Lecture 3: Complexity of Query Answering

Markus Krötzsch
Overview

1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of first-order query answering
5. Query optimization
6. Conjunctive queries
7. Limits of first-order query expressiveness
8. Introduction to Datalog
9. Implementation techniques for Datalog
10. Path queries
11. Constraints (1)
12. Constraints (2)
13. “Buffer time”
14. Outlook: database theory in practice
Review: The Relational Calculus

What we have learned so far:

• There are many ways to describe databases:
 \(\sim \) named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs

• There are many ways to describe query languages:
 \(\sim \) relational algebra, domain independent FO queries, safe-range FO queries, active domain FO queries
 Codd’s tuple calculus
 \(\sim \) either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?
How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
 \(\leadsto\) database queries return many results (no decision problem)

- The size of a query result can be very large
 \(\leadsto\) it would not be fair to measure this as “complexity”

- In practice, database instances are much larger than queries
 \(\leadsto\) can we take this into account?
We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query q and a database instance \mathcal{I}, does $\mathcal{I} \models q$ hold?
- **Query of tuple problem**: given an n-ary query q, a database instance \mathcal{I} and a tuple $\langle c_1, \ldots, c_n \rangle$, does $\langle c_1, \ldots, c_n \rangle \in M[q](\mathcal{I})$ hold?
- **Query emptiness problem**: given a query q and a database instance \mathcal{I}, does $M[q](\mathcal{I}) \neq \emptyset$ hold?

\[\sim\text{ Computationally equivalent problems (exercise)}\]
The Size of the Input

Combined Complexity

Input: Boolean query q and database instance \mathcal{I}
Output: Does $\mathcal{I} \models q$ hold?

~ estimates complexity in terms of overall input size
~ “2KB query/2TB database” = “2TB query/2KB database”
The Size of the Input

Combined Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q and database instance I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $I</td>
</tr>
</tbody>
</table>

→ estimates complexity in terms of overall input size

→ “2KB query/2TB database” = “2TB query/2KB database”

→ study worst-case complexity of algorithms for fixed queries:

Data Complexity

<table>
<thead>
<tr>
<th>Input: database instance I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $I</td>
</tr>
</tbody>
</table>
The Size of the Input

Combined Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q and database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold?</td>
</tr>
</tbody>
</table>

\sim estimates complexity in terms of overall input size

\sim “2KB query/2TB database” = “2TB query/2KB database”

\sim study worst-case complexity of algorithms for fixed queries:

Data Complexity

<table>
<thead>
<tr>
<th>Input: database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold? (for fixed q)</td>
</tr>
</tbody>
</table>

\sim we can also fix the database and vary the query:

Query Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold? (for fixed \mathcal{I})</td>
</tr>
</tbody>
</table>
Review: Computation and Complexity Theory
The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)
\[\sim \text{“algorithm” = “something implemented on a TM”} \]

A TM is an automaton with (unlimited) working memory:

- It has a finite set of states \(Q \)
- \(Q \) includes a start state \(q_{\text{start}} \) and an accept state \(q_{\text{acc}} \)
- The memory is a tape with numbered cells \(0, 1, 2, \ldots \)
- Each tape cell holds one symbol from the set of tape symbols \(\Sigma \)
- There is a special symbol □ for “empty” tape cells
- The TM has a transition relation \(\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{l, r, s\}) \)
- \(\Delta \) might be a partial function \((Q \times \Sigma) \rightarrow (Q \times \Sigma \times \{l, r, s\}) \)
 \[\sim \text{deterministic TM (DTM); otherwise nondeterministic TM} \]

There are many different but equivalent ways of defining TMs.
The Turing Machine (2)

TMs operate step-by-step:

- At every moment, the TM is in one state \(q \in Q \) with its read/write head at a certain tape position \(p \in \mathbb{N} \), and the tape has a certain contents \(\sigma_0 \sigma_1 \sigma_2 \cdots \) with all \(\sigma_i \in \Sigma \)

 \(\sim \) current configuration of the TM

- The TM starts in state \(q_{\text{start}} \) and at tape position 0.

