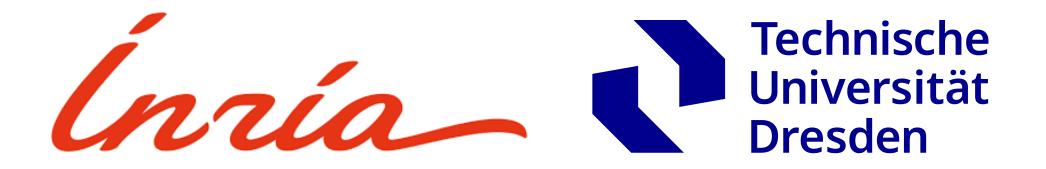
# Putting Perspective into OWL [sic]:

Complexity-Neutral Standpoint Reasoning for Ontology Languages via Monodic S5 over Counting Two-Variable First-Order Logic

Lucía Gómez Álvarez, <u>Sebastian Rudolph</u>

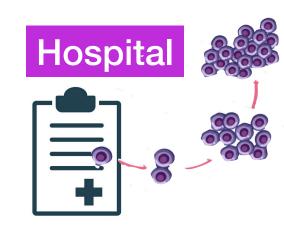


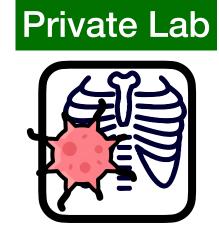
Multiperspective Reasoning

Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!





