

FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 3: Complexity of Query Answering

Markus Krötzsch

TU Dresden, 27 April 2015

Overview

- Introduction | Relational data model
- 2. First-order queries
- 3. Complexity of query answering
- Complexity of first-order query answering
- 5. Query optimization
- Conjunctive queries
- Limits of first-order query expressiveness
- Introduction to Datalog
- Implementation techniques for Datalog
- Path queries
- 11. Constraints (1)
- Constraints (2)
- 13. "Buffer time"
- Outlook: database theory in practice

Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - → named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs
- There are many ways to describe query languages:
 - → relational algebra, domain independent FO queries, safe-range FO queries, actice domain FO queries Codd's tuple calculus
 - → either under named or under unnamed perspetive

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)

 → database queries return many results (no decision problem)
- The size of a query result can be very large
 → it would not be fair to measure this as "complexity"

Query Answering as Decision Problem

We consider the following decision problems:

- Boolean query entailment: given a Boolean query q and a database instance I, does I ⊨ q hold?
- Query of tuple problem: given an n-ary query q, a database instance I and a tuple $\langle c_1, \ldots, c_n \rangle$, does $\langle c_1, \ldots, c_n \rangle \in M[q](I)$ hold?
- Query emptiness problem: given a query q and a database instance I, does M[q](I) ≠ Ø hold?
- → Computationally equivalent problems (exercise)

The Size of the Input

Combined Complexity

Input: Boolean query q and database instance I

Output: Does $I \models q$ hold?

→ estimates complexity in terms of overall input size

→ "2KB query/2TB database" = "2TB query/2KB database"

The Size of the Input

Combined Complexity

Input: Boolean query q and database instance I

Output: Does $I \models q$ hold?

→ estimates complexity in terms of overall input size

→ "2KB query/2TB database" = "2TB query/2KB database"

→ study worst-case complexity of algorithms for fixed queries:

Data Complexity

Input: database instance I

Output: Does $I \models q$ hold? (for fixed q)

The Size of the Input

Combined Complexity

Input: Boolean query q and database instance I

Output: Does $I \models q$ hold?

→ estimates complexity in terms of overall input size

→ "2KB query/2TB database" = "2TB query/2KB database"

→ study worst-case complexity of algorithms for fixed queries:

Data Complexity

Input: database instance I

Output: Does $I \models q$ hold? (for fixed q)

 \rightarrow we can also fix the database and vary the query:

Query Complexity

Input: Boolean query q

Output: Does $I \models q$ hold? (for fixed I)

Review: Computation and Complexity Theory

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs) → "algorithm" = "something implemented on a TM"

A TM is an automaton with (unlimited) working memory:

- It has a finite set of states O
- Q includes a start state q_{start} and an accept state q_{acc}
- The memory is a tape with numbered cells 0, 1, 2, ...
- Each tape cell holds one symbol from the set of tape symbols Σ
- There is a special symbol

 for "empty" tape cells
- The TM has a transition relation $\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{l, r, s\})$
- Δ might be a partial function $(Q \times \Sigma) \to (Q \times \Sigma \times \{l, r, s\})$ \sim deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

The Turing Machine (2)

TMs operate step-by-step:

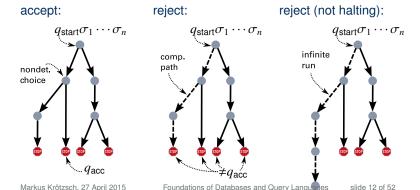
- At every moment, the TM is in one state $q \in Q$ with its read/write head at a certain tape position $p \in \mathbb{N}$, and the tape has a certain contents $\sigma_0 \sigma_1 \sigma_2 \cdots$ with all $\sigma_i \in \Sigma$
 - → current configuration of the TM
- The TM starts in state q_{start} and at tape position 0.
- Transition ⟨q, σ, q', σ', d⟩ ∈ Δ means:
 if in state q and the tape symbol at its current position is σ,
 then change to state q', write symbol σ' to tape, move head by d (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.

Languages Accepted by TMs

The (nondeterministic) TM accepts an input $\sigma_1 \cdots \sigma_n \in (\Sigma \setminus \{\Box\})^*$ if, when started on the tape $\sigma_1 \cdots \sigma_n \Box \Box \cdots$,

- (1) the TM halts on every computation path and
- (2) there is at least one computation path that halts in the accepting state $q_{acc} \in Q$.