- Transition \(\langle q, \sigma, q', \sigma', d \rangle \in \Delta \) means:

 if in state \(q \) and the tape symbol at its current position is \(\sigma \), then change to state \(q' \), write symbol \(\sigma' \) to tape, move head by \(d \) (left/right/stay)

- If there is more than one possible transition, the TM picks one nondeterministically

- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.
Languages Accepted by TMs

The (nondeterministic) TM accepts an input $\sigma_1 \cdots \sigma_n \in (\Sigma \setminus \{\Box\})^*$ if, when started on the tape $\sigma_1 \cdots \sigma_n \Box \Box \cdots$,
(1) the TM halts on every computation path and
(2) there is at least one computation path that halts in the accepting state $q_{acc} \in Q$.

accept:

reject:

reject (not halting):
A decision problem is a language \mathcal{L} of words over $\Sigma \setminus \{\Box\}$ ~ the set of all inputs for which the answer is “yes”

A TM decides a decision problem \mathcal{L} if it accepts exactly the words in \mathcal{L}

TMs take time (number of steps) and space (number of cells):

- $\text{TIME}(f(n))$: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n
- $\text{SPACE}(f(n))$: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n
A decision problem is a language \mathcal{L} of words over $\Sigma \setminus \{\square\}$ ~ the set of all inputs for which the answer is “yes”

A TM decides a decision problem \mathcal{L} if it accepts exactly the words in \mathcal{L}

TMs take time (number of steps) and space (number of cells):

- $\text{TIME}(f(n))$: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n
- $\text{SPACE}(f(n))$: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n
- $\text{NTIME}(f(n))$: Problems that can be decided by a TM in at most $O(f(n))$ steps on any of its computation paths
- $\text{NSPACE}(f(n))$: Problems that can be decided by a TM using at most $O(f(n))$ tape cells on any of its computation paths
Some Common Complexity Classes

\[P = \text{PTime} = \bigcup_{k \geq 1} \text{Time}(n^k) \]

\[NP = \bigcup_{k \geq 1} \text{NTIME}(n^k) \]

\[\text{Exp} = \text{ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \]

\[\text{NExp} = \text{NExpTime} = \bigcup_{k \geq 1} \text{NTIME}(2^{2^{n^k}}) \]

\[\text{2Exp} = \text{2ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{2^{n^k}}) \]

\[\text{N2Exp} = \text{N2ExpTime} = \bigcup_{k \geq 1} \text{NTIME}(2^{2^{2^{n^k}}}) \]

\[\text{ETime} = \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \]

\[\text{L} = \text{LogSpace} = \text{Space}(\log n) \]

\[\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n) \]

\[\text{PSPACE} = \bigcup_{k \geq 1} \text{Space}(n^k) \]

\[\text{ExpSpace} = \bigcup_{k \geq 1} \text{Space}(2^{n^k}) \]
NP = Problems for which a possible solution can be verified in P:

- for every $w \in \mathcal{L}$, there is a certificate $c_w \in \Sigma^*$, such that
- the length of c_w is polynomial in the length of w, and
- the language $\{w##c_w \mid w \in \mathcal{L}\}$ is in P

Equivalent to definition with nondeterministic TMs:

- \Rightarrow nondeterministically guess certificate; then run verifier DTM
- \Leftarrow use accepting polynomial run as certificate; verify TM steps
Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia “Primality certificate”)
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)
NP and coNP

Note: Definition of NP is not symmetric

• there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability

• converse of an NP problem is coNP

• similar for NExpTime and N2ExpTime

Other classes are symmetric:

• Deterministic classes (coP = P etc.)

