
Conservative Extensions in the Lightweight

Description Logic EL

Carsten Lutz1 and Frank Wolter2

1 Institute for Theoretical Computer Science, TU Dresden, Germany
2 Department of Computer Science, University of Liverpool, UK

lutz@tcs.inf.tu-dresden.de,frank@csc.liv.ac.uk

Abstract. We bring together two recent trends in description logic
(DL): lightweight DLs in which the subsumption problem is tractable
and conservative extensions as a central tool for formalizing notions of
ontology design such as refinement and modularity. Our aim is to in-
vestigate conservative extensions as an automated reasoning problem for
the basic tractable DL EL. The main result is that deciding (deduc-
tive) conservative extensions is ExpTime-complete, thus more difficult
than subsumption in EL, but not more difficult than subsumption in
expressive DLs. We also show that if conservative extensions are defined
model-theoretically, the associated decision problem for EL is undecid-
able.

1 Introduction

In recent years, lightweight description logics (DLs) have gained increased popu-
larity. In particular, a number of useful lightweight DLs have been identified for
which reasoning is tractable even w.r.t. general TBoxes (i.e., sets of subsump-
tions between concepts). Such DLs are used in the formulation of large-scale
ontologies, which usually require a high level of abstraction and consequently
use only limited expressive power from a DL. There are currently two main lines
of research on lightweight DLs: the EL family of tractable DLs investigated in
[5, 2] aims at providing a logical underpinning of lightweight ontology languages,
with a special emphasis on life science ontologies. In contrast, the main purpose
of the DL-Lite family of tractable DLs investigated in [7, 8] is to allow efficient
reasoning about conceptual database schemas, and to exploit existing DBMSs
for DL reasoning. In this paper, we will be interested in applications of DLs
for ontology design, and thus consider EL as our basic tractable DL. The main
reasoning problem in EL is subsumption, i.e., deciding whether one concept sub-
sumes another one w.r.t. a general TBox. Intuitively, such a TBox can be thought
of as a logical theory providing a description of the application domain. In the
following, we use the terms “general TBox” and “ontology” interchangeably.

There are a number of important life science ontologies that are formulated
in EL or mild extensions thereof. Examples include the Systematized Nomencla-
ture of Medicine, Clinical Terms (Snomed CT), which comprises ∼0.5 million
concepts and underlies the systematized medical terminology used in the health

systems of the US, the UK, and other countries [16]; and the thesaurus of the
US national cancer institute (NCI), which comprises ∼45.000 concepts and is
intended to become the reference terminology for cancer research [15]. With on-
tologies of this size, a principled approach to their design and maintenance is
indispensible, and automated reasoning support is highly welcome.

Recently, conservative extensions have been identified as a fundamental no-
tion when formalizing central issues of ontology design such as refinement and
modularity [1, 10, 13, 11, 12]. Unless otherwise noted, we refer to the deductive
version of conservative extensions: the extension T1 ∪ T2 of an ontology T1 is
conservative if T1 ∪ T2 implies no new subsumptions in the signature of T1, i.e.,
every subsumption C v D that is implied by T1 ∪ T2 and where the concepts
C and D use only symbols (concept and role names) from T1 is already implied
by T1.

We briefly sketch how conservative extensions can help to formalize ontology
refinement and modularity. Refinement means to add more details to a part
of the ontology that has not yet been sufficiently described. Intuitively, such
a refinement should provide more detailed information about the meaning of
concepts of the original ontology, but it should not affect the relationship between
such concepts. This requirement can be formalized by demanding that the refined
ontology is a conservative extension of the original ontology. The main benefits
of modularity of ontologies are that changes to the ontology have only local
impact, and that modules from an ontology can be re-used in other ontologies.
Intuitively, a module inside an ontology should be self-contained in the sense that
it contains all the relevant information about the concepts it uses. Formally, this
can be captured by requiring that a module inside an ontology T is a subset T ′

of T such that T is a conservative extension of T ′. See e.g.[11] for more details.

In [10, 13], it was proposed to provide automated reasoning support for con-
servative extensions. For example, if an ontology designer intends to refine his
ontology, he may use an automated reasoning tool capable of deciding conserva-
tive extensions to check whether his modifications really had no impact on rela-
tionships between concepts in the original ontology. The complexity of deciding
conservative extensions is usually rather high. For example, it is 2-ExpTime

complete in expressive DLs such as ALC and ALCQI and even undecidable
in ALCQIO [10, 13]; recall that subsumption is decidable in ExpTime and,
respectively, NExpTime for those logics.

In this paper, we study conservative extensions in the basic tractable descrip-
tion logic EL. This is motivated by the observation that large-scale ontologies
are often formulated in such lightweight DLs, and large-scale ontologies is also
where issues of refinement and modularity play the most important role. We
provide an alternative characterization of conservative extension in EL, and use
this characterization to provide a decision procedure. It is interesting to note
that decision procedures for deciding conservative extensions in more expressive
DLs such as ALC can not be used for EL, see Section 2 for an example illus-
trating this effect. We show that our algorithm runs in deterministic exponential
time, and prove a matching lower bound. Thus, deciding conservative extension

in EL is ExpTime-complete and not tractable like subsumption in EL. However,
it is also not more difficult than subsumption in expressive DLs such as ALC
and ALCQI, problems that are considered manageable in practice. We also con-
sider a stronger, model theoretic notion of conservative extensions that is useful
for query answering and prove that the associated decision problem for EL is
undecidable.

In this version of the paper, many proof details are omitted for brevity. They
can be found in the full version [14].

2 EL and Conservative Extensions

Let NC and NR be countably infinite and disjoint sets of concept names and
role names, respectively. EL-concepts C are built according to the syntax rule
C ::= > | A | C uD | ∃r.C, where A ranges over NC, r ranges over NR, and C,D
range over EL-concepts. The semantics is defined by means of an interpretation
I = (∆I , ·I), where the interpretation domain ∆I is a non-empty set, and ·I

is a function mapping each concept name A to a subset AI of ∆I and each
role name rI to a binary relation rI ⊆ ∆I ×∆I . The function ·I is inductively
extended to arbitrary concepts by setting >I := ∆I , (C uD)I := CI ∩DI , and
(∃r.C)I := {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}.

A TBox is a finite set of concept inclusions (CIs) C v D, where C and D
are concepts. An interpretation I satisfies a CI C v D (written I |= C v D)
if CI ⊆ DI . I is a model of a TBox T if it satisfies all CIs in T . We write
T |= C v D if every model of T satisfies C v D. Here is an example TBox T1:

Human v ∃eats.>
Plant v ∃grows-in.Area

Vegetarian v Healthy

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(T)) of a
concept C (TBox T) is the set of concept and role names which occur in C (in
T). If sig(C) = Σ, we also call C a Σ-concept. Let T1 and T2 be TBoxes. We call
T1 ∪ T2 a conservative extension of T1 if T1 ∪ T2 |= C v D implies T1 |= C v D
for all sig(T1)-concepts C, D. If C, D violate this condition (and thus, T1 ∪T2 is
not a conservative extension of T1), then C v D is called a counter-subsumption.
As an example, consider the following TBox T2:

Human v ∃eats.Food

Food u Plant v Vegetarian

It is not too difficult to verify that T1 ∪ T2 is a conservative extension of T1,
where T1 is the TBox defined above. Unsurprisingly, the notion of a conservative
extension strongly depends on the description logic used. For example, ALC is
the extension of EL with a negation constructor ¬C, which has the obvious
semantics (¬C)I = ∆I \CI . In ALC, ∀r.C is an abbreviation for ¬∃r.¬C. If we

view the TBoxes T1 and T2 from above as ALC TBoxes, then T1 ∪ T2 is not a
conservative extension of T1, with counter-subsumption

Human u ∀eats.Plant v ∃eats.Vegetarian.

This shows that we cannot use the existing algorithms for conservative extensions
in ALC [10] to decide conservative extensions in EL.

Another initial observation about conservative extensions in EL is that min-
imal counter-subsumptions may be quite large. Define a TBox T such that it
contains only tautologies and sig(T) = {A,B, r, s}. For each n ≥ 0, we define
a TBox T ′

n. It has additional concept names X0, . . . , Xn−1 and X0, . . . , Xn−1

that are used to represent a binary counter X: if Xi is true, then the i-th bit is
positive and if X i is true, then it is negative. Define T ′

n as

A v X0 u · · · uXn−1

uσ∈{r,s}∃σ.(Xi uX0 u · · · uXi−1) v Xi for all i < n
uσ∈{r,s}∃σ.(Xi uX0 u · · · uXi−1) v Xi for all i < n

uσ∈{r,s}∃σ.(Xi uXj) v Xi for all j < i < n
uσ∈{r,s}∃σ.(Xi uXj) v Xi for all j < i < n

X0 u · · · uXn−1 v B

Observe that Lines 2-5 implement incrementation of the counter X. Then the
smallest new consequence of T ∪ T ′

n is C2n−1 v B, where:

C0 = A
Ci = ∃r.Ci−1 u ∃s.Ci−1

Clearly, C2n−1 is doubly exponentially large in the size of T and T ′
n. If we use

structure sharing (i.e., define the size of C2n−1 as the number of its distinct
subconcepts), it is still exponentially large.

3 Characterizing Conservative Extensions

We provide a characterization of when a TBox T1 ∪ T2 is not a conservative
extension of T1. This characterization is used in the subsequent section to devise
a decision procedure for (non-)conservative extensions in EL.

Let I1 and I2 be interpretations and Σ a signature. A relation S ⊆ ∆I1×∆I2

is a Σ-simulation from I1 to I2 if the following holds:

– for all concept names A ∈ Σ and all (d1, d2) ∈ S with d1 ∈ AI1 , d2 ∈ AI2 ;
– for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈ ∆I1 with (d1, e1) ∈ rI1 ,

there exists e2 ∈ ∆I2 such that (d2, e2) ∈ rI2 and (e1, e2) ∈ S.

