

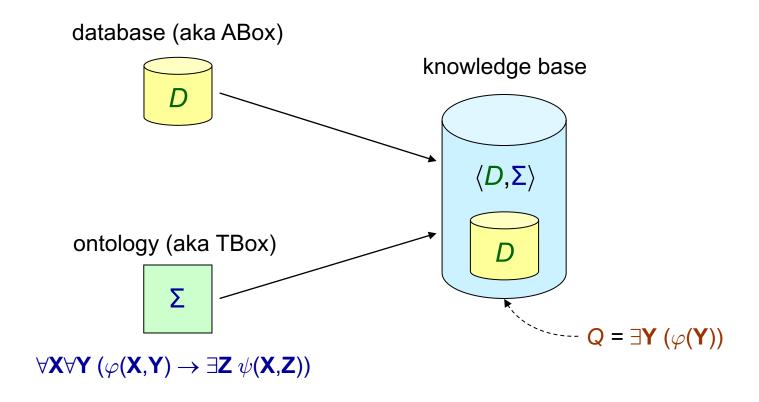
Sebastian Rudolph

International Center for Computational Logic TU Dresden

Existential Rules – Lecture 6

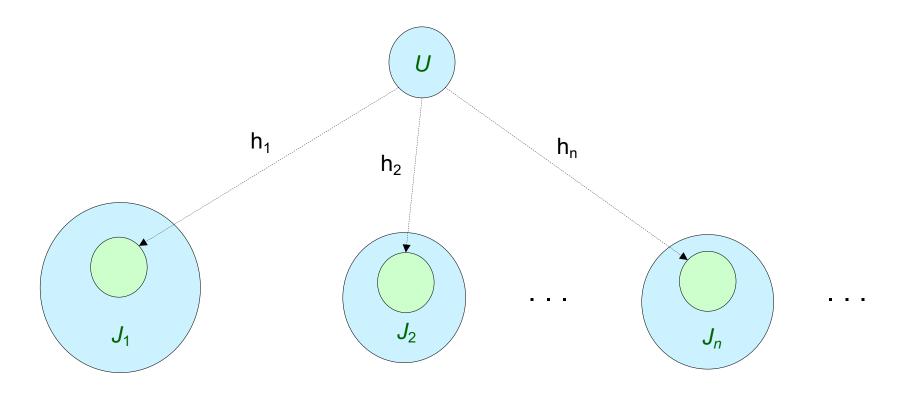
Adapted from slides by Andreas Pieris and Michaël Thomazo Winter Term 2025/26

BCQ-Answering: Our Main Decision Problem



decide whether $D \wedge \Sigma \models Q$

Universal Models (a.k.a. Canonical Models)



An instance *U* is a universal model of $D \wedge \Sigma$ if the following holds:

- 1. U is a model of $D \wedge \Sigma$
- 2. $\forall J \in \mathsf{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $\mathsf{h}_J(U) \subseteq J$

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

=

Corollary: $D \wedge \Sigma \models Q$ iff chase $(D,\Sigma) \models Q$

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

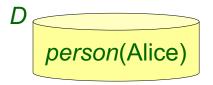
- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

Sum Up

	Data Complexity	
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC	in LOGSPACE	Not covered here

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem

Recall our Example



$$\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D,Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1),$

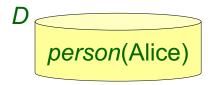
hasParent(z_1, z_2), Person(z_2),

 $hasParent(z_2, z_3), Person(z_3), \dots$

The above rule can be written as the DL-Lite axiom

Person □ ∃hasParent.Person

Recall our Example



$$\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(
$$D,\Sigma$$
) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1),$

$$hasParent(z_1, z_2), Person(z_2),$$

$$hasParent(z_2, z_3), Person(z_3), ...$$

Existential quantification & recursive definitions are key features for modelling ontologies

Challenge

We need classes of existential rules such that

- Existential quantification and recursive definition coexist
 - \Rightarrow the chase may be infinite
- BCQ-Answering is decidable, and tractable w.r.t. the data complexity

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

A linear existential rule is an existential rule of the form

$$\forall X \forall Y (P(X,Y) \rightarrow \exists Z \psi(X,Z))$$

where P(X,Y) is an atom

- We denote LINEAR the class of linear existential rules
- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{LINEAR}$
 - $\Rightarrow \Sigma_1 \in \text{LINEAR}, \ \Sigma_2 \in \text{LINEAR} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \text{LINEAR}$
- Strictly more expressive than DL-Lite

LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics - comparable formalisms

DL-Lite Axioms	Existential Rules
$A \sqsubseteq B$	$\forall X (A(X) \rightarrow B(X))$
$A \sqsubseteq \exists R$	$\forall X \ (A(X) \to \exists Y \ R(X,Y))$
∃R ⊑ A	$\forall X \forall Y \ (R(X,Y) \to A(X))$
∃R⊑∃P	$\forall X \forall Y (R(X,Y) \rightarrow \exists Z P(X,Z))$
<i>A</i> ⊑ ∃ <i>R</i> . <i>B</i>	$\forall X \ (A(X) \to \exists Y \ (R(X,Y) \land B(Y)))$
$R \sqsubseteq P$	$\forall X \forall Y \ (R(X,Y) \rightarrow P(X,Y))$
$A \sqsubseteq \neg B$	$\forall X (A(X) \land B(X) \rightarrow \bot)$

Linear Existential Rules

A linear existential rule is an existential rule of the form

$$\forall X \forall Y (P(X,Y) \rightarrow \exists Z \psi(X,Z))$$

where P(X,Y) is an atom (which is trivially a guard)

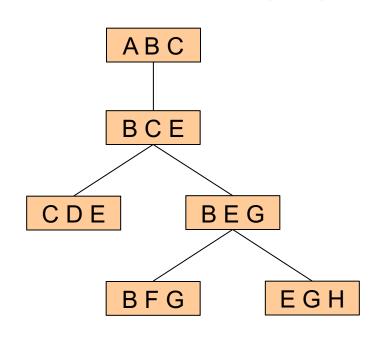
- We denote LINEAR the class of linear existential rules
- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{LINEAR}$
 - $\Rightarrow \Sigma_1 \in \text{LINEAR}, \ \Sigma_2 \in \text{LINEAR} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \text{LINEAR}$
- Strictly more expressive than DL-Lite
- Infinite chase $\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$
- But, BCQ-Answering is decidable the chase has finite treewidth

Treewidth of a Graph

Tree decomposition - a mapping of a graph into a tree

Graph G = (V,E)

В G Tree decomposition T = (V',E') of G

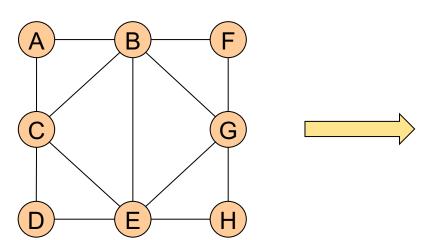


- 1. For each $v \in V$, there exists $u \in V'$ such that $v \in u$
- 2. For each $(v,w) \in E$, there exists $u \in V'$ such that $\{v,w\} \subseteq u$
- For each $v \in V$, $\{u \mid v \in u\}$ induces a connected subtree

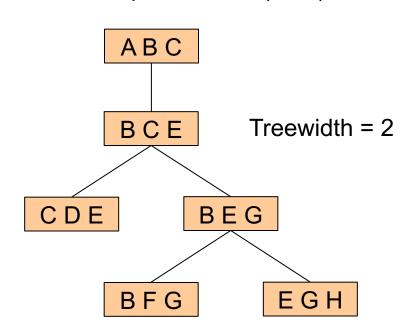
Treewidth of a Graph

Tree decomposition - a mapping of a graph into a tree

Graph G = (V,E)



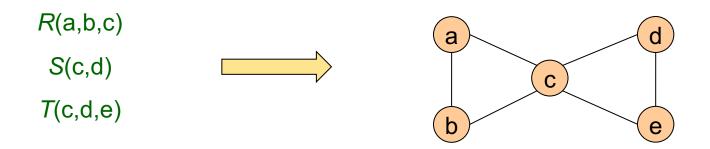
Tree decomposition T = (V',E') of G



- The width of T is defined as $\max_{u \in V'} \{|u|\}$ 1
- The treewidth of G, denoted tw(G), is the minimum width over all tree decompositions of G

Treewidth of an Instance

• An instance J can be represented as a graph \mathcal{G}_J - Gaifman graph



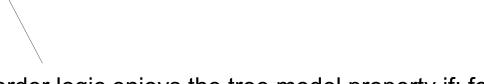
- The treewidth of J, denoted tw(J), is defined as $tw(\mathcal{G}_J)$
- Thus, we can talk about the treewidth of the chase
- Lemma: For a database D, and a set $\Sigma \in LINEAR$, $tw(chase(D,\Sigma))$ is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result