• Space classes mentioned above (esp. coNL = NL)
A Simple Proof for $P = NP$

Clearly $L \in P$ implies $L \in NP$

therefore $L \notin NP$ implies $L \notin P$

hence $L \in coNP$ implies $L \in coP$

that is $coNP \subseteq coP$

using $coP = P$

and hence $coNP \subseteq P$

so by $P \subseteq NP$

$q.e.d.$
A Simple Proof for $P = NP$

Clearly $L \in P$ implies $L \in NP$

therefore $L \notin NP$ implies $L \notin P$

hence $L \in coNP$ implies $L \in coP$

that is $coNP \subseteq coP$

using $coP = P$

and hence $coNP \subseteq P$

so by $P \subseteq NP$

$NP \subseteq P$

$NP = P$

q.e.d.?
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

\[
(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1) \quad \text{(and so on for all vertices)}
\]

Colouring conditions for edges:

\[
\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2) \quad \text{(and so on for all edges)}
\]

Satisfying truth assignment \iff valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

![Graph]

Encoding colours in propositions:

- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

$$
(r_1 \land \neg g_1 \land \neg b_1) \lor \\
(\neg r_1 \land g_1 \land \neg b_1) \lor \\
(\neg r_1 \land \neg g_1 \land b_1) \\
(\text{and so on for all vertices})
$$

Colouring conditions for edges:

$$
\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2) \\
(\text{and so on for all edges})
$$

Satisfying truth assignment \iff valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

\[(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)\]
(and so on for all vertices)

Colouring conditions for edges:

\[\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)\]
(and so on for all edges)

Satisfying truth assignment \iff valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

$$ (r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1) \lor \ldots $$

(and so on for all vertices)

Colouring conditions for edges:

$$ \neg(r_1 \land r_2) \land \neg(g_1 \land g_2) \land \neg(b_1 \land b_2) \lor \ldots $$

(and so on for all edges)
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- \(r_i \) means "vertex \(i \) is red"
- \(g_i \) means "vertex \(i \) is green"
- \(b_i \) means "vertex \(i \) is blue"

Colouring conditions on vertices:

\[
(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)
\]

(and so on for all vertices)

Colouring conditions for edges:

\[
\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)
\]

(and so on for all edges)

Satisfying truth assignment ⇔ valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

$$(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)$$
(and so on for all vertices)

Colouring conditions for edges:

$$\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)$$
(and so on for all edges)

Satisfying truth assignment \iff valid colouring
Defining Reductions

Definition

Consider languages $L_1, L_2 \subseteq \Sigma^*$. A computable function $f : \Sigma^* \rightarrow \Sigma^*$ is a many-one reduction from L_1 to L_2 if:

$$w \in L_1 \text{ if and only if } f(w) \in L_2$$

\Rightarrow we can solve problem L_1 by reducing it to problem L_2

\Rightarrow only useful if the reduction is much easier than solving L_1 directly

\Rightarrow polynomial many-one reductions
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
Theorem (Cook 1971; Levin 1973)

All problems in \(\text{NP} \) can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- \(\text{NP} \) has a maximal class that contains a practically relevant problem
- If SAT can be solved in \(\text{P} \), all problems in \(\text{NP} \) can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .
Theorem (Cook 1971; Levin 1973)

All problems in NP can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition

A language is

- **NP-hard** if every language in NP is polynomially many-one reducible to it
- **NP-complete** if it is NP-hard and in NP
Comparing Complexity Classes

Is any \(NP \)-complete problem in \(P \)?

- If yes, then \(P = NP \)
- Nobody knows \(\sim \) biggest open problem in computer science
- Similar situations for many complexity classes
Comparing Complexity Classes

Is any \textsf{NP}-complete problem in \textsf{P}?

\begin{itemize}
 \item If yes, then \textsf{P} = \textsf{NP}
 \item Nobody knows \sim\text{ biggest open problem in computer science}
 \item Similar situations for many complexity classes
\end{itemize}

Some things that are known:

\[
\text{L} \subseteq \text{NL} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime}
\]

\begin{itemize}
 \item None of these is known to be strict
 \item But we know that \textsf{P} \not\subseteq \textsf{ExpTime} and \textsf{NL} \not\subseteq \textsf{PSpace}
 \item Moreover \textsf{PSpace} = \textsf{NPSpace} (by Savitch’s Theorem)
\end{itemize}
Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \(\sim\) what to use for \(P\) and below?
Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \sim what to use for P and below?