If d1 ∈ ∆I1 , d2 ∈ ∆I2 , and there is a Σ-simulation S from I1 to I2 with
(d1, d2) ∈ S, then (I2, d2) Σ-simulates (I1, d1), written (I1, d1) ≤Σ (I2, d2). If
Σ = NC ∪NR, we simply speak of a simulation and write ≤ instead of ≤Σ . Let I
be an interpretation, Σ a signature, and d ∈ ∆I . Then we define the abbreviation

dΣ,I := {C | d ∈ CI ∧ sig(C) ⊆ Σ}. The out-degree of an interpretation I is
the supremum of the cardinalities of the sets {d′ | (d, d′) ∈ rI}, for d ∈ ∆I and
r ∈ NR. The following theorem establishes a connection between simulations and
EL formulas. The proof is standard, and therefore omitted, see e.g. [9].

Theorem 1. If (I1, d1) ≤Σ (I2, d2) , then dΣ,I1

1 ⊆ dΣ,I2

2 . Conversely, if I1 and

I2 have finite out-degree and dΣ,I1

1 ⊆ dΣ,I2

2 , then (I1, d1) ≤Σ (I2, d2).

We use sub(C) to denote the set of subconcepts of a concept C. As usual, this set
contains C itself. For a TBox T , we denote by sub(T) the set of all subconcepts
of concepts which occur in T . With each concept C and TBox T , we associate
two sets of consequences that will play a central role in what follows.

– KT (C) = {D ∈ sub(T) | T |= C v D};
– LT (C) = {D ∈ sub(C) | T |= C v D} ∪KT (C).

By the results in [5], both sets can be computed in time polynomial in the size
of C and T . The canonical model IC,T = (∆C,T , ·C,T) of C and T is defined as
follows, where A ranges over all elements of NC and r over all elements of NR:

– ∆C,T = {C} ∪ {C ′ | ∃r.C ′ ∈ sub(C) ∪ sub(T)};
– D ∈ AIC,T iff A ∈ LT (D);
– (D,D′) ∈ rIC,T iff ∃r.D′ ∈ KT (D) or D = E u ∃r.D′, for some concept E.

The model IC,T is a subtle refinement of the data structure generated by the
algorithms in [5, 2] to prove correctness of the algorithm in [2].3 Since the sets
LT (C) and KT (C) can be computed in polytime, the model IC,T can also be
computed in time polynomial in the size of C and T .

Lemma 1. Let T be a TBox and C a concept. For all D ∈ ∆C,T and all E ∈
sub(C) ∪ sub(T), we have D ∈ EIC,T iff T |= D v E.

Lemma 1 implies that IC,T is a model of T , and that C ∈ CIC,T . The following
lemma summarizes the most important properties of canonical models. Regard-
ing Points 1 and 2, similar (but simpler) lemmas for the case of EL without
TBoxes have been established in [3].

Lemma 2. Let C,C1, C2, D be EL-concepts and T a TBox. Then the following
holds:

1. For all models I of T and all d ∈ ∆I , the following conditions are equivalent:
(a) d ∈ CI ;
(b) (IC,T , C) ≤ (I, d).

2. The following conditions are equivalent:
(a) T |= C v D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

3. If ∃r.D ∈ (sub(Ci)∪ sub(T)) for all i ∈ {1, 2}, then (IC1,T , D) ≤ (IC2,T , D).

3 Essentially, in those papers we have (D, D′) ∈ rIC,T iff ∃r.D′ ∈ LT (D).

Let T1, T2 be TBoxes, C a sig(T1)-concept, and D a sig(T1) ∪ sig(T2)-concept.
We write C ⇒1 D if, for all sig(T1)-concepts E, T1 ∪ T2 |= D v E implies T1 |=
C v E. Our characterization of non-conservative extensions, as stated by the
following lemma, is based on this relation. The main benefit of this characteri-
zation is that when checking for new subsumptions T1 ∪ T2 |= C v D, it allows
us to concentrate on concepts D of a very simple form, namely subconcepts of
T1 and T2. This is achieved by considering sig(T1) ∪ sig(T2)-concepts instead of
sig(T1)-concepts as in the definition of conservative extensions. In addition, the
characterization provides a bound on the outdegree of C, i.e., the maximum car-
dinality of any set P of pairs of the form (r, C ′), with r a role name and C ′ a
concept, such that u(r,C′)∈P∃r.C

′ ∈ sub(C). We use |C| and |T | to denote the
length of a concept C and a TBox T , i.e., the number of symbols needed to write
it.

Lemma 3. T1∪T2 is not a conservative extension of T1 iff there exists a sig(T1)-
concept C and a concept D ∈ sub(T1 ∪ T2) such that

(a) T1 ∪ T2 |= C v D;
(b) C 6⇒1 D;
(c) the outdegree of C is bounded by |T1 ∪ T2|.

Proof. “⇐”. Assume that (a) to (c) are satisfied. By (b), there is a concept
E with T1 ∪ T2 |= D v E and T1 6|= C v E. From the former and (a), we get
T1 ∪ T2 |= C v E, which implies that T1 ∪ T2 is not a conservative extension
of T1.

“⇒”. We give only a sketch and refer to the full version [14] for details.
Assume that T1∪T2 is not a conservative extension of T1. In this sketch, we show
only (a) and (b). If there is a counter-subsumption C v D with D ∈ sub(T1),
then conditions (a) and (b) hold for C and D and we are done. Assume that
no such counter-subsumption exists. Let C v D be a counter-subsumption such
that D is of minimal length. Then D can be shown to be of the form ∃r.D′.
Using Lemma 2, it is possible to prove that T1 ∪ T2 |= C v ∃r.D′ implies that
one of the following holds:

1. there is a conjunct ∃r.C ′ of C such that T1 ∪ T2 |= C ′ v D′;
2. there is ∃r.C ′ ∈ sub(T1∪T2) s.t. T1∪T2 |= C v ∃r.C ′ and T1∪T2 |= C ′ v D′.

It is possible to show that Case 1 actually yields a contradiction to the minimal
length of D. Thus, Case 2 applies. We show that the concepts C and ∃r.C ′

(substituted for D) satisfy Conditions (a) and (b). First, T1 ∪ T2 |= C v ∃r.C ′

establishes Condition (a). For Condition (b), observe that T1 6|= C v ∃r.D′ and
T1 ∪ T2 |= ∃r.C ′ v ∃r.D′. This means C 6⇒1 ∃r.C ′. o

The following lemma characterizes the relation C ⇒1 D semantically and shows
that it can be decided in polytime.

Lemma 4. Let T1, T2 be TBoxes and C,D concepts. Then we have C ⇒1 D
iff (ID,T1∪T2

, D) ≤sig(T1) (IC,T1
, C). Hence, the problem C ⇒1 D is decidable in

polynomial time in the size of C, D, and T1 ∪ T2.

Proof. “⇒”. Let C 6⇒1 D. Then there is a sig(T1)-concept E such that T1∪T2 |=
D v E and T1 6|= C v E. By Point 2 of Lemma 2, this yields D ∈ EID,T1∪T2 and
C 6∈ EIC,T1 . Hence, by Theorem 1, (ID,T1∪T2

, D) 6≤sig(T1) (IC,T1
, C).

“⇐”. Let (ID,T1∪T2
, D) 6≤sig(T1) (IC,T1

, C). By Theorem 1, there exists E
over sig(T1) with D ∈ EID,T1∪T2 but C 6∈ EIC,T1 . By Point 2 of Lemma 2,
T1 ∪ T2 |= D v E and T1 6|= C v E. Hence, C 6⇒1 D.

It is well-known that computing the largest Σ-simulation between two finite
graphs can be done in polynomial time [9]. o

4 The Algorithm

We devise an algorithm for deciding (non)-conservative extensions in EL, which
is based on our characterization of not being a conservative extensions in terms
of “⇒1” (Lemma 3) and of “⇒1” in terms of simulations (Lemma 4). To check
whether T1 ∪T2 is not a conservative extension of T1, the algorithm searches for
a sig(T1)-concept C such that for some D ∈ sub(T1 ∪ T2), the Points (a)–(c) of
Lemma 3 are satisfied. Intuitively, it proceeds in rounds. In the first round, the
algorithm considers the case where C is a conjunction of concept names. For
every such C and all D ∈ sub(T1 ∪ T2), it checks whether Points (a) and (b)
are satisfied. By Lemma 4, this can be done in polytime. If all tests fail, the
second round is started in which the algorithm considers concepts C of the form
F0 uu(r,E)∈P∃r.E, where F0 is a conjunction of concept names and P is a set
of pairs (r, E) with r a role name and E a candidate for C from the first round
(i.e., E is also a conjunction of concept names). Because of Point (c), it will be
sufficient to consider sets P of cardinality bounded by |T1 ∪T2|. To check if such
a concept C satisfies Points (a) and (b), we exploit the information that we have
gained about the concepts E in the previous round. If again no suitable C is
found, then in the third round we use the Cs from the second round as the Es
in F0 uu(r,E)∈P∃r.E, and so on.

For the algorithm to terminate and run in exponential time, we have to intro-
duce a condition that indicates when enough candidates C have been inspected
in order to know that there is no counter-subsumption C v D. To obtain such
a termination condition and to avoid having to deal with double exponentially
large concepts, our algorithm will not construct the candidate concepts C di-
rectly, but rather use a certain data structure to represent relevant information
about C. The relevant information about C is suggested by Lemma 3: for each
C, we take the quadruple

C] = (F,KT1
(C),KT1∪T2

(C),KT1,T1∪T2
(C)),

where F is the conjunction of all concept names occurring in the top-level con-
junction of C (if there are none, then F = >), KT1(C) and KT1∪T2

(C) are defined
in the previous section, and KT1,T1∪T2

(C) = {D ∈ sub(T1 ∪ T2) | C ⇒1 D}. We
call this the quadruple determined by C.