A fragment \mathcal{L} of first-order logic enjoys the tree model property if: for every $\varphi \in \mathcal{L}$, if φ is satisfiable, then there exists $J \in \mathsf{models}(\varphi)$ such that $\mathsf{tw}(J)$ is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result
- Consider a database D, a set $\Sigma \in LINEAR$, and a BCQ Q
- Clearly, $D \wedge \Sigma \models Q$ iff $D \wedge \Sigma \wedge \neg Q \models \bot$
- Thus, it suffices to show that, if $D \wedge \Sigma \wedge \neg Q$ is satisfiable, then it has a model of finite treewidth
- By universality, $D \wedge \Sigma \wedge \neg Q$ is satisfiable implies chase $(D,\Sigma) \wedge \neg Q$ is satisfiable
- Therefore, $D \wedge \Sigma \wedge \neg Q$ is satisfiable implies chase (D,Σ) is a model of $D \wedge \Sigma \wedge \neg Q$
- The claim follows since tw(chase(D,Σ)) is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result

...but, what about the complexity of the problem?

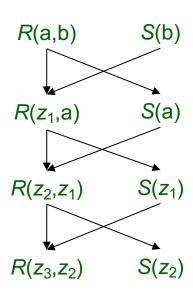
we need new techniques

Chase Graph

The chase can be naturally seen as a graph - chase graph

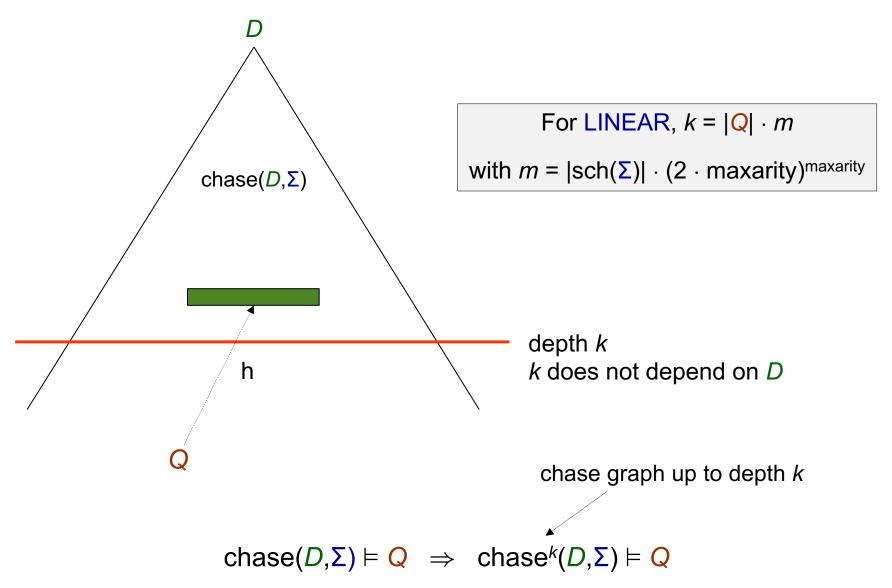
$$D = \{R(a,b), S(b)\}$$

$$\Sigma = \begin{cases} \forall X \forall Y \ (R(X,Y) \land S(Y) \rightarrow \exists Z \ R(Z,X)) \\ \forall X \forall Y \ (R(X,Y) \rightarrow S(X)) \end{cases}$$



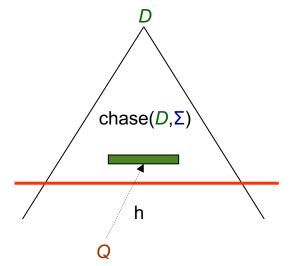
For LINEAR, the chase graph is a forest

Bounded Derivation-Depth Property



The Blocking Algorithm for LINEAR

- The blocking algorithm shows that BCQ-Answering under LINEAR is
 - in PTIME w.r.t. the data complexity
 - in 2EXPTIME w.r.t. the combined complexity



...we can do better than the blocking algorithm

$$k = |\mathbf{Q}| \cdot |\mathrm{sch}(\mathbf{\Sigma})| \cdot (2 \cdot \mathrm{maxarity})^{\mathrm{maxarity}}$$

Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject of the second part of our course.