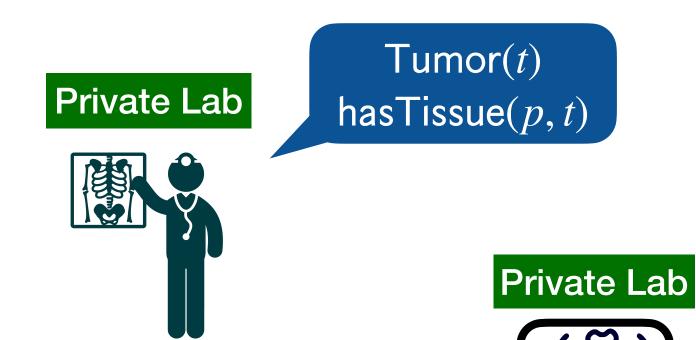




Diverse Knowledge Sources

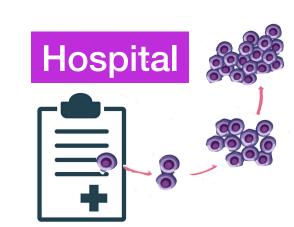
**DBpedia** 

Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



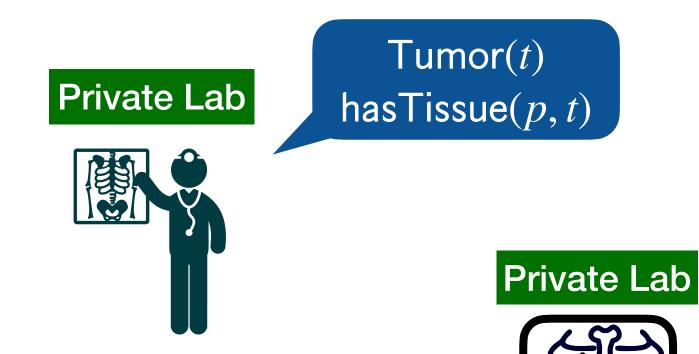


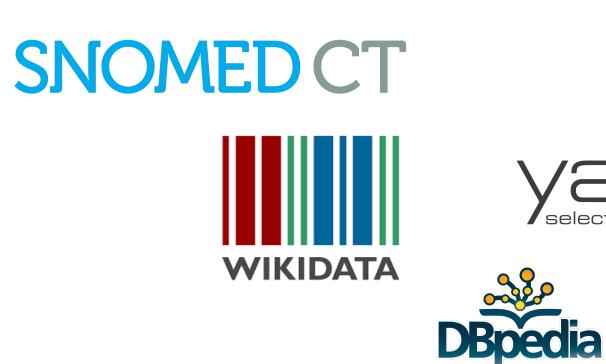




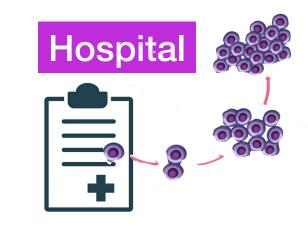


Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



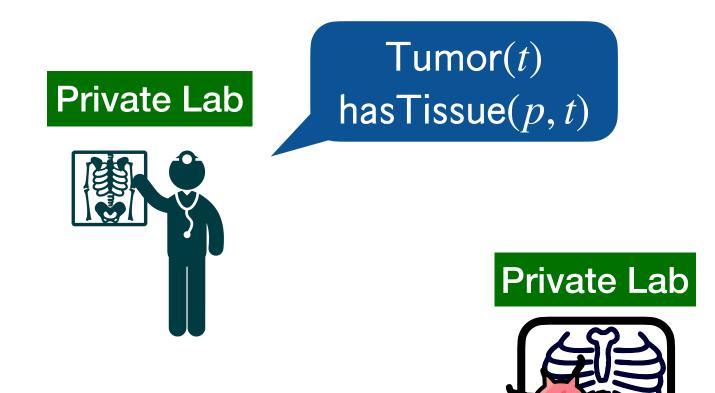


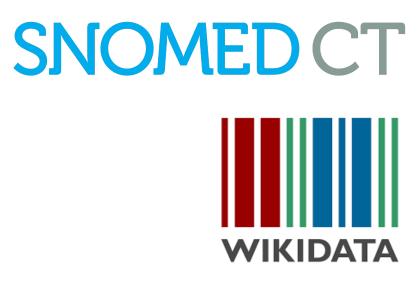




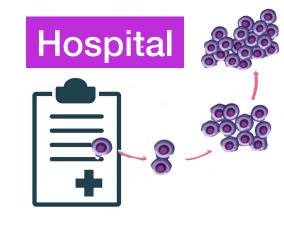


Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!