By Lemma 3, the quadruple C] determined by a concept C gives us enough
information to decide whether C is the left hand side of a counter-subsumption.

Imput: TBoxes T1 and T2.

1. Compute the set N0 of quadruples determined by conjunctions of concept names
from sig(T1).

2. if N0 contains a quadruple (F,Q1,Q2,Q3) such that Q2 \ Q3 6= ∅, then output
“not conservative extension”.

3. Generate the sequence N1,N2, . . . of quadruples such that Ni+1 = Ni ∪ N ′
i ,

where N ′
i is the set of quadruples (F0,F1,F2,F3) which can be obtained from a

conjunction F0 of concept names from sig(T1) and a set Q ⊆ (NR ∩ sig(T1))×Ni

of cardinality not exceeding |T1 ∪ T2| in the following way:

– F1 = KT1
(F0 u u

(r,(F,Q1,Q2,Q3))∈Q
∃r.(u

D∈Q1

D));

– F2 = KT1∪T2
(F0 u u

(r,(F,Q1,Q2,Q3))∈Q
∃r.(u

D∈Q2

D));

– F3 = {D | D ∈ sub(T1 ∪ T2) and

(a) for all A ∈ sig(T1), A ∈ KT1∪T2
(D) implies A ∈ F1;

(b) if (D, D′) ∈ rID,T1∪T2 with r ∈ sig(T1), then
(i) there is a tuple (r, (F,Q1,Q2,Q3)) ∈ Q such that D′ ∈ Q3

or (ii) there is ∃r.C ′ ∈ F1 with (ID′,T1∪T2
, D′) ≤sig(T1) (IC′,T1

, C′)
}

This is done until Ni contains a quadruple (F,Q1,Q2,Q3) such that Q2\Q3 6= ∅,
or Ni+1 = Ni. Output “not conservative extension” if the first condition applies.
Otherwise, output “conservative extension”.

Fig. 1. Algorithm for deciding (non)-conservative extensions in EL

In addition, it contains enough information to enable the recursive search de-
scribed above. This is exploited by our algorithm for deciding (non)-conservative
extensions, which is shown in Figure 1. Observe that the Condition Q2 \Q3 6= ∅
corresponds to satisfaction of Points (a) and (b) in Lemma 3. Also observe that,
in Point (b) of the definition of F3, we refer to the canonical model ID,T1∪T2

for
the relevant concepts D. These models are constructed in polytime when needed.
To show that this algorithm really implements the initial description given at
the beginning of this section, we make explicit the concepts that we describe by
means of the quadruples constructed in Step 3 of Figure 1. This is done by the
following lemma, which will also be a central ingredient to our correctness proof.

Lemma 5. Let (F0,F1,F2,F3) be the quadruple obtained from F0 and Q in
Figure 1. Let, for each (r, q) ∈ Q, Cr,q be a concept which determines q. Then
C = F0 uu(r,q)∈Q∃r.Cr,q determines (F0,F1,F2,F3).

Proof. Let (F0,F1,F2,F3) and C be as in the lemma. It is trivial to see that F0

is as required. To treat F1 and F2, we prove the following in [14]: for all TBoxes
T and concepts C ′ = F ′

0uu(r,E)∈P∃r.E with F ′
0 a conjunction of concept names,

KT (C ′) = KT (F ′
0 u u

(r,E)∈P
∃r.(u

D∈KT (E)
D)).

This implies that F1 and F2 are as required. It remains to consider F3. Fix
D ∈ sub(T1 ∪T2). By Lemma 4, C ⇒1 D iff (ID,T1∪T2

, D) ≤sig(T1) (IC,T1
, C). By

definition of simulations and once more by Lemma 4, to check whether C ⇒1 D
it is sufficient to check both of the following:

1. for all concept names A ∈ sig(T1), A ∈ KT1∪T2
(D) implies A ∈ KT1

(C);
2. for all r ∈ sig(T1) and D′ with (D,D′) ∈ rID,T1∪T2 there exists C ′ with

(C,C ′) ∈ rIC,T1 and (ID,T1∪T2
, C ′) ≤sig(T1) (IC,T1

, D′).

Point 1 is checked under (a) since, as we have seen already, KT1
(C) = F1.

For Point 2, (C,C ′) ∈ rIC,T1 and the definition of canonical models implies
that we have (i) ∃r.C ′ is a conjunct of C or (ii) ∃r.C ′ ∈ KT1

(C). In Case
(i), C ′ = Cr,q for some (r, q) ∈ Q and C ′ ⇒1 D′ iff D′ is an element of the
fourth component of q. This is what is checked in (b.i) of the algorithm. In
Case (ii), ∃r.C ′ ∈ sub(T1) and thus we can use Point 3 of Lemma 1 to show that
(ID,T1∪T2

, C ′) ≤sig(T1) (IC,T1
, D′) iff (ID′,T1∪T2

, D′) ≤sig(T1) (IC′,T1
, C ′). This is

exactly what is checked in (b.ii) of the algorithm. o

Theorem 2. The algorithm for deciding non-conservative extensions is sound,
complete, and runs in exponential time.

Proof. Soundness follows from Lemmas 3 and 5. For completeness, assume that
T1 ∪ T2 is not a conservative extension of T1. By Lemma 3, there exists C of
outdegree not exceeding |T1∪T2| and D ∈ sub(T1∪T2) such that T1∪T2 |= C v D
and C 6⇒1 D. If C is a conjunction of concept names, then the algorithm outputs
“not conservative extension” in Step 2. Now suppose C has quantifier depth
n ≥ 1. Using Lemma 5, one can easily show by induction on i that for all
i ≥ 0, the set Ni contains all quadruples determined by subconcepts C ′ of C of
quantifier depth smaller than i. Hence, the algorithm outputs “not conservative
extension” after computing some Ni with i ≤ n.

For termination and complexity, observe that, by Lemma 4, the quadruple
determined by a conjunction of concept names from sig(T1) can be computed in
polytime. Hence Steps 1 and 2 run in exponential time. For Step 3 observe that
the number of tuples (F,Q1,Q2,Q3) with F a conjunction of concept names from
sig(T1) and Qi ⊆ sub(T1 ∪T2) is bounded by 24|T1∪T2|. It follows that Ni = Ni+1

for some i ≤ 24|T1∪T2|. Hence, the algorithm terminates and to show that it runs
in exponential time it remains to check that Ni+1 can be computed in exponential
time from Ni. This follows from the following: first, the number of pairs (F0, Q),
with F0 a conjunction of concept names from sig(T1) and Q ⊆ (NR∩sig(T1))×Ni

of cardinality not exceeding |T1 ∪ T2|, is still only exponential in |T1 ∪ T2|; and
second, the computation of (F0,F1,F2,F3) from F0 and Q in Figure 1 can be
done in time polynomial in |T1 ∪ T2|. o

5 ExpTime-hardness

We prove ExpTime-hardness of deciding conservative extensions in EL by re-
duction of the problem of determining whether a given player has a winning

strategy in the two-player game Peek introduced in [17] (the version G4). An
instance of Peek is a tuple (Γ1, Γ2, ΓI , ϕ) where:

– Γ1 and Γ2 are disjoint, finite sets of Boolean variables, with the intended
interpretation that the variables in Γ1 are under the control of Player 1, and
Γ2 is under the control of Player 2;

– ΓI ⊆ (Γ1 ∪ Γ2) are the variables true in the initial state of the game;
– ϕ is a propositional logic formula over the variables Γ1∪Γ2, representing the

winning condition.

The game is played in a series of rounds, with the Players i ∈ {1, 2} alternating
(Player 1 moves first) to select a variable from Γi whose truth value is then
flipped to reach the next game configuration. The game starts from the initial
assignment defined by ΓI . Variables that were not changed retain the same truth
value in the subsequent configuration. A player may also make a skip move, i.e.,
not change any of its variables. Any player wins in a given round if he makes
a move such that the resulting truth assignment defined by that round makes
the winning formula ϕ true. The decision problem associated with Peek is to
determine whether Player 1 has a winning strategy in a given game instance
(Γ1, Γ2, ΓI , ϕ). A formal definition of winning strategies for this game can be
found in [14].

Let us make precise the notion of a winning strategy. A configuration of G is a
pair (t, p) where t is a truth assignment for the variables in Γ1∪Γ2 and p ∈ {1, 2}
indicates the player that has moved to reach the current configuration. A winning
strategy for Player 1 is a finite tree (V,E, `) where ` is a node labelling function
that assigns to each node a configuration of G. The labelling is such that

1. the root is labelled with (ΓI , 2);
2. if a node is labelled with (t, 2) (i.e., Player 1 is to move), then it has a single

successor labelled (t′, 1), where t′ is obtained from t by switching the truth
value of at most one variable from Γ1;

3. if a node is labelled with (t, 1) (i.e., Player 2 is to move), then its successors
are labelled (t0, 1), . . . , (t`, 2), where t0, . . . , t` are the configurations of G
that can be obtained from t by switching the truth value of at most one
variable from Γ2;

4. if a leaf is labelled (t, i), then i = 1 and t satisfies ϕ.

Note that if `(v) = (t, i), then i is the player that has moved in order to reach
configuration `(v).

