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Outline

Introduce search trees

Discuss various types of labeling trees, in particular trees for
- forward checking
- partial look ahead
- maintaining arc consistency (MAC)

Discuss various search algorithms for labeling trees

Discuss search algorithms for constrained optimization problems

Introduce various heuristics for search algorithms
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Useful Slogan

Search Algorithm = Search Tree + Traversal Algorithm
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Search Trees

Consider a CSP  with a sequence of variables X

Search tree for : a finite tree such that

its nodes are CSP's

its root is 
the nodes at an even level have exactly one direct descendant

if 1, ..., m are direct descendants of 0, then the union of 1, ..., m 

is equivalent w.r.t. X to 0
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Labeling Trees

Specific search trees for finite CSP's

Splitting consists of labeling of the domain of a variable

Constraint propagation consists of a domain reduction method
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Complete Labeling Trees

Constraint propagation absent

Given:

- a CSP  with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

Complete labeling tree associated with  and :

the direct descendants of the root are of the form (x1, d)

the direct descendants of a node (xj, d), where j ∈ [1..n – 1], are of the form (xj+1, )
its branches determine all the instantiations with the domain {x1, ..., xn}
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Examples

Consider

〈x < y, y < z ; x  {1, 2, 3}, ∈ y  {2, 3}, ∈ z  {1, 2, 3}∈ 〉

1. with the ordering x  y  z

2. with the ordering x  z  y 
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Sizes of Complete Labeling Trees

Given:

- a CSP with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

- D1, ..., Dn the corresponding variable domains

The number of nodes in the complete labeling tree associated with  is

|A|: the cardinality of set A

The complete labeling tree has the least number of nodes if the variables 
are ordered by their domain sizes in increasing order

1∑i=1

n
∏ j=1

i
∣D j∣
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Examples

Tree in 1. (cf. Slide 7):

The cardinalities of the domains: 3, 2, 3

The tree has 1 + 3 + 3⋅2 + 3 2 3, i.e., 28 nodes⋅ ⋅

Tree in 2. (cf. Slide 7):

The cardinalities of the domains: 3, 3, 2

The tree has 1 + 3 + 3 3 + 3 3 2, i.e., 31 nodes⋅ ⋅ ⋅

Both trees have the same number of leaves: 18
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Reduced Labeling Trees

An instantiation I is along the ordering x1, ..., xn if its domain is {x1, ..., xj} for some 
j  [1..∈ n].

Given:

- a CSP  with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

Reduced labeling tree associated with  and :

the direct descendants of the root are of the form (x1, d)

the direct descendants of a node (xj, d), where j ∈ [1..n – 1], are of the form (xj+1, )
its branches determine all consistent instantiations along the ordering x1, ..., xn
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Examples
Consider

〈x < y, y < z ; x  {1, 2, 3}, ∈ y  {2, 3}, ∈ z  {1, 2, 3}∈ 〉

1. with the ordering x  y  z

2. with the ordering x  z  y 

Reduced labeling trees can have different number of nodes and different 
number of leaves.
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Labeling Trees with Constraint Propagation

Given:   ≔ 〈 ; x1  ∈ D1, ..., xn  ∈ Dn〉

Assume fixed form of constraint propagation prop(i) in the form of a domain 
reduction, where i  [0..∈ n – 1]

i determines the sequence xi+1, ..., xn of the variables to whose domains prop(i) 
is applied

Given current variable domains E1, ..., En, constraint propagation prop(i) 
transforms only Ei+1, ..., En

prop(i) depends on the original constraints  of  and on the domains E1, ..., Ei
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prop Labeling Trees

prop labeling tree associated with :

its nodes are sequences of the domain expressions x1  ∈ E1, ..., xn  E∈ n

its root is x1  ∈ D1, x2  ∈ D2, ..., xn  D∈ n

each node at an even level 2i with i  [0..∈ n] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If i = n, this node is a leaf. Otherwise, it has exactly one direct descendant,
obtained using prop(i):

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ E'i+1, ..., xn ∈ E'n
where E'j  Ej for j  [∈ i + 1..n] 



14Foundations of Constraint Programming Search

prop Labeling Trees, ctd

each node at an odd level 2i + 1 with i  [0..∈ n – 1] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If Ej =  for some j  [∈ i + 1..n], this node is a leaf. Otherwise, it has direct 
descendants of the form

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  {∈ d}, xi+2  ∈ Ei+2, ..., xn ∈ En

for all d  ∈ Ei+1 such that the instantiation {(x1, d1), ..., (xi, di), (xi+1, d)} is consistent
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Intuition

Given: node x1  ∈ E1, ..., xn  E∈ n at level 2i – 1 or 2i

if i  [2..∈ n – 1], we call x1, ..., xi-1 its past variables

if i  [1..∈ n], we call xi its current variable

if i  [0..∈ n – 1], we call xi+1, ..., xn its future variables

prop(i) affects only the domains of the future variables.
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Example of a prop Labeling Tree

Consider a CSP with three variables, x1, x2, x3

A, B, C, and D are failed nodes. E and F are success nodes.
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Example: SEND + MORE = MONEY

Complete Labeling Tree: Reduced Labeling Tree:
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SEND + MORE = MONEY, ctd

Use as prop the domain reduction rules for linear constraints over integer 
intervals from Chapter 5.

prop Labeling Tree:
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Sizes of Generated Trees

For SEND + MORE = MONEY: 

Complete labeling tree
Total number of leaves: 92⋅106 = 81000000

Reduced labeling tree
Total number of leaves: 10 9 8 7 6 5 4 – 2 (9 8 7 6 5 4)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  = 483840
Gain: 99.4% with respect to the complete labeling tree

prop labeling tree
Total number of leaves: 4
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Instances of prop Labeling Trees

forward checking

partial look ahead

maintainting arc consistency (MAC)
(aka full look ahead)
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Forward Checking Search Tree

Recall from the definition of prop labeling trees:

Each node at an even level 2i with i  [0..∈ n] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If i = n, this node is a leaf. Otherwise, it has exactly one direct descendant,
obtained using prop(i):

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ E'i+1, ..., xn ∈ E'n
where E'j   Ej for j  [∈ i + 1..n] 

Define

E'j  {≔   ∈ Ej | {(x1, d1), ..., (xi, di), (xj, )} is consistent}
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Example: 5 Queens Problem

Take the standardized CSP corresponding to 5 Queens Problem.