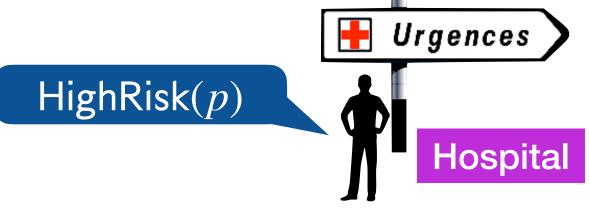




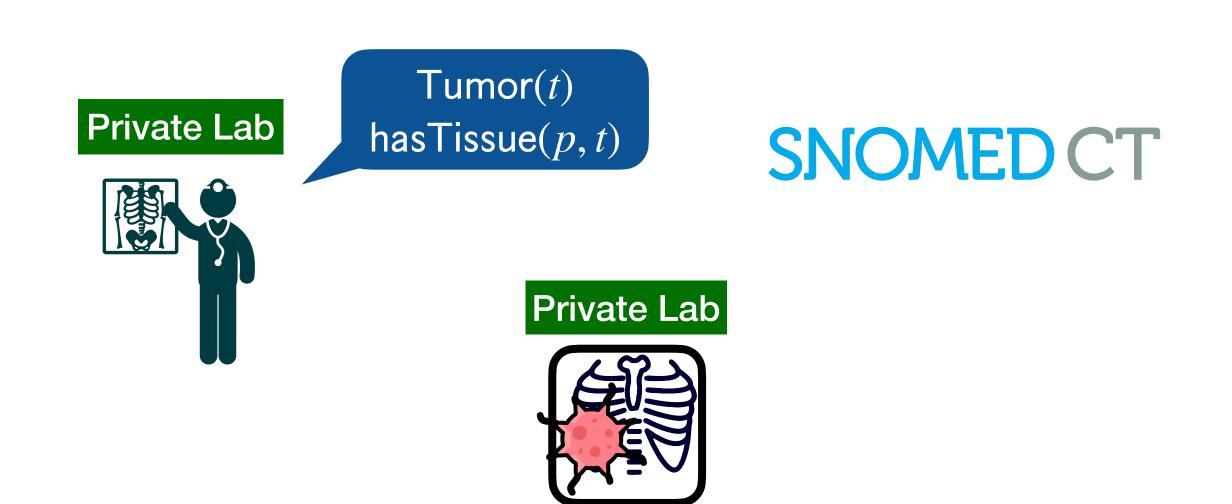


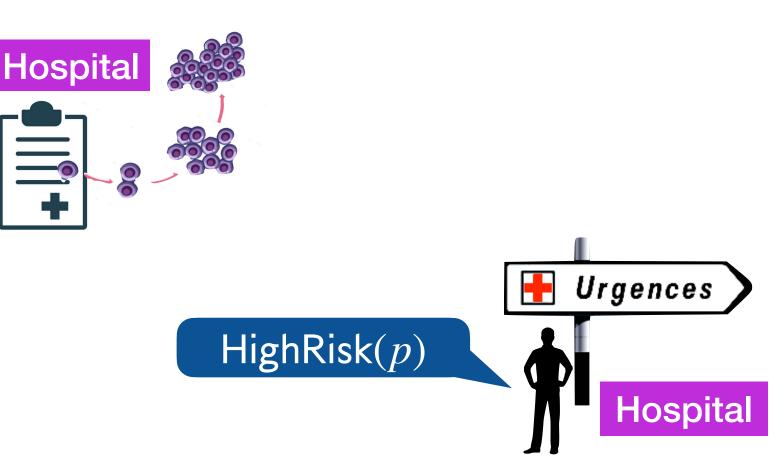






Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



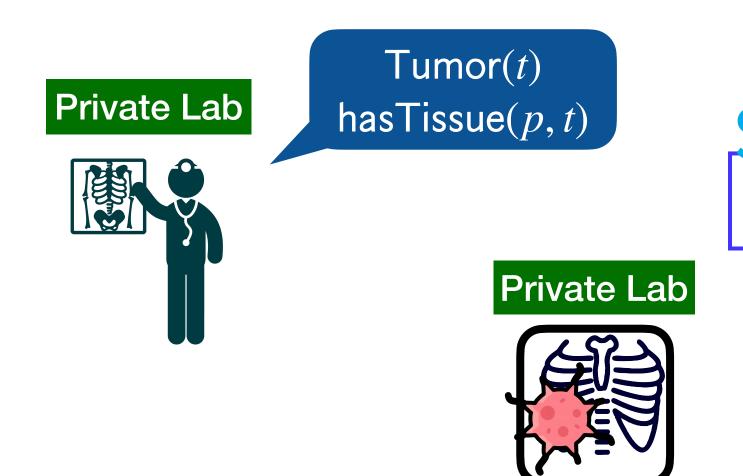


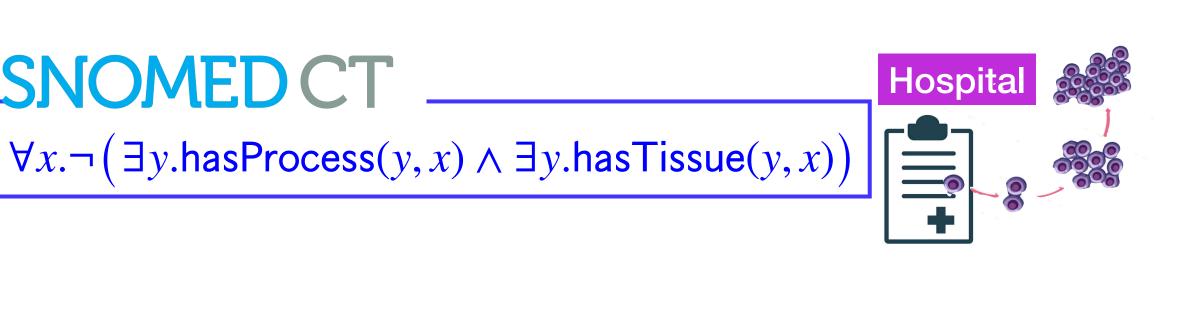
Urgences

HighRisk(p)