Given a game instance G = (Γ1, Γ2, ΓI , ϕ), we define TBoxes TG and T ′
G such

that TG ∪ T ′
G is not a conservative extension of TG iff Player 1 has a winning

strategy in G. More precisely, TG and T ′
G are crafted such that witness subsump-

tions C v D against conservativity are such that (D is a concept name and) C
describes a winning stategy for Player 1. Conversely, every winning strategy can
be converted into a witness subsumption against conservativity. For convenience,
we assume that the set of variables Γ1 ∪Γ2 is of the form {0, . . . , n−1} for some
n ≥ 2. In TG, we use the following concept and role names to describe a winning
strategy (V,E, `):

– the concept names V0, . . . , Vn−1 and V 0, . . . , V n−1 describe the t component
of the configuration `(v) = (t, p) associated with a node v, where Vi indicates
that variable i is true, and V i indicates that it is false;

– the concept names P1, P2 describe the p component of the configuration
`(v) = (t, p) associated with a node v;

– the concept names F0, . . . , Fn denote the variable that is flipped to reach the
configuration `(v) associated with a node v, with Fn indicating a skip move;

– the role name r represents E.

We also use some auxiliary concept names that are introduced below. Among
them the concept name B plays a special role: we will construct TG and T ′

G such
that if TG ∪ T ′

G is not a conservative extension of TG, then there is a witness
subsumption C v D with D = B.

We now assemble TG. We first say that the players alternate:

∃r.P1 v P2

∃r.P2 v P1

Then, we say that P1 and P2 should be disjoint. The idea is as follows: every
concept C which enforces to make both P1 and P2 true somewhere in the model
subsumes the special concept name B already w.r.t. TG, and thus cannot occur
on the left-hand side of a witness subsumtion C v B. The concept name M is
used as a marker:

P1 u P2 vM ∃r.M vM M v B

We also need disjointness conditions for truth values and flipping markers:

Vi u V i vM for all i < n
Fi u Fj vM for all i, j ≤ n with i 6= j

Next, we say that if the marker Fi is set, the variable Vi flips:

∃r.(Fi u Vi) v V i for all i < n
∃r.(Fi u V i) v Vi for all i < n

If a marker Fj for a different variable Vj is set, then Vi does not flip:

∃r.(Fi u Vj) v Vj for all i ≤ n and j < n with i 6= j
∃r.(Fi u V j) v V j for all i < n and j < n with i 6= j

Additionally, we would like to ensure that at least one of the Fi markers is true.
This cannot be done in a straightforward way in TG. We will use the TBox T ′

G,
which we define next. W.l.o.g., we assume that ϕ is in NNF. We first translate
the formula ϕ into a set of GCIs as follows. For each ψ ∈ sub(ϕ), we introduce
a concept name Xψ. For each ψ ∈ sub(ϕ), we use σ(ψ) to denote

– the concept name Xψ if ψ is a non-literal and

– the concept name from V0, . . . , Vn−1, V 0, . . . , V n−1 corresponding to ψ if ψ
is a literal.

Now we can translate each non-literal ψ ∈ sub(ϕ) into GCIs:

– if ψ = ϑ ∧ χ, then the GCI is σ(ϑ) u σ(χ) v Xψ;
– if ψ = ϑ ∨ χ, then the GCIs are σ(ϑ) v Xψ and σ(χ) v Xψ.

We introduce concept names N,N ′, N ′′, N0, . . . , Nn−1 that will be used as mark-
ers. Let k be the cardinality of Γ1. First we add markers that will help to ensure
that (i) each variable has a truth value in every configuration, (ii) a least one of
the flipping markers is set in every configuration, and (iii) the flipping marker
denotes a variable controlled by the player whose turn it currently is:

Vi v Ni for all i < n V i v Ni for all i < n
Fi v N ′ for all i ∈ {0, . . . , k − 1, n} Fi v N ′′ for all i ∈ {k, . . . , n}

Next, we set a marker if Player 1 has moved to reach a state in which ϕ is
satisfied:

Xϕ u P1 uN
′ uN0 u · · · uNn−1 v N

Then, the marker N is pulled up inductively ensuring that if Player 1 is to move,
there is a single successor indicating the move of Player 1 recommended by the
strategy; and if Player 2 is to move, there are n− k + 1 successors, one for each
possible move of Player 2 (including the skip move):

P1 uN
′ uN0 u · · · uNn−1 u ∃r.N v N

P2 uN ′′ uN0 u · · · uNn−1 u u
i∈{k,...,n}

∃r.(N u Fi) v N

Finally, we require that Player 1 moves first and that the initial configuration is
labelled as described by ΓI . Only if this is satisfied, the concept name B from
TG is implied:

P2 uN uu
i∈ΓI

Vi uu
i/∈ΓI

V i v B

Lemma 6. Player 1 has a winning strategy in G iff TG∪T ′
G is not a conservative

extension of TG.

We have thus established the following result.

Theorem 3. Deciding conservative extensions in EL is ExpTime-hard, thus
ExpTime-complete.

6 Model conservativity

In mathematical logic and software specification, there are (at least) two different
kinds of conservative extensions. Until now, we have worked with the deductive
version based on the consequence relation “|=”. The second version is model-
theoretic and defined as follows. Let T1 and T2 be TBoxes. We say that T1∪T2 is

a model conservative extension of T1 iff every model I of T1 can be extended to
a model of T1 ∪ T2 by modifying the interpretation of the predicates in sig(T2) \
sig(T1) while leaving the predicates in sig(T1) fixed.

Model conservative extensions of DL TBoxes have first been analyzed in
[13], where it was argued that model conservative extensions are of interest for
query answering modulo ontologies. For example, assume that we are interested
in computing the certain answers to a first-order query over an ABox A as
described e.g. in [6]. Then T1 ∪ T2 being a model conservative extension of T1

means that the answers given w.r.t. the TBoxes T1 and T1 ∪ T2 are identical.
The notion of a model conservative extension is more strict than the deductive
one. If T1 ∪ T2 is a model conservative extension of T1, then it is clearly also a
deductive conservative extension of T1, but the converse does not hold. To show
the latter, let T1 = {A v A} and T2 = {> v ∃r.A}. It is not hard to see that
T1 ∪ T2 is a deductive conservative extension of T1 if EL (or even ALC) is the
assumed descripion logic, but it is not a model conservative extension.

Also in [13], it was shown that deciding model conservative extensions is
undecidable and Π1

1 -complete in ALC. In this section, we show the surprising
result that model conservative extensions are undecidable even in EL (though
we are not able to establish Π1

1 -hardness). The proof is by reduction of the
halting problem for deterministic Turing machines on the empty tape. We assume
w.l.o.g. that our Turing machines are such that the initial state is not reachable
(directly or indirectly) from itself and that the halting state does not allow
any further transitions. Let M = (Q,Σ, Γ,∆, q0, qh) be a Turing machine. We
construct TBoxes TM and T ′

M such that TM ∪ T ′
M is not a model conservative

extension of TM iff M halts on the empty tape. We use the following concept
and role names for describing computations of M :

– the elements of Q and Γ as concept names;
– concept names head, before, and after to represent the relation of a tape cell

to the head position;
– role names n (for next tape cell) and s (for successor configuration).

Our construction is such that models of TM that cannot be extended to models
of T ′

M describe halting computations of M on the empty tape. Essentially, such
models have the form of a grid, with the vertical edges labelled s and the hori-
zontal ones labelled n. Thus, each row represents a configuration. We will enforce
the roles n and s to be functional, except at row 0 and column 0 (because this
does not seem possible). Therefore, the actual grid representing the computation
of M starts at row 1 and column 1.

We start with the definition of TM . For now, it is easiest to simply assume n
and s to be functional and confluent (which will be enforced later by T ′

M). We
first set before and after correctly, exploiting the assumed functionality of n:

∃n.before v before ∃n.head v before

head v ∃n.after after v ∃n.after.

Then we say that states are uniform over the tape: for all q ∈ Q,

q v ∃n.q ∃n.q v q.

Exploiting that q0 cannot reach itself and the above uniformity, we say that the
tape is initially blank (where b ∈ Γ is the blank symbol):

q0 v b.

For each transition δ(q, a) = (q′, a′, L), exploiting confluence of n and s, we set

∃n.(q u head u a) v ∃s.(q′ u head u ∃n.a′),

and for each transition δ(q, a) = (q′, a′, R),

(q u head u a) v ∃s.(a′ u q′ u ∃n.head).

We also say that symbols not under the head do not change: for all a ∈ Γ , put

a u before v ∃s.a, a u after v ∃s.a.

We would like to say that certain concept names such as before and head are
disjoint. Since disjointness cannot be expressed in EL, we revert to a trick that
will become clear when T ′

M is defined. For now, we introduce a concept name
D that serves as a marker for problems with disjointness: for all q, q′ ∈ Q with
q 6= q′ and all a, a′ ∈ Γ with a 6= a′, put

quq′ v D aua′ v D beforeuhead v D headuafter v D beforeuafter v D.

Up to now, we simply have assumed the described grid structure, but we did not
enforce it. In TM , we cannot do much more than saying that every point has the
required successors:

> v ∃n.> u ∃s.>.

We now define T ′
M , introducing new atomic concepts N,A,B and a new role u.

The concept name N serves as a marker. It is enforced to be true at the origin of
the relevant part of the grid (point (1,1)) if the described computation reaches
the halting state:

qh v N ∃n.N v N ∃s.N v N

It remains to ensure that a model I of TM cannot be extended to a model of
T ′
M iff (i) r and s are functional (except in row and column 0), (ii) r and s are

confluent, (iii) DI = ∅ (thus no problems with disjointness), (iv) the origin (1, 1)
satisfies N (thus a halting state is reached), and (v) the described computation
starts in the initial state with the head on the left-most cell and reaches the
halting state. Suprisingly, all this can be achieved with two simple CIs:

∃n.∃s.(N u q0 u head) v ∃u.(∃n.∃s.A u ∃s.∃n.B)
A uB v ∃u.D

Observe that any model I of TM can indeed be extended to satisfy these ad-
ditional CIs when any of the conditions (i) to (v) is violated, e.g., when D is
non-empty or the roles n and s are functional anywhere except in row 0 and
column 0. Conversely (and as shown in the proof of the following lemma), any
model I of TM that can be extended to these CIs violates one of (i) to (v).