Interpretation: the variables x1, x2, x3, x4, x5 correspond to the columns a, b, c, d, e

First queen placed at a1: Effect of forward checking:
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Partial Look Ahead Search Tree

Impose forward checking

Impose directional arc consistency, e.g. using the DARC algorithm

Example: 5 Queens Problem

Effect of partial look ahead in the example:
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MAC Search Tree

Impose forward checking

Impose arc consistency, e.g. using the ARC algorithm

Example: 5 Queens Problem

Effect of MAC in the example:
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Search Algorithms for Labeling Trees

Backtrack-free search

Backtrack-free search with constraint propagation

Backtrack search

Backtrack search with constraint propagation
- forward checking
- partial look ahaed
- MAC

Search algorithms for constrained optimization problems:

Branch and bound search

Branch and bound with constraint propagation search
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Declarations

cons(inst, j, d) ≡ “the instantiation 

 {(x1, inst[1]), ..., (xj-1, inst[j - 1]), (xj, d)} is consistent”

type domains = array [1..n] of domain;

 instantiation = array [1..n] of elements;

var inst: instantiation;

 failure: boolean
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Backtracking
procedure backtrack(j: integer; D: domains; var success: boolean);

begin

while D[j ] ≠  and not success do

choose d from D[j ];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

success  (≔ j = n);

if not success then backtrack(j + 1, D, success)

end-if

end-while

end

begin

success  ≔ false;

backtrack(1, D, success)

end
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Backtracking with Constraint Propagation
procedure backtrack_prop(j: integer; D: domains; var success: boolean);

begin

while D[j ] ≠  and not success do

choose d from D[j ];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

success  (≔ j = n);

if not success then

prop(j, D, failure);

if not failure then backtrack_prop(j + 1, D, success)

end-if

end-if

end-while

end

begin

success  ≔ false;

prop(0, D, failure);

if not failure then backtrack_prop(1, D, success)

end
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Forward Checking
procedure revise(j, k: integer; var D: domains);

begin

D[k]  ≔ {d  ∈ D[k] | { (x1, inst[1]), ..., (xj, inst[j ]), (xk, d)} is a consistent instantiation}

end

procedure prop(j: integer; var D: domains; var failure: boolean);

var k: integer;

begin

failure  ≔ false;

k  ≔ j + 1;

while k < n + 1 and not failure do

revise(j ,k, D);

failure  (≔ D[k] = );

k  ≔ k + 1

end-while

end
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Partial Look Ahead

procedure prop(j: integer; var D: domains; var failure: boolean);

var k: integer;

begin

failure  ≔ false;

k  ≔ j + 1;

while k < n + 1 and not failure do

revise(j ,k, D);

failure  (≔ D[k] = );

k  ≔ k + 1

end-while

if not failure then darc(j + 1, D, failure)

end
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MAC (Full Look Ahead)

procedure prop(j: integer; var D: domains; var failure: boolean);

...

if not failure then arc(j + 1, D, failure)

end
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Finite Constrained Optimization Problems

  ≔ 〈 ; x1  ∈ D1, ..., xn  ∈ Dn〉

obj : Sol → ℝ from the set Sol of all solutions to  to ℝ

Heuristic function h : (D1)  ...    (Dn) →  ℝ ∪ {∞}

Monotonicity: If Ē1   Ē2, then h(Ē1) ≤ h(Ē2)

Bound: obj(d1, ..., dn) ≤ h({d1}, ..., {dn})

procedure obj(inst: instantiation): real;

procedure h(inst: instantiation; j: integer; D: domains): real;

h(inst, j, D) returns the value of h on ({inst[1]}, ..., {inst[j ]}, D[j + 1], ..., D[n])
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Branch and Bound with Constraint Propagation
procedure branch_and_bound_prop(j: integer; D: domains; var solution: instantiation; var bound: real);

begin

while D[j ] ≠  do

choose d from D[j];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

if j = n then

if obj(inst) > bound then 

bound  ≔ obj(inst); solution  inst≔
end-if

else 

prop(j, D, failure);

if not failure and h(inst, j, D) > bound then

branch_and_bound_prop(j + 1, D, solution, bound)

end-if

end-if

end-while

end
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Branch and Bound with Constraint Propagation, ctd

begin

solution  ≔ nil; 

bound  -∞;≔
prop(0, D, failure);

if not failure then 

branch_and_bound_prop(1, D, solution, bound)

end
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Heuristics for Search Algorithms

Variable Selection

Select a variable with the smallest domain

Select a most constrained variable

(For numeric domains)
Select a variable with the smallest difference between its domain bounds

Value Selection

Select a value for the heuristic function that yields the highest outcome

Select the smallest value

Select the largest value

Select the middle value
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Objectives

Introduce search trees

Discuss various types of labeling trees, in particular trees for
- forward checking
- partial look ahead
- maintaining arc consistency (MAC)

Discuss various search algorithms for labeling trees

Discuss search algorithms for constrained optimization problems

Introduce various heuristics for search algorithms