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Small Witness Property for LINEAR

Lemma: chase(D,Σ) $\models Q \Rightarrow$ there exists a chase sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

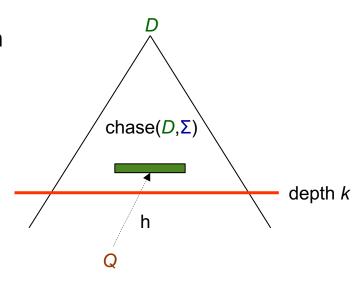
of D w.r.t. Σ with

$$n = (|Q|)^2 \cdot |\operatorname{sch}(\Sigma)| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$$

such that $J_n \models \mathbb{Q}$

- By hypothesis, there exists a homomorphism h such that h(Q) ⊆ chase(D, Σ)
- By the bounded-derivation depth property

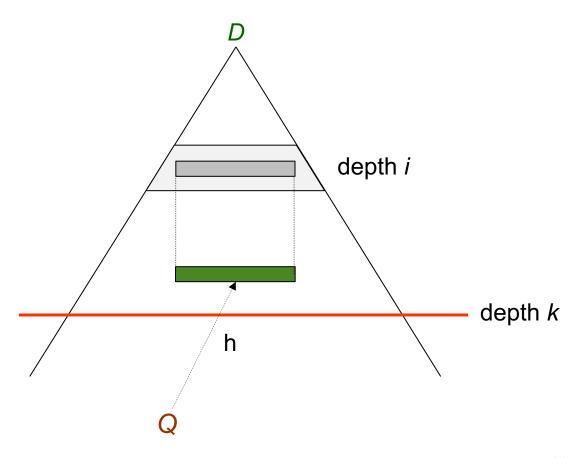
$$k = |\mathbf{Q}| \cdot |\mathrm{sch}(\mathbf{\Sigma})| \cdot (2 \cdot \mathrm{maxarity})^{\mathrm{maxarity}}$$



Small Witness Property for LINEAR

Proof (cont.):

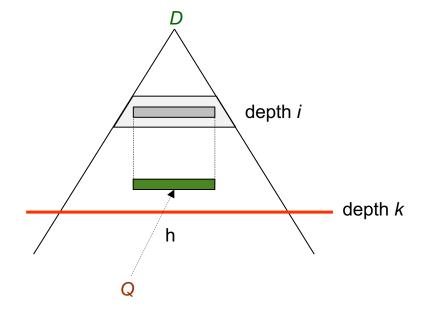
- Let us focus on depth i of the chase graph
- How many atoms do we need?
- No more than |Q|



Small Witness Property for LINEAR

Proof (cont.):

- Let us focus on depth i of the chase graph
- How many atoms do we need?
- No more than |Q|
- Thus, to entail the query we need at most



$$k \cdot |Q|$$

- = $|Q| \cdot |sch(\Sigma)| \cdot (2 \cdot maxarity)^{maxarity} \cdot |Q|$
- = $(|Q|)^2 \cdot |sch(\Sigma)| \cdot (2 \cdot maxarity)^{maxarity}$

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set $\Sigma \in LINEAR$, and a BCQ Q Having the small witness property in place, we can exploit the following algorithm:

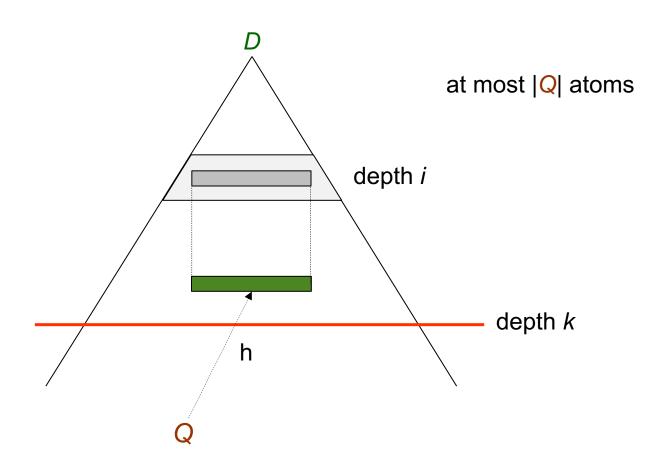
1. Non-deterministically construct a chase sequence

$$D\langle \sigma_1, \mathsf{h}_1 \rangle J_1 \langle \sigma_2, \mathsf{h}_2 \rangle J_2 \langle \sigma_3, \mathsf{h}_3 \rangle J_3 \ \dots \ \langle \sigma_n, \mathsf{h}_n \rangle J_n$$
 of D w.r.t. Σ with $n = (|\mathbf{Q}|)^2 \cdot |\mathrm{sch}(\Sigma)| \cdot (2 \cdot \mathrm{maxarity})^{\mathrm{maxarity}}$

2. Check for the existence of a homomorphism h such that $h(Q) \subseteq J_n$

Can we do better? Any ideas?