Lemma 7. TM ∪ T ′
M is not a model conservative extension of TM iff M halts

on the empty tape

We have thus shown the following.

Theorem 4. Deciding model conservative extensions in EL is undecidable.

7 Conclusion

We have shown that deciding conservative extensions in EL is ExpTime-com-
plete. As a next step, it is desirable to build on this foundation and design
‘practical’ algorithms. This is a serious challenge since conservative extensions
are rather new as a reasoning problem and no experiences with implementing the
associated algorithms have yet been made. (An exception is, of course, classical
propositional logic, for which deciding conservative extensions corresponds to
deciding the validy of quantified Boolean formulas of the form ∀p∃qϕ(p, q)). The
algorithm and results presented in this paper provide useful insights regarding
crucial problems that have to be solve to develop a ‘practical’ procedure. For
example, they indicate that such a procedure will rely on efficient algorithms for
checking the existence of simulations between models.

References

1. G. Antoniou and K. Kehagias. A note on the refinement of ontologies. Int. J. of
Intelligent Systems, 15:623–632, 2000.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI’05), pages 364–369. Professional
Book Center, 2005.

3. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of the 16th Int. Joint Conf.
on Artificial Intelligence (IJCAI’99), pages 96–101. Morgan Kaufmann, 1999.

4. B. Bloom and R. Paige. Transformational design and implementation of a new effi-
cient solution to the ready simulation problem. Sci. Comput. Program., 24(3):189–
220, 1995.

5. S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In Proc. of the 16th European Conf. on
Artificial Intelligence (ECAI-2004), pages 298–302. IOS Press, 2004.

6. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th Symposium on Principles of
Database Systems (PODS’98), pages 149–158, 1998.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 2006), pages 260–
270, 2006.

9. E. Clarke and H. Schlingloff. Model checking. In Handbook of Automated Reason-
ing, volume II, chapter 24, pages 1635–1790. Elsevier Science, 2001.

10. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for conser-
vative extensions in description logics. In Proc. of the 10th Int. Conf. on Principles
of Knowledge Repr. and Reasoning (KR’06), pages 187–197. AAAI Press, 2006.

11. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A logical framework for mod-
ularity of ontologies. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI’07). AAAI Press, 2007.

12. B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web ontologies.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Repr. and Reasoning
(KR’06), pages 198–209. AAAI Press, 2006.

13. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence IJCAI-07.
AAAI Press, 2007.

14. C. Lutz and F. Wolter. Conservative extensions in the lightweight description logic
EL. http://www.liv.csc.ac.uk/∼frank, 2007.

15. N. Sioutos, S. de Coronado, M. Haber, F. Hartel, W. Shaiu, and L. Wright. NCI
thesaurus: a semantic model integrating cancer-related clinical and molecular in-
formation. Journal of Biomedical Informatics, 40(1):30–43, 2006.

16. K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. 2000. Fall Symposium
Special Issue.

17. L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM Journal on Computing, 8(2):151–174, 1979.

A Omitted Proofs for Section 3

Lemma 1. Let T be a TBox and C a concept. For all D ∈ ∆C,T and all
E ∈ sub(C) ∪ sub(T), we have D ∈ EIC,T iff T |= D v E.

Proof. The proof is by induction on the structure of E. We first concentrate on
the case when E ∈ sub(T). We only do the interesting case of the induction, i.e.,
E = ∃r.F .

“⇒”. Let D ∈ (∃r.F)IC,T . Then there is a F ′ ∈ F IC,T with (D,F ′) ∈ rIC,T . We
have F ′ ∈ sub(T) and can apply IH to the former, yielding T |= F ′ v F . Since
(D,F ′) ∈ rIC,T , we have T |= D v ∃r.F ′, thus T |= D v ∃r.F .

“⇐”. Let T |= D v ∃r.F . Then (D,F) ∈ rIC,T . Since T |= F v F and
F ∈ sub(T), we get F ∈ F IC,T from IH. Thus, D ∈ (∃r.F)IC,T .

Now we consider the case where E ∈ sub(C) \ sub(T), again doing only the
interesting induction case where E = ∃r.F . The “⇒” is left to the reader.

“⇐”. Let T |= D v ∃r.F . It suffices to show that D ∈ DIC,T : since we have
already proved Lemma 1 for the case thatD ∈ sub(T), IC,T is a model of T ; thus,
D ∈ DIC,T and T |= D v ∃r.F implies D ∈ (∃r.F)IC,T . Now, for D ∈ sub(T),
D ∈ DIC,T follows from T |= D v D and the fact that IC,T is a model of T . Now
assume that D ∈ sub(C) \ sub(T). Then D is of the form F0 uu(r,E0)∈P∃r.E0

for a set P of pairs (r, E0) and a conjunction F0 of concept names. D ∈ F
IC,T

0

follows from T |= D v F0. By IH, E0 ∈ E
IC,T

0 for all (r, E0) ∈ P . We also have
(D,E0) ∈ rIC,T because ∃r.E0 is a conjunct of D. Therefore D ∈ (∃r.E0)

IC,T

for all (r, E0) ∈ P . We obtain D ∈ DIC,T . o

Lemma 2. Let C,C1, C2, D be EL-concepts and T a TBox. Then the following
holds:

1. For all models I of T and all d ∈ ∆I , the following conditions are equivalent:
(a) d ∈ CI ;
(b) (IC,T , C) ≤ (I, d).

2. The following conditions are equivalent:
(a) T |= C v D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

3. If ∃r.D ∈ (sub(Ci)∪ sub(T)) for all i ∈ {1, 2}, then (IC1,T , D) ≤ (IC2,T , D).

Proof. (1) The direction (b) ⇒ (a) follows from Theorem 1 and the fact that
C ∈ CIC,T . Conversely, let I be a model of T and d ∈ CI . Define a relation
S ⊆ ∆IC,T ×∆I by setting (D, e) ∈ S iff e ∈ DI . We show that S is a simulation.
Let (D, e) ∈ S. Assume D ∈ AIC,T , with A a concept name. This implies
T |= D v A, and e ∈ AI follows from e ∈ DI and I |= T . Now assume
(D,D′) ∈ rIC,T . Then T |= D v ∃r.D′ and we obtain e ∈ (∃r.D′)I . Hence, there

exists e′ ∈ ∆I with (e, e′) ∈ rI and e′ ∈ D′I , which implies (D′, e′) ∈ S. It
follows that S is a simulation. By definition, we have (C, d) ∈ S.

(2) Observe that the equivalence of (a) and (b) follows from Lemma 1 if D ∈
sub(C)∪ sub(T). However, we consider arbitrary concepts D here. We show the
following:

– (a) implies (b). Assume T |= C v D. Since IC,T is a model of T1 and
C ∈ CIc,T , this implies C ∈ DIC,T .

– (b) implies (c). Immediate consequence of Point 1 of Lemma 2.
– (c) implies (a). Let I be a model of T and d ∈ CI . By Point 1 of Lemma 2,

(IC,T , C) ≤ (I, d). Together with (ID,T , D) ≤ (IC,T , C) and transitivity of
“≤”, we get (ID,T , D) ≤ (I, d). Again by Point 1 of Lemma 2, we obtain
d ∈ CI .

(3) Let ∃r.D ∈ (sub(Ci) ∪ sub(T)), for all i ∈ {1, 2}. Then D ∈ ∆ICi,T , for all
i ∈ {1, 2}. Define a relation S ⊆ ∆IC1,T ×∆IC2,T by setting S := {(E,E) | E ∈
sub(D) ∪ sub(T)}. By construction, (D,D) ∈ S. It is easy to show that S is a
simulation, hence (IC1,T , D) ≤ (IC2,T , D) as required. o

For the full proof of Lemma 3 we require two technical lemmas.

Lemma 8. Suppose T |= C v ∃r.D. Then one of the following holds:

– there is a conjunct ∃r.C ′ of C such that T |= C ′ v D;
– there is a ∃r.C ′ ∈ sub(T) such that T |= C v ∃r.C ′ and T |= C ′ v D.

Proof. Let T |= C v ∃r.D. By Point 2 of Lemma 2, C ∈ (∃r.D)IC,T . Thus,
there is a C ′ ∈ DIC,T such that (C,C ′) ∈ rIC,T . By definition of IC,T , (i) ∃r.C ′

is a conjunct of C or (ii) ∃r.C ′ ∈ sub(T) and T |= C v ∃r.C ′. It remains to
argue that, in both cases, T |= C ′ v D. From C ′ ∈ DIC,T and Point 1 of
Lemma 2, we have (ID,T , D) ≤ (IC,T , C

′). By Point 3 of Lemma 2, we obtain
(IC,T , C

′) ≤ (IC′,T , C
′). By transitivity of ≤, (ID,T , D) ≤ (IC′,T , C

′). From
Point 2 of Lemma 2, we derive T |= C ′ v D as desired. o

Lemma 9. For all TBoxes T and concepts C, there is a concept D such that
the following conditions are satisfied:

1. ∅ |= C v D,
2. KT (C) = KT (D),
3. |D| ≤ |C|,
4. the outdegree of D is bounded by |T |.