Solving Computation Problems with TMs

A decision problem is a language \mathcal{L} of words over $\Sigma \setminus \{\Box\}$ \rightarrow the set of all inputs for which the answer is "yes"

A TM decides a decision problem $\mathcal L$ if it accepts exactly the words in $\mathcal L$

TMs take time (number of steps) and space (number of cells):

- TIME(f(n)): Problems that can be decided by a DTM in O(f(n)) steps, where f is a function of the input length n
- SPACE(f(n)): Problems that can be decided by a DTM using
 O(f(n)) tape cells, where f is a function of the input length n

Solving Computation Problems with TMs

A decision problem is a language \mathcal{L} of words over $\Sigma \setminus \{\Box\}$ \rightarrow the set of all inputs for which the answer is "yes"

A TM decides a decision problem $\mathcal L$ if it accepts exactly the words in $\mathcal L$

TMs take time (number of steps) and space (number of cells):

- TIME(f(n)): Problems that can be decided by a DTM in O(f(n)) steps, where f is a function of the input length n
- SPACE(f(n)): Problems that can be decided by a DTM using
 O(f(n)) tape cells, where f is a function of the input length n
- NTIME(f(n)): Problems that can be decided by a TM in at most O(f(n)) steps on any of its computation paths
- NSPACE(f(n)): Problems that can be decided by a TM using at most O(f(n)) tape cells on any of its computation paths

Some Common Complexity Classes

$$P = PTIME = \bigcup_{k \ge 1} TIME(n^k) \qquad \qquad NP = \bigcup_{k \ge 1} NTIME(n^k)$$

$$EXP = EXPTIME = \bigcup_{k \ge 1} TIME(2^{n^k}) \qquad NEXP = NEXPTIME = \bigcup_{k \ge 1} NTIME(2^{n^k})$$

$$2EXP = 2EXPTIME = \bigcup_{k \ge 1} TIME(2^{2^{n^k}}) \qquad N2EXP = N2EXPTIME = \bigcup_{k \ge 1} NTIME(2^{2^{n^k}})$$

$$ETIME = \bigcup_{k \ge 1} TIME(2^{n^k})$$

$$ExpSpace = \bigcup_{k>1} Space(2^{n^k})$$

NP

NP = Problems for which a possible solution can be verified in P:

- for every $w \in \mathcal{L}$, there is a certificate $c_w \in \Sigma^*$, such that
- the length of c_w is polynomial in the length of w, and
- the language $\{w\#\#c_w \mid w \in \mathcal{L}\}$ is in P

Equivalent to definition with nondeterministic TMs:

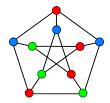
- ⇒ nondeterministically guess certificate; then run verifier DTM
- ← use accepting polynomial run as certificate; verify TM steps

NP Examples

Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia "Primality certificate")
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)

5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3



p	q	r	$p \rightarrow q$
f	f	f	W
f	W	f	w
w	f	f	f
w	W	f	w
f	f	w	W
f	W	w	W
W	f	w	f
w	W	w	W

NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- ullet converse of an NP problem is coNP
- similar for NEXPTIME and N2EXPTIME

Other classes are symmetric:

- Deterministic classes (COP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

A Simple Proof for P = NP

Clearly	$\mathcal{L} \in \mathbf{P}$	implies	$\mathcal{L} \in \text{NP}$	
therefore	$\mathcal{L} \notin \mathrm{NP}$	implies	$\mathcal{L} \notin P$	
hence	$\mathcal{L} \in \text{conp}$	implies	$\mathcal{L}\in\operatorname{coP}$	
that is	coNl	$conP \subseteq coP$		
$\text{using }\mathrm{CoP}=\mathrm{P}$	$CONP \subseteq P$			
and hence	$NP \subseteq P$			
so by $P\subseteq NP$	NI	P = P		

q.e.d.

A Simple Proof for P = NP

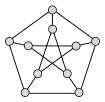
Clearly	$\mathcal{L} \in \mathcal{P}$	implies	$\mathcal{L} \in \mathrm{NP}$
therefore	$\mathcal{L} \notin \mathrm{NP}$	implies	$\mathcal{L} \notin P$
hence	$\mathcal{L} \in \text{conP}$	implies	$\mathcal{L}\in\operatorname{coP}$
that is	$conP \subseteq coP$		
$\text{using } \mathrm{CoP} = \mathrm{P}$	$conP \subseteq P$		
and hence	$NP \subseteq P$		
so by $P\subseteq NP$	NI	P = P	

q.e.d.?