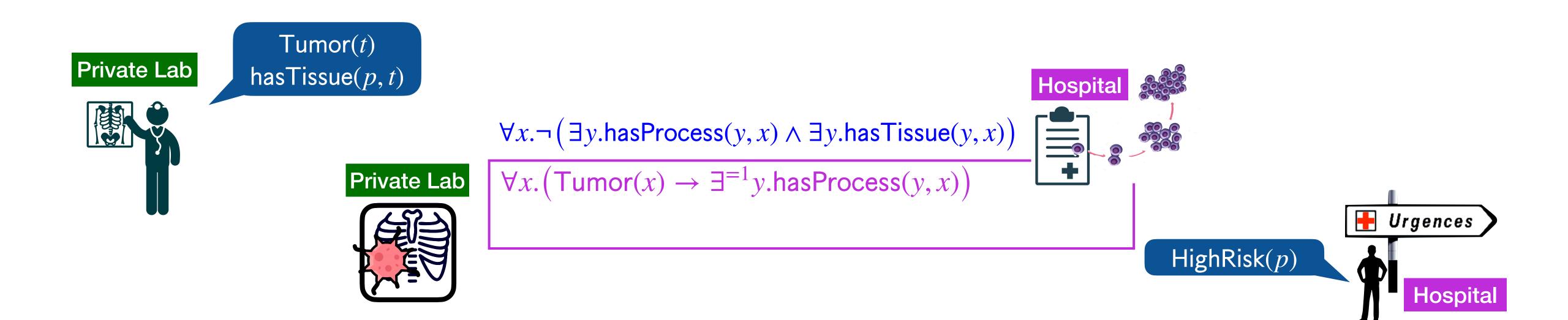
## Motivation

Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!

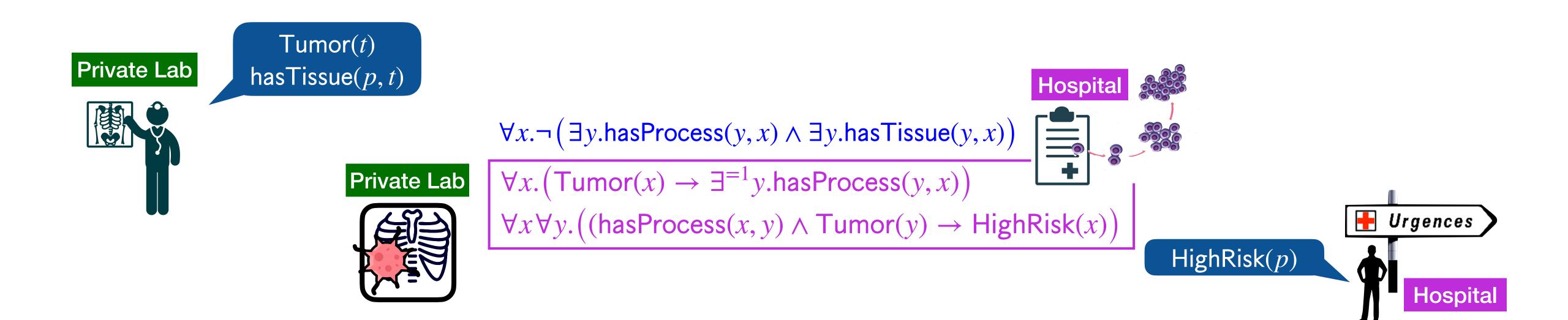




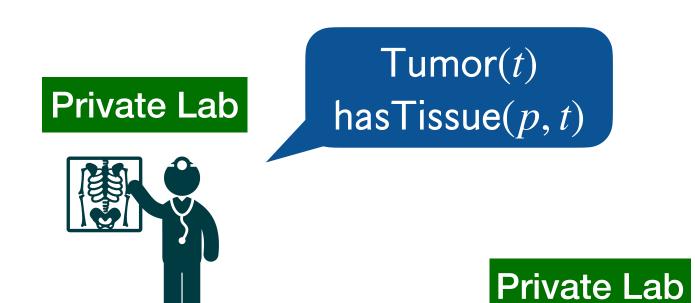
Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!

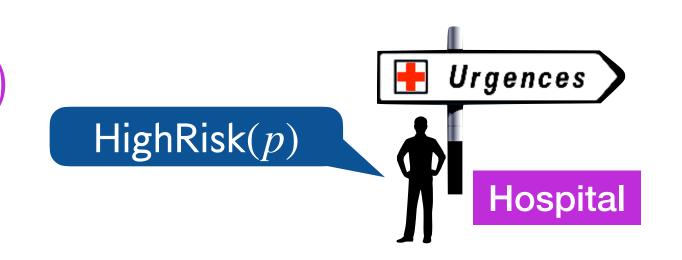


Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



 $\forall x. \neg (\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x))$ 

 $\forall x. (\mathsf{Tumor}(x) \to \exists^{=1} y.\mathsf{hasProcess}(y, x))$  $\forall x \forall y. (\mathsf{(hasProcess}(x, y) \land \mathsf{Tumor}(y) \to \mathsf{HighRisk}(x))$  $\forall x. (\mathsf{Tumor}(x) \to \exists^{=1} y.\mathsf{hasTissue}(y, x))$ 