Proof. Let T be a TBox and C a concept. If the outdegree of C is bounded by
|T |, C itself is the wanted concept D. Assume that this is not the case. Then
there exists a subconcept C0 of C such that C0 = F uu(r,E)∈P∃r.E, where F is
a conjunction of concept names and |P | > |T |. Let Q be a minimal subset of P
such that for all ∃r.G ∈ sub(T), if there is a (r, E) ∈ P with T |= E v G, then
there is a (r, E′) ∈ Q with T |= E′ v G. Clearly, the cardinality of Q is bounded
by |T |. Now, replace in C the subconcept C0 with C1 := F uu(r,E)∈Q∃r.E and

call the result C ′. Clearly, |C ′| ≤ |C|. It is easy to construct a simulation from
(IC,∅, C) to (IC′,∅, C

′), and thus ∅ |= C v C ′ by Point 2 of Lemma 2. In the
following, we show that KT (C) = KT (C ′). To obtain the desired concept D, it
thus suffices to execute the described contraction information until the outdegree
is bounded by |T |.

“⊆”. Immediate consequence of ∅ |= C v C ′.

“⊇”. Let H ∈ sub(T) \ KT (C ′). We have to show that H /∈ KT (C). There is

a model I of T with d0 ∈ C ′I \DI . For each (r, E) ∈ P \ Q, take a copy Ir,E
of the canonical model IE,T such that all these copies have disjoint domains,
and their domains are disjoint from that of I. Define a new interpretation I ′ as
follows:

– take the disjoint union of I and the models Ir,E , for all (r, E) ∈ P \Q;

– for each (r, E) ∈ P \ Q and each d ∈ CI
1 , add the tuple (d, dr,E) to rI

′

,
where dr,E ∈ ∆Ir,E was obtained from E ∈ ∆IE,T when taking a disjoint
copy of IE,T .

It is possible to prove the following by induction on the structure of D0:

1. for all (r, E) ∈ P \ Q, all d ∈ ∆Ir,E , and all concepts D0, d ∈ DI′

0 iff

d ∈ D
Ir,E

0 .

2. for all d ∈ ∆I and D0 ∈ sub(T), d ∈ DI
0 iff d ∈ DI′

0 .
3. for all d ∈ ∆I and D0 ∈ sub(C ′), d ∈ DI

0 implies d ∈ DI′

0 .

The only interesting case is in Point 2, whenD0 = ∃r.D′
0. Let d ∈ (∃r.D′

0)
I . Then

there is a d′ ∈ D′I
0 such that (d, d′) ∈ rI . It remains to note that (d, d′) ∈ rI

′

and apply IH. Conversely, let d ∈ (∃r.D′
0)

I′

. Then there is a d′ ∈ D′I
′

0 such that
(d, d′) ∈ rI

′

. If d ∈ ∆I , we have (d, d′) ∈ rI and it again remains to apply IH.

Now let d′ ∈ IE,T for some (r, E) ∈ P \Q. By Point 1 above, d′ ∈ D′I
′

0 implies

E ∈ D′IE,T

0 . With Point 2 of Lemma 2, we get T |= E v D′
0. By definition

of Q, there is an (r, E′) ∈ Q such that T |= E′ v D′
0. Since (d, d′) ∈ rI

′

with
d′ ∈ IE,T , we have d ∈ CI

1 by construction of I ′. Thus, there is a d′′ ∈ (E′)I

with (d, d′′) ∈ rI . Then (d, d′′) ∈ rI
′

, T |= E′ v D′
0 yields d′′ ∈ (D′

0)
I , and we

obtain d′′ ∈ (D′
0)

I′

by IH.

Since I and all the Ir,E are models of T and by Points (1) and (2) above,

it follows that I ′ is a model of T . Point 2 implies that d0 /∈ HI′

. By Point 3

, d0 ∈ C ′I
′

. We show that d0 ∈ (∃r.E)I
′

for all (r, E) ∈ P \ Q. Together with

d0 ∈ C ′I
′

, this implies d0 ∈ CI′

. Let (r, E) ∈ P \ Q. Since dr,E ∈ EIr,E ,

Point 1 yields dr,E ∈ EI′

. Together with (d0, dr,E) ∈ rI
′

, we get d0 ∈ (∃r.E)I
′

as required. Thus, d0 ∈ CI′

\HI′

, implying H 6∈ KT (C). o

Lemma 3. T1∪T2 is not a conservative extension of T1 iff there exists a sig(T1)-
concept C and a sig(T1 ∪ T2)-concept D ∈ sub(T1 ∪ T2) such that

(a) T1 ∪ T2 |= C v D;

(b) C 6⇒1 D;
(c) the outdegree of C is bounded by |T1 ∪ T2|.

Proof. “⇒”. Assume hat (a) to (c) are satisfied. By (b), there is a concept E
with T1 ∪ T2 |= D v E and T1 6|= C v E. From the former and (a), we get
T1 ∪ T2 |= C v E, which implies that T1 ∪ T2 is not a conservative extension
of T1.

“⇐”. Assume that T1∪T2 is not a conservative extension of T1. We first show
only (a) and (b). If there is a counter-subsumption C v D with D ∈ sub(T1),
then we are done: we have T1∪T2 |= C v D and T1 6|= C v D, therefore C 6⇒1 D.
Assume that no such counter-subsumption exists.

Let C v D be a counter-subsumption such that there is no counter-subsumption
C ′ v D′ with D′ shorter than D. Then D is of the form ∃r.D′:

– If D = >, then T1 |= C v D, contradicting the fact that C v D is a
counter-subsumption.

– If D is an atomic concept, then D ∈ sub(T1), which we have assumed not be
the case.

– If D is a conjunction D1 uD2, then T1 ∪ T2 |= C v Di for all i ∈ {1, 2} and
T1 6|= C v Di for some i ∈ {1, 2}. Thus, one of C v D1 and C v D2 is a
counter-subsumptionexample, contradicting the minimality of D.

By Lemma 8, T1 ∪ T2 |= C v ∃r.D′ implies that one of the following holds:

1. there exists a conjunct ∃r.C ′ of C such that T1 ∪ T2 |= C ′ v D′;
2. there exists ∃r.C ′ ∈ sub(T1∪T2) such that T1∪T2 |= C v ∃r.C ′ and T1∪T2 |=
C ′ v D′.

First note that, in the first case, we have T1 |= C ′ v D′. For assume that the
contrary holds. Since T1 ∪T2 |= C ′ v D′, this implies that C ′ v D′ is a counter-
subsumption, contradicting the minimality of D. Also note that T1 |= C ′ v D′

implies T1 |= ∃r.C ′ v ∃r.D′.

Assume that Case 1 applies. Since ∃r.C ′ is a conjunct of C, T1 |= C v ∃r.C ′.
Together with T1 |= ∃r.C ′ v ∃r.D′, we obtain T1 |= C v ∃r.D′ = D. It follows
that T1 |= C v D, contradicting the fact that C v D is a counter-subsumption.

Thus, Case 2 applies. We show that the concepts C and ∃r.C ′ (substituted
for D) satisfy Conditions (a) and (b). First, T1 ∪ T2 |= C v ∃r.C ′ establishes
Condition (a). For Condition (b), observe that T1 6|= C v ∃r.D′ and T1 ∪ T2 |=
∃r.C ′ v ∃r.D′. This means C 6⇒1 ∃r.C ′.

We now show how to additionally satisfy Condition (c). Let C be a sig(T1)-
concept andD ∈ sub(T1∪T2) such that Points (a) and (b) hold. Take a concept C ′

that satisfies the four conditions from Lemma 9 (with T substituted by T1∪T2).
By Condition 4, C ′ satisfies (c). By Condition 2, C ′ and D satisfy (a). Since
C 6⇒1 D, there is a sig(T1)-concept E such that T1 ∪ T2 |= D v E and T1 6|=
C v E. By Condition 1, we have T1 |= C v C ′, and thus the latter implies
T1 6|= C ′ v E. It follows that C ′ 6⇒1 D, thus C ′ and D satisfy (b). o

B Omitted Proofs for Section 4

Lemma 10. Let T be a TBox and C = F0 u u(r,E)∈P∃r.E, where F0 is a
conjunction of concept names. Then

KT (C) = KT (F0 u u
(r,E)∈P

∃r.(u
D∈KT (E)

D))

Proof. Let C0 = F0uu(r,E)∈P∃r.(uD∈KT (E)D). We have to show thatKT (C) =
KT (C0).

“⊇”. This follows from T |= C v C0 (which follows from T |= E vuD∈KT (E)D).

“⊆”. Let D ∈ sub(T) \KT (C0). Consider a model I of T with d0 ∈ CI
0 \HI .

For each (r, E) ∈ P , take a copy Ir,E of the canonical model IE,T such that all
these copies have disjoint domains, and their domains are disjoint from that of
I. Define a new interpretation I ′ as follows:

– take the disjoint union of I and the models Ir,E , for all (r, E) ∈ P ;

– for each (r, E) ∈ P , add the tuple (d0, dr,E) to rI
′

, where dr,E ∈ ∆Ir,E was
obtained from E ∈ ∆IE,T when taking a disjoint copy of IE,T .

It is not difficult to prove the following by induction on the structure of D0:

1. for all (r, E) ∈ P , all d ∈ ∆Ir,E , and all concepts D0, d ∈ DI′

0 iff d ∈ D
Ir,E

0 .

2. for all d ∈ ∆I and D0 ∈ sub(T), d ∈ DI
0 iff d ∈ DI′

0 .

Since I and all the Ir,E are models of T and by Points (1) and (2) above,

it follows that I ′ is a model of T . Point 2 implies that d0 /∈ HI′

. We show that
d0 ∈ CI′

: by Point 2, dr,E ∈ EI′

for all (r, E) ∈ P . Therefore d0 ∈ (∃r.E)I
′

for all (r, E) ∈ P . Since we also have d0 ∈ F I′

0 , we obtain d0 ∈ CI′

. Thus,
d0 ∈ CI′

\HI′

, implying H 6∈ KT (C). o

C Omitted Proofs for Section 5

Before we can prove Lemma 6, we establish a technical lemma that asserts
convexity of EL. To state this property formally, let EL denote the extension of
EL with a disjunction constructor CtD, with the obvious semantics (CtD)I :=
CI ∪DI .