Key Observation



level-by-level construction

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

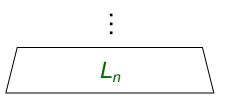
Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

$$L_1$$
 L_2

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

$$L_2$$
 L_3

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity



Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof (cont.):

At each step we need to maintain

- O(|Q|) atoms
- A counter $ctr \leq (|Q|)^2 \cdot |\operatorname{sch}(\Sigma)| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$
- Thus, we need polynomial space
- The claim follows since NPSPACE = PSPACE

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined complexity

Proof: By simulating a deterministic polynomial space Turing machine

Our Goal: Encode the polynomial space computation of a DTM *M* on input

string I using a database D, a set $\Sigma \in LINEAR$, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff M accepts I using at most $n = (|I|)^k$ cells

- Assume that the tape alphabet is {0,1,⊔}
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Initial configuration - the database D

Config(
$$s_{init}$$
, α_1 ,..., α_m , \sqcup ,..., \sqcup ,1,0,...,0)
$$n-m \qquad n-1$$

- Assume that the tape alphabet is {0,1,□}
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Transition rule - $\delta(s_1, \alpha) = (s_2, \beta, +1)$

for each $i \in \{1,...,n\}$:

$$\forall X \; (Config(s_1,X_1,\ldots,X_{i-1},\alpha,X_{i+1},\ldots,X_n,0,\ldots,0,1,\;0,\ldots,0) \rightarrow$$

Config(
$$s_2, X_1, ..., X_{i-1}, \beta, X_{i+1}, ..., X_n, 0, ..., 0, 1, 0, ..., 0$$
)
$$i \qquad n - i - 1$$

- Assume that the tape alphabet is $\{0,1,\sqcup\}$
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

$$D \wedge \Sigma \models \exists X \ Config(s_{acc}, X) \ iff \ M \ accepts I$$

...but, the rules are not constant-free we can eliminate the constants by applying a simple trick

Initial configuration - the database D

auxiliary constants for the states and the tape alphabet

Config(
$$s_{init}$$
, α_1 , ..., α_m , \sqcup , ..., \sqcup , 1, 0, ..., 0, s_1 , ... s_ℓ , 0, 1, \sqcup)

Slide 40

Transition rule - $\delta(s_1,0) = (s_2, \sqcup, +1)$

for each $i \in \{1,...,n\}$:

$$\underbrace{i-1}_{n-i} \underbrace{n-i}_{\text{Config}(S_1,X_1,...,X_{i-1},Z,X_{i+1},...,X_n,Z,...,Z,O,Z,...,Z,S_1,...S_{\ell},Z,O,B)} \rightarrow$$

Config(
$$S_2, X_1, ..., X_{i-1}, B, X_{i+1}, ..., X_n, Z, ..., Z, O, Z, ..., Z, S_1, ..., S_\ell, Z, O, B$$
)

 $i \quad n - i - 1$

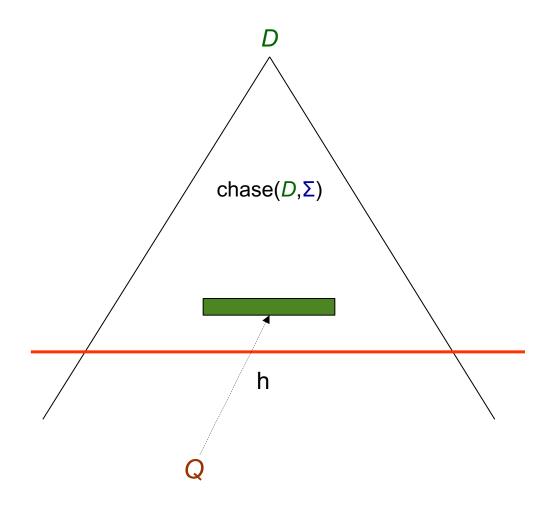
(∀-quantifiers are omitted)

Sum Up

	Data Complexity	
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC	in LOGSPACE	Second part of our course
LINEAR		

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem
LINEAR	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM

Forward Chaining Techniques



Useful techniques for establishing optimal upper bounds ...but not practical - we need to store instances of very large size