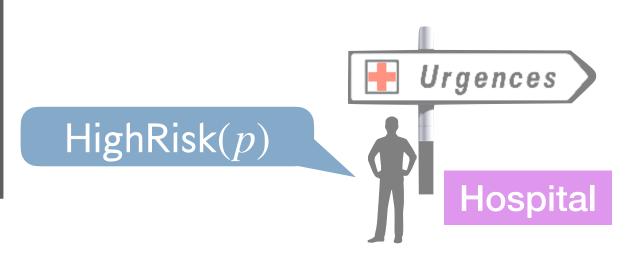
Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!

**Challenge: Integration** 



### Knowledge Fusion

```
\forall x. \neg (\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x))
\forall x. (\mathsf{Tumor}(x) \rightarrow \exists^{=1} y. \mathsf{hasProcess}(y, x))
\forall x \forall y. ((\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \rightarrow \mathsf{HighRisk}(x))
\forall x. (\mathsf{Tumor}(x) \rightarrow \exists^{=1} y. \mathsf{hasTissue}(y, x))
```



Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!

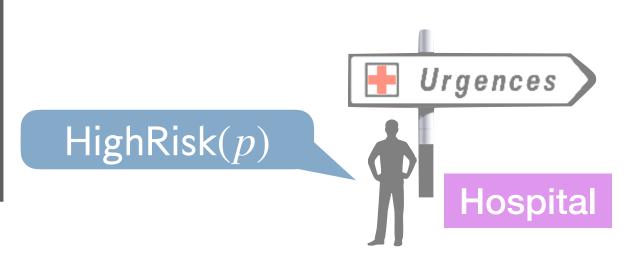
Challenge: Integration

Tumor(t)

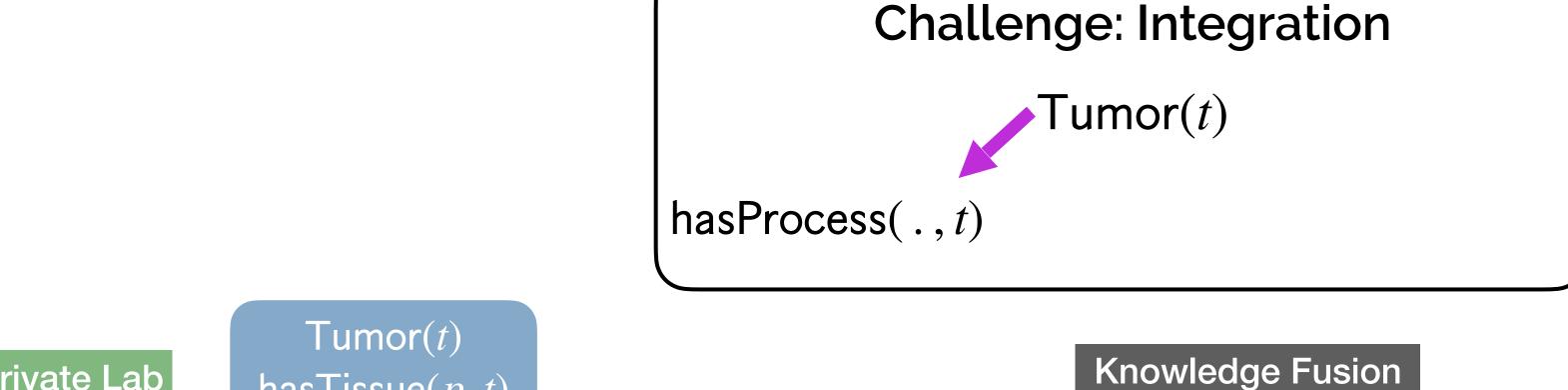


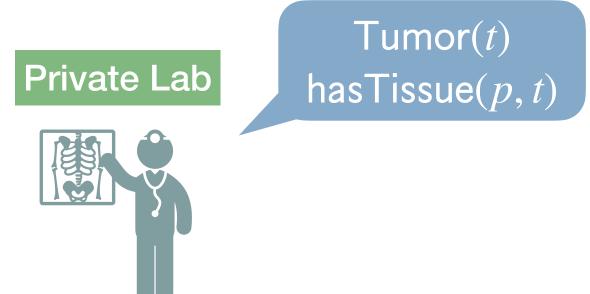
#### **Knowledge Fusion**

```
\forall x. \neg \big(\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x)\big)
\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasProcess}(y, x)\big)
\forall x \forall y. \big((\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \to \mathsf{HighRisk}(x)\big)
\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasTissue}(y, x)\big)
```