Lemma 11. Let T be an EL-TBox, and C,D,D′ EL-concepts. Then T |= C v
D tD′ implies T |= C v D implies or T |= C v D′.

Proof. Let T |= C v D tD′. Take the model IC,T of T . We have C ∈ CIC ,T .

Since T |= C v D t D′, we have C ∈ DIC ,T or C ∈ D′IC ,T . By Point 2 of
Lemma 2, this implies T |= C v D or T |= C v D′ as required. o

We now prove Lemma 6.

Lemma 6. Player 1 has a winning strategy in G iff TG∪T ′
G is not a conservative

extension of TG.

Proof. First assume that Player 1 has a winning strategy (V,E, `) in G. We
first define a mapping m : V → {0, . . . , n} as follows: if (v, v′) ∈ E, `(v) = (t, i),
and `(v′) = (t′, i′), then m(v′) is the variable that was switched to reach t′ from
t (we assume that m(v′) = n means that no variable was switched). If v ∈ V is
the root, m(v) = n (this is arbitrary). We associate a concept C(v) with each
node v ∈ V , `(v) = (t, i):

C(v) := Pi u Fm(v) uu
i∈t

Vi u u
i∈(Γ1∪Γ2)\t

V i

As a next step, we inductively associate another concept W (v) with each node
v ∈ V :

– if v is a leaf, then W (v) := C(v);

– if v has successors v0, . . . , v`−1, then W (v) = C(v) uu
i<`

∃r.W (vi).

Let ε be the root of (V,E, `) and define W := W (ε). It is not too difficult to
verify that TG ∪ T ′

G |= W v B. We show that TG 6|= W v B, and thus TG ∪ T ′
G

is not a conservative extension of TG. Define a model I as follows:

– ∆I := {W} ∪ {C | ∃r.C ∈ sub(W)};
– AI := {C ∈ ∆I | A is a conjunct in C};
– rI := {(C,C ′) | ∃r.C ′ is a conjunct in C}.

It is easy to verify that I is a model of TG, and that W ∈ W I . Also, we have
BI := ∅, and thus TG 6|= W v B.

For the converse direction, our first step is to establish the following claim:

Claim. If TG ∪ T ′
G is not a conservative extension of TG, then there is a witness

subsumption C v D with D = B.

Assume that TG ∪ T ′
G is not a conservative extension of TG and let D be of

minimal length such that there is a C with TG 6|= C v D, but TG∪T ′
G |= C v D.

We first show that D is not of the form D1 uD2. Assume to the contrary that
it is. Since TG ∪ T ′

G |= C v D, we have TG ∪ T ′
G |= Di for all i ∈ {1, 2}. Since

TG 6|= C v D, we have TG 6|= C v Di for some i ∈ {1, 2}. Thus one of D1 and
D2 is a counterexample against minimality of D.

Next, we show that D is not of the form ∃r.D′. Assume to the contrary
that it is. By Lemma 8, there is a concept ∃r.C ′ ∈ sub(TG) ∪ sub(C) such that
TG |= C v ∃r.C ′ and TG |= C ′ v D′. Let D∗ be D with the conjunct ∃r.D′

dropped. Then we have:

– TG 6|= C v D∗: since TG 6|= C v D, there is a model I of TG and a d ∈
(Cu¬D)I . Then d ∈ (∃r.C ′)I and TG |= C ′ v D′ implies d ∈ (∃r.D′)I . This
together with d ∈ ¬DI implies that there is a conjunct K of D such that
K 6= ∃r.D′ and d /∈ KI . Thus d ∈ ¬(D∗)I .

– TG ∪ T ′
G |= C v D∗: implied by TG ∪ T ′

G |= C v D.

Thus, we again have a contradiction against minimality of D.

At this point, D can only be a concept name or the > symbol. We can now
finish the proof of the claim. Assume B 6= D. Take a model I of TG and a d ∈ ∆I

such that d ∈ (C u ¬D)I . Convert I into a model I ′ of TG ∪ T ′
G by

– defining the interpretation of the concept names introduced in T ′
G such that

all GCIs in T ′
G except the last one are satisfied;

– then defining the interpretation of B such that BI ⊆ BI′

and the last GCI
in T ′

G is satisfied.

Since the extension of all concept and role names in TG remained the same or
got larger, d ∈ CI′

. Since D 6= B and B was the only concept name from TG
that we modified, d /∈ DI′

. Thus, TG ∪ T ′
G 6|= C v D, which is a contradiction.

Now that we know there exists a witness subsumption C v D with D = B,
we can go about analyzing C. First observe that the only GCIs in TG ∪ T ′

G with
B occurring on the right-hand side are

M v B in TG and P2 uN uu
i∈ΓI

Vi uu
i/∈ΓI

V i v B in T ′
G,

and let us denote the left-hand side of the latter GCI with L. Since TG ∪ T ′
G |=

C v B, it follows that TG∪T
′
G |= C vMtL: if this was not the case, there would

be a model I of TG∪T ′
G and a d ∈ (Ct¬Mu¬L)I , and by modifying I by setting

BI := BI \{d}, we could obtain a model that contradicts TG∪T ′
G |= C v B. By

Lemma 11, TG∪T
′
G |= C vMtL implies TG∪T

′
G |= C vM or TG∪T

′
G |= C v L.

Since the only concept from TG occurring on the right-hand side of a GCI in
T ′
G is B, and B does not occur on the left-hand side of a GCI in TG, the former

implies TG ∪ T ′
G |= C v M and thus TG |= C v B (via M v B ∈ TG), which is

a contradiction. Thus, TG ∪ T ′
G |= C v L.

We now construct a winning strategy (V,E, `) for Player 1. This is done by
inductively constructing partial winning strategies (V0, E0, `0), (V1, E1, `1), . . .
such that for all i > 0, we have TG ∪ T ′

G |= C v W ′
i , where W ′

i is the concept
W induced by the winning strategy (Vi, Ei, `i) as defined in the left-to-right
direction of this proof, with the modification that the conjunct N is added in
C(v).

To start, we set V0 := {ε}, E0 := ∅, and `0(ε) := (Γi, 2). Then W ′
0 is the

concept L from above and thus we have TG ∪ T ′
G |= C vW ′

0 as required.

Now, let (Vi, Ei, `1) be already defined, and let v∗ be a leaf with `i(v
∗) = (t, p)

such that t does not satisfy ϕ. The only GCIs in TG ∪ T ′
G with N occurring on

the right-hand side are

Xϕ u P1 uN
′ uN0 u · · · uNn−1 v N

P1 uN
′ uN0 u · · · uNn−1 u ∃r.N v N

P2 uN ′′ uN0 u · · · uNn−1 u u
i∈{k,...,n}

∃r.(N u Fi) v N

Let us denote the left-hand sides with L1, L2, and L3, respectively. For all
concepts D, we use W ′

i [D] to denote the modification of W ′
i obtained by re-

defining C(v) specifially for the node v∗ by including the conjunct D. Since
(i) TG ∪ T ′

G |= C v W ′
i , (ii) C(v∗) includes N as a conjunct, and (iii) the

above listed GCIs are the only ones in TG ∪ T ′
G with N on the right-hand side,

we have TG ∪ T ′
G |= C v W ′

i [L1 t L2 t L3]. By Lemma 11, it follows that
TG ∪ T ′

G |= C v W ′
i [Lj], for some j ∈ {1, 2, 3}. To continue, we make a case

distinction according to whether p = 1 or p = 2, starting with p = 1.

We first show that TG ∪ T ′
G 6|= C vW ′

i [L1] and TG ∪ T ′
G 6|= C vW ′

i [L3]:

– Assume TG ∪ T ′
G |= C vW ′

i [L1]. Since TG ∪ T ′
G |= C vW ′

i , we have

TG ∪ T ′
G |= C vW ′

i [u
i∈t

Vi u u
i∈{0,...,n−1}\t

V i]. (∗)

Using the disjointness GCIs in TG, it is not hard to show that there is
only one truth assignment with Property (∗). More specifically, if any truth
assignment t′ 6= t satisfies (∗), then there is a k < n with

TG ∪ T ′
G |= C vW ′

i [Vk u V k]

and we can use the GCIs in TG to show that this implies TG |= C v B, a
contradiction. Since Xϕ is a conjunct in L1, we have TG∪T

′
G |= C vW ′

i [Xϕ].
Analyzing the GCIs derived from the formula ϕ and exploiting that t is the
unique truth assignment satisfying (∗), we can show that t satisfies ϕ. This
is a contradiction to our choice of v∗.

– Assume TG ∪ T ′
G 6|= C vW ′

i [L3]. Then TG ∪ T ′
G |= C vW ′

i [P2]. Since C(v∗)
includes the conjunct P1, we have TG ∪ T ′

G |= C v W ′
i [P1 u P2], implying

TG ∪ T ′
G |= C v ∃rm.(P1 uP2) for some m ≥ 0. It is easy to use the GCIs in

TG to show that this implies TG |= C v B, a contradiction.

Thus TG∪T
′
G |= C vW ′

i [L2]. By analyzing L2 and the GCIs carefully in a similar
way as we have done above, it is not hard to show that TG ∪ T ′

G |= C v W ′
i [F`]

for some ` ∈ {k, . . . , n}. Also, we can show that TG ∪T ′
G |= C vW ′

i [∃r.N]. This,
in turn, means that we have TG ∪ T ′

G |= C v W ′
i [∃r.Lj′], for some j′ ∈ {1, 2, 3}.