Observation: some problems can be reduced to others

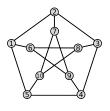
Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability



Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

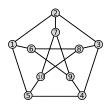


Encoding colours in propositions:

- r_i means "'vertex i is red"'
- g_i means "'vertex i is green"'
- b_i means "'vertex i is blue"'

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability



Encoding colours in propositions:

- r_i means "'vertex i is red"'
- g_i means "'vertex i is green"'
- b_i means "'vertex i is blue"'

Colouring conditions on vertices:

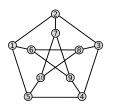
$$(\textbf{r}_1 \wedge \neg g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge \neg g_1 \wedge b_1)$$
 (and so on for all vertices)

Colouring conditions for edges:

$$\neg (\mathbf{r_1} \wedge \mathbf{r_2}) \wedge \neg (\mathbf{g_1} \wedge \mathbf{g_2}) \wedge \neg (\mathbf{b_1} \wedge \mathbf{b_2})$$
 (and so on for all edges)

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability



Encoding colours in propositions:

- r_i means "'vertex i is red"'
- g_i means "'vertex i is green"'
- b_i means "'vertex i is blue"'

Colouring conditions on vertices:

$$(\textbf{r}_1 \wedge \neg g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge \neg g_1 \wedge b_1)$$
 (and so on for all vertices)

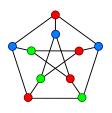
Colouring conditions for edges:

$$\neg (\mathbf{r_1} \wedge \mathbf{r_2}) \wedge \neg (\mathbf{g_1} \wedge \mathbf{g_2}) \wedge \neg (\mathbf{b_1} \wedge \mathbf{b_2})$$
 (and so on for all edges)

Satisfying truth assignment ⇔ valid colouring

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability



Encoding colours in propositions:

- r_i means "'vertex i is red"'
- g_i means "'vertex i is green"'
- b_i means "'vertex i is blue"'

Colouring conditions on vertices:

$$(\textbf{r}_1 \wedge \neg g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge g_1 \wedge \neg b_1) \vee (\neg \textbf{r}_1 \wedge \neg g_1 \wedge b_1)$$
 (and so on for all vertices)

Colouring conditions for edges:

$$\neg (\mathbf{r}_1 \wedge \mathbf{r}_2) \wedge \neg (\mathbf{g}_1 \wedge \mathbf{g}_2) \wedge \neg (\mathbf{b}_1 \wedge \mathbf{b}_2)$$
 (and so on for all edges)

Satisfying truth assignment ⇔ valid colouring

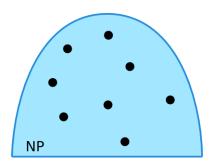
Defining Reductions

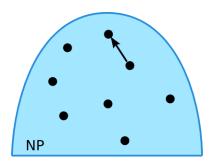
Definition

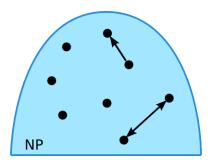
Consider languages $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$. A computable function $f: \Sigma^* \to \Sigma^*$ is a many-one reduction from \mathcal{L}_1 to \mathcal{L}_2 if:

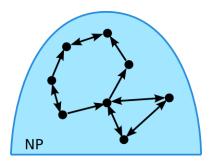
$$w \in \mathcal{L}_1$$
 if and only if $f(w) \in \mathcal{L}_2$

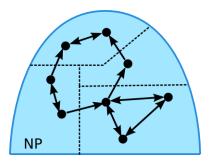
- \rightarrow we can solve problem \mathcal{L}_1 by reducing it to problem \mathcal{L}_2
- ightarrow only useful if the reduction is much easier than solving \mathcal{L}_1 directly
- → polynomial many-one reductions







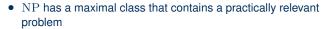




NP-Hardness und NP-Completeness

Theorem (Cook 1971; Levin 1973)

All problems in ${\rm NP}$ can be polynomially many-one reduced to the propositional satisfiability problem (SAT).



