algorithms are efficient for the enumeration of stable extensions in dense
frameworks (which induce sparse contexts with relatively few concepts and even fewer
conflict-free intents).

Further work
» Adapt the algorithms to other semantics
P Test the algorithms on differently generated frameworks
» Improve the algorithms, e.g., using ordering heuristics
» Adapt other FCA algorithms to argumentation tasks

» Compare with other lattice-based approaches

» Elaroussi, M., Nourine, L. & Radjef, M.S. Lattice point of view for argumentation
framework. Ann Math Artif Intell (2023)

17/17

	Formal Concept Analysis (FCA)
	Argumentation frameworks in FCA terms
	Enumerating stable extensions with FCA algorithms
	Experimental evaluation