The cases j′ = 1 and j′ = 2 can be ruled out: since both L1 and L2 include the
conjunct P1 and so does C(v∗), we could again argue that then TG |= C v B
(using the GCI ∃r.P1 v P2), which is a contradiction. Thus, TG ∪ T ′

G |= C v
W ′
i [∃r.L3] implying TG∪T ′

G |= C vW ′
i [∃r.N

′′]. By analyzing the GCIs in TG∪T ′
G

with N ′′ on the right-hand side, we have TG ∪ T ′
G |= C v W ′

i [∃r.Fk] for some
k ∈ {k, . . . , n}. Using the disjointness GCIs in TG, we can show that k is unique
(otherwise TG |= C v B). Define the truth assignment t′ as t with the value of
the variable Vk flipped if k < n. Otherwise, t′ = t. Then set Vi+1 := Vi ∪ {v},
Ei+1 := Ei ∪ (v∗, v) and set `i+1(v) := (t′, 2).

We have to show that TG ∪ T ′
G |= C v W ′

i+1, which boils down to showing
that

TG ∪ T ′
G |= C vW ′

i+1[u
i∈t′

Vi u u
i∈{0,...,n−1}\t′

V i],

where W ′
i+1[D] denotes the modification of W ′

i+1 obtained by redefining C(v)
specifially for the node v (not v∗!) by including the conjunct D. Since C(v)
includes the conjunct N and all GCIs in TG ∪T ′

G with N on the right-hand side
have N0, . . . , Nn−1 as conjuncts on the left-hand side, we can analyze the GCIs
in T ′

G to show that there is a truth assignment t′′ such that

TG ∪ T ′
G |= C vW ′

i+1[u
i∈t′′

Vi u u
i∈{0,...,n−1}\t′′

V i].

Using the disjointness GCIs in TG, we can show that t′′ is unique. Argueing as
above, we can strengthen the last statement to

TG ∪ T ′
G |= C vW ′

i+1[F` uu
i∈t′′

Vi u u
i∈{0,...,n−1}\t′′

V i].

where ` is the value that has to be flipped to reach t′ from t. We can use the
GCIs in TG axiomatizing the behaviour of the Fi markers to show that

TG ∪ T ′
G |= C vW ′

i [u
i∈t∗

Vi u u
i∈{0,...,n−1}\t∗

V i],

where t∗ is obtained from t′′ by flipping the value of `. Since it follows from the
disjointment statements in TG that there is only a single t∗ with this property,
it follows that t∗ = t, and thus t′ = t′′.

This finishes the case where p = 1. The case p = 2 is very similar, and details
are left to the reader.

It remains to argue that the construction of the partial winning strategies
eventually terminates, yielding a complete winning strategy. If the construction
does not terminate, we have TG ∪ T ′

G |= ∃rm.> for all m ≥ 0. It is easy to prove
that this is impossible, since no GCI in TG ∪ T ′

G has an existential restriction of
the right-hand side.

o

D Omitted Proofs for Section 6

Lemma 7. TM ∪T ′
M is not a model conservative extension of TM iff M halts on

the empty tape

Proof. “⇐” Assume thatM does not halt on the empty tape and let c0, . . . , ck be
the halting computation of M . Extend this computation to an infinite sequence
of computations by setting c` := ck for all ` > k. We define an interpretation I
as follows:

– ∆I :=
�

×
�

;
– sI := {((i, j), (i+ 1, j)) | i, j ≥ 0};
– nI := {((i, j), (i, j + 1)) | i, j ≥ 0};

– qI := {(i, j) | i, j > 0 and the state in cj−1 is q} for all q ∈ Q;
– aI := {(i, j) | i, j > 0 and tape cell i− 1 in cj−1 is labelled a} for all a ∈ Γ ;

– headI := {(i, j) | i, j > 0 and the head position in cj−1 is j − 1};

– beforeI := {(i, j) | (i′, j) ∈ headI for some i′ > i};
– afterI := {(i, j) | (i′, j) ∈ headI for some i′ < i};
– DI = ∅.

It is not hard to verify that I is a model of TM (setting c` = ck for all ` > k
is justified by the fact that M does not allow any transitions in the halting
state). Moreover, I cannot be extended to a model of TM ∪T ′

M : we have (0, 0) ∈
(∃n.∃s.(N u q0 u head))I , so we have to interpret u, A, and B such that (0, 0) ∈
(∃u.(∃n.∃s.A u ∃s.∃n.B))I . To do this, we have to interpret A and B such that
(i, j) ∈ (A u B)I for some i, j ≥ 0. To obtain a model of T ′

M , we must then
ensure that (i, j) ∈ DI . This, however, is impossible since DI = ∅ is fixed. It
follows that TM ∪ T ′

M is not a conservative extension of TM .

“⇒”. Assume that M does not halt on the empty tape and let I be a model
of TM . We have to show that I can be extended to a model of TM ∪ T ′

M . If
qIh = ∅, then we simply set AI := BI := NI := uI := ∅. If qIh 6= ∅, let NI be
the smallest set such that qIh ⊆ NI , (∃n.N)I ⊆ NI , and (∃s.N)I ⊆ NI . If the
result is such that (∃n.∃s.(N u q0 u head))I = ∅, we are done. So assume the
contrary. First assume that

(i) There are d, d1, d2, d3, d4 ∈ ∆I with dnId1s
Id2 and dsId3n

Id4 such that
d2 6= d4.

Then we can set uI := ∆I × {d}, AI := {d2}, and BI := {d4}, and obtain a
model of T ′

M . Now assume

(ii) There are d1, d2, d3, d4 ∈ ∆I with d1n
Id2s

Id4, d1s
Id3n

Id4, and d4 ∈ CI .

Then we can set uI := ∆I×{d1} and AI := BI := {d4} to obtain a model of T ′
M .

Now assume that neither (i) nor (ii) are the case. We show that this is impossible
since it implies thatM halts on the empty tape. Let d0 ∈ (∃n.∃s.(Nuq0uhead))I .
Then there is a d′0 ∈ ∆I and a d ∈ (N u q0 u head)I such that d0n

Id′0s
Id. For

d′ ∈ ∆I , we say that d′ is reachable from d in n steps if there exists a sequence
d0, . . . , dn with d0 = d, dn = d′, and (di, di+1) ∈ nI ∪ sI for all i < n. We say
that that d′ is reachable from d if d′ is reachable from d in n steps, for some
n ≥ 0. We first show the following:

Claim. Let d′ be reachable from d. Then we have:

1. there are d1, d2, d3 ∈ ∆I such that d1n
Id2s

Id′ and d1s
Id3n

Id′;
2. if d′nIe and d′nIe′, then e = e′;
3. if d′sIe and d′sIe′, then e = e′;

Point 1 is proved by induction on the minimal n such that d′ is reachable from
d in n steps. For the induction start, we have d′ = d. Recall that d0n

Id′0s
Id. By

the CIs in TM , there are d1, d2 ∈ ∆I such that d0s
Id1n

Id2. Since (i) does not

hold, d2 = d and we are done. For the induction step, let d′ be reachable from d
in n > 0 steps. Then there is a d1 such that d1 is reachable from d in n− 1 steps
and d1n

Id′ or d1s
Id′. We only treat the first case since the second is analogous.

By IH, there is a d2 such that d2s
Id1. By the CIs in TM , there are d3 and d4

such that d2n
Id3s

Id4. Since (i) does not holds, d4 = d′ and we are done.

Now for Points 2 and 3. We only treat Point 2 explicitly since Point 3 is
analogous. Let d′ be reachable from d and let e, e′ ∈ ∆I such that d′nIe and
d′nIe′. By Point 1, there is a d1 such that d1s

Id′. By the CIs in TM , there are
d2, d3 such that d1n

Id2s
Id3. Since (i) does not hold, we have d3 = e = e′, and

are done. This finishes the proof of the claim.

Set R := {d′ ∈ ∆I | d′ is reachable from d}. Points 2 and 3 of the claim
together with the fact that (i) does not hold implies that we can easily find a
bijection τ : R→

�
×

�
such that for all e, e′ ∈ R, we have

– enIe′ iff τ(e) = (i, j) and τ(e) = (i+ 1, j) for some i, j ∈
�

;
– esIe′ iff τ(e) = (i, j) and τ(e) = (i, j + 1) for some i, j ∈

�
.

Our aim is to read off a halting computation from M on the empty tape from
I, being guided by τ . To do this, we first show that (a) for all q, q′ ∈ Q with

q 6= q′, qI ∩ q′I ∩R = ∅, (b) for all a, a′ ∈ Σ with a 6= a′, aI ∩ a′I ∩R = ∅, and
(c) beforeI∩R, afterI∩R, and headI∩R are pairwise disjoint. Since the argument

is the same in all three cases, we concentrate on (a). Assume e ∈ qI ∩ q′I ∩ R.
By the GCIs in TM , d′ ∈ CI . By Point 1 of the claim, there are d1, d2, d3 ∈ ∆I

such that d1n
Id2s

Id′ and d1s
Id3n

Id′. This is a contradiction to the fact that
(ii) is false

We can now read off a halting computation from M in the obvious way:
the i-th configuration is described by the elements Ri := {d ∈ R | τ(d) =
(j, i) for some j ≥ 0}. By the CIs in TM and (a), there is a unique state q ∈ Q
such that Ri ⊆ qI . By the CIs in TM and (b), for each j ≥ 0, there is a unique
a ∈ Σ such that τ−1(j, i) ∈ aI . And by the CIs in TM and (c), there is a
unique j ≥ 0 such that τ−1(j, i) ∈ headI . Let us call the resulting sequence of
configurations c0, c1, By choice of d above and the CIs in TM , c0 is the initial
configuration of M on the empty tape. By the CIs in TM , ci+1 is a successor
configuration of ci for all i ≥ 0. By definition of NI and since d ∈ NI , it follows
that we eventually reach a halting configuration. o