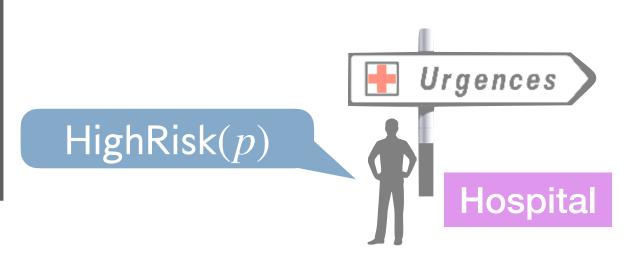
Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!





### $r) \land \exists v \text{ hacTiccue}(v, r)$

```
\forall x. \neg (\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x))
\forall x. (\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasProcess}(y, x))
\forall x \forall y. ((\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \to \mathsf{HighRisk}(x))
\forall x. (\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasTissue}(y, x))
```



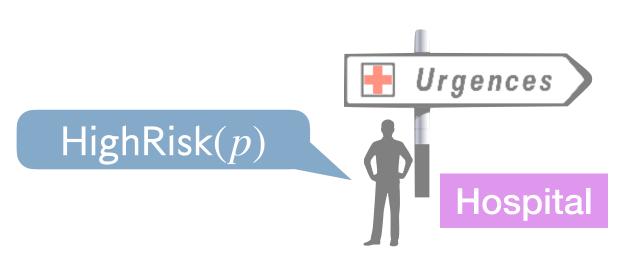
Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!



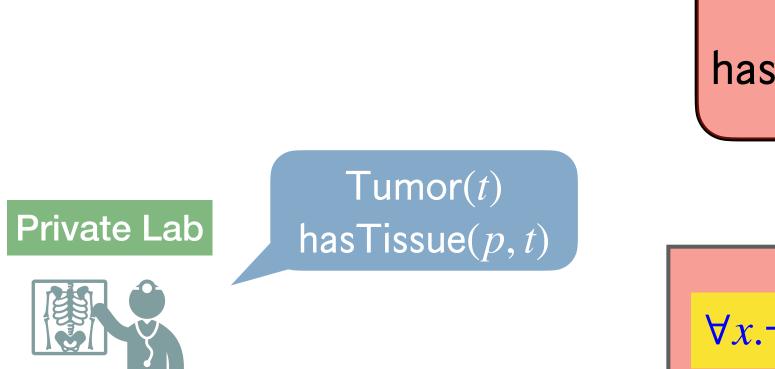
# $\forall x. \neg \big(\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x)\big)$ $\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasProcess}(y, x)\big)$ $\forall x \forall y. \big((\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \to \mathsf{HighRisk}(x)\big)$ $\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasTissue}(y, x)\big)$

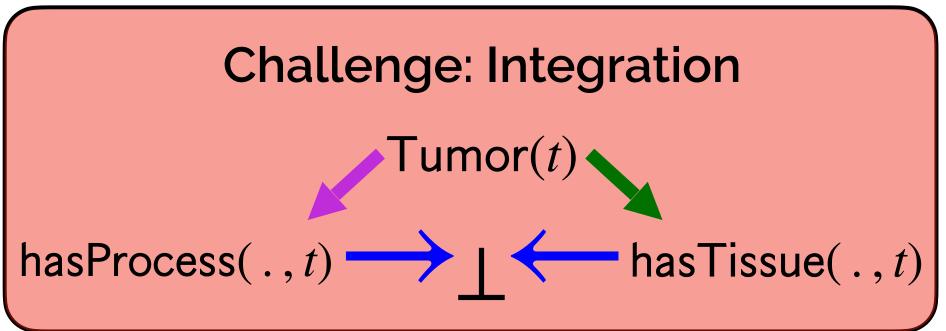
hasTissue(.,t)

Challenge: Integration