- $\bullet~$ If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since ...

Stephen Cook

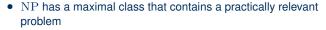
Leonid Levin

Richard Karp

NP-Hardness und NP-Completeness

Theorem (Cook 1971; Levin 1973)

All problems in ${\rm NP}$ can be polynomially many-one reduced to the propositional satisfiability problem (SAT).



- $\bullet~$ If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition

A language is

- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Stephen Cook

Leonid Levin

Richard Karp

Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then P = NP
- Nobody knows → biggest open problem in computer science
- Similar situations for many complexity classes

Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then P = NP
- Nobody knows → biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:

$$L \subset NL \subset P \subset NP \subset PSPACE \subset EXPTIME \subset NEXPTIME$$

- None of these is known to be strict
- But we know that $P \subseteq ExpTime$ and $NL \subseteq PSpace$
- Moreover PSPACE = NPSPACE (by Savitch's Theorem)

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \rightsquigarrow what to use for P and below?

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \rightsquigarrow what to use for P and below?

Definition

A LogSpace transducer is a deterministic TM with three tapes:

- · a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slighlty different form of transitions:

- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or □ to not write anything to the output

The Power of LogSpace

LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- · access/process/compare items from the input tape bit by bit

Examples:

Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, ...

Joining Two Tables in LogSpace

Input: two relations *R* and *S*, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R : iterate p_S over all tuples of S
- For each combination of p_R and p_S , compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

Output: $R \bowtie S$

Joining Two Tables in LogSpace

Input: two relations *R* and *S*, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R : iterate p_S over all tuples of S
- For each combination of p_R and p_S , compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

Output: $R \bowtie S$

→ Fixed number of pointers and counters (making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \rightsquigarrow partial function $\Sigma^* \rightarrow \Sigma^*$

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition

A many-one reduction f from \mathcal{L}_1 to \mathcal{L}_2 is a LogSpace reduction if it is implemented by some LogSpace transducer.

 \rightarrow can be used to define hardness for classes P and NL

From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability

Input: a directed graph G and two nodes s and t of G

Output: accept if there is a directed path from s to t in G

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject

Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space: → iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSPACE → try all conceivable polynomial certificates and verify each in turn

What is a "typical" (that is, hard) problem in PSPACE? → Simple two-player games, and other uses of alternating quantifiers

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- · Repetitions are not allowed.
- The first player who cannot name a new city looses.

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- · Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- · Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- · Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- · Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?

ightarrow PSpace-complete problem

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$Q_1X_1.Q_2X_2.\cdots Q_nX_n.\varphi[X_1,\ldots,X_n]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_n and constants \top (true) and \bot (false)

Semantics:

- Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual
- $\exists X_1.\varphi[X_1]$ is true if either $\varphi[X_1/\top]$ or $\varphi[X_1/\bot]$ are
- $\forall X_1.\varphi[X_1]$ is true if both $\varphi[X_1/\top]$ and $\varphi[X_1/\bot]$ are

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$Q_1X_1.Q_2X_2.\cdots Q_nX_n.\varphi[X_1,\ldots,X_n]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_n and constants \top (true) and \bot (false)

Semantics:

- Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual
- $\exists X_1.\varphi[X_1]$ is true if either $\varphi[X_1/\top]$ or $\varphi[X_1/\bot]$ are
- $\forall X_1.\varphi[X_1]$ is true if both $\varphi[X_1/\top]$ and $\varphi[X_1/\bot]$ are

Question: Is a given QBF formula true?

ightarrow PSPACE-complete problem

A Note on Space and Time

How many different configurations does a TM have in space (f(n))?

$$|Q| \cdot f(n) \cdot |\Sigma|^{f(n)}$$

- → No halting run can be longer than this
- \sim A time-bounded TM can explore all configurations in time proportional to this

A Note on Space and Time

How many different configurations does a TM have in space (f(n))?

$$|Q| \cdot f(n) \cdot |\Sigma|^{f(n)}$$

- → No halting run can be longer than this
- \sim A time-bounded TM can explore all configurations in time proportional to this

Applications:

- $L \subseteq P$
- PSPACE ⊆ EXPTIME

Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$$

Problems are compared using many-one reductions

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace is this tight?
- How can we study the expressiveness of query languages?