Definition

A **LogSpace transducer** is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:

- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or □ to not write anything to the output
LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Examples:
Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, …
Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers \(p_R \) and \(p_S \) pointing to tuples in \(R \) resp. \(S \)
- Outer loop: iterate \(p_R \) over all tuples of \(R \)
- Inner loop for each position of \(p_R \): iterate \(p_S \) over all tuples of \(S \)
- For each combination of \(p_R \) and \(p_S \), compare the tuples:
 - Use another two loops that iterate over the columns of \(R \) and \(S \)
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit

- If all joined columns agree, copy the relevant parts of tuples \(p_R \) and \(p_S \) to the output (bit by bit)

Output: \(R \bowtie S \)
Joining Two Tables in \textsc{LogSpace}

\textbf{Input:} two relations R and S, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R: iterate p_S over all tuples of S
- For each combination of p_R and p_S, compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

\textbf{Output:} $R \bowtie S$

\bowtie Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))
LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \(\sim \) partial function \(\Sigma^* \rightarrow \Sigma^* \)

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition

A many-one reduction \(f \) from \(L_1 \) to \(L_2 \) is a LogSpace reduction if it is implemented by some LogSpace transducer.

\(\sim \) can be used to define hardness for classes \(P \) and \(NL \)
From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability

- Input: a directed graph G and two nodes s and t of G
- Output: accept if there is a directed path from s to t in G

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject
Propositional satisfiability can be solved in linear space:
\(\sim\) iterate over possible truth assignments and check each in turn

More generally: all problems in \(\text{NP}\) can be solved in \(\text{PSPACE}\)
\(\sim\) try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in \(\text{PSPACE}\)?
\(\sim\) Simple two-player games, and other uses of alternating quantifiers
Example: Playing “Geography”

A children’s game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.
Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.
Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?

~ \text{PSPACE}-complete problem
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$Q_1 X_1.Q_2 X_2. \cdots Q_n X_n.\varphi[X_1, \ldots, X_n]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_n and constants \top (true) and \bot (false)

Semantics:

- Propositional formulae without variables (only constants \top and \bot) are evaluated as usual
- $\exists X_1.\varphi[X_1]$ is true if either $\varphi[X_1/\top]$ or $\varphi[X_1/\bot]$ are
- $\forall X_1.\varphi[X_1]$ is true if both $\varphi[X_1/\top]$ and $\varphi[X_1/\bot]$ are
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

\[Q_1X_1.Q_2X_2. \cdots Q_nX_n.\varphi[X_1, \ldots, X_n] \]

where \(Q_i \in \{\exists, \forall\} \) are quantifiers, \(X_i \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1, \ldots, X_n \) and constants \(\top \) (true) and \(\bot \) (false)

Semantics:

- Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual
- \(\exists X_1.\varphi[X_1] \) is true if either \(\varphi[X_1/\top] \) or \(\varphi[X_1/\bot] \) are
- \(\forall X_1.\varphi[X_1] \) is true if both \(\varphi[X_1/\top] \) and \(\varphi[X_1/\bot] \) are

Question: Is a given QBF formula true?

\[\leadsto \text{PSPACE-complete problem} \]
A Note on Space and Time

How many different configurations does a TM have in space \(f(n) \)?

\[|Q| \cdot f(n) \cdot |\Sigma|^f(n) \]

\(\leadsto \) No halting run can be longer than this

\(\leadsto \) A time-bounded TM can explore all configurations in time proportional to this
A Note on Space and Time

How many different configurations does a TM have in space \(f(n) \)?

\[|Q| \cdot f(n) \cdot |\Sigma|^f(n) \]

\(\sim \) No halting run can be longer than this

\(\sim \) A time-bounded TM can explore all configurations in time proportional to this

Applications:

- \(L \subseteq P \)
- \(\text{PSpace} \subseteq \text{ExpTime} \)
The complexity of query languages can be measured in different ways.

Relevant complexity classes are based on restricting space and time:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq ExpTime \]

Problems are compared using many-one reductions.

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in \(LogSpace \) – is this tight?
- How can we study the expressiveness of query languages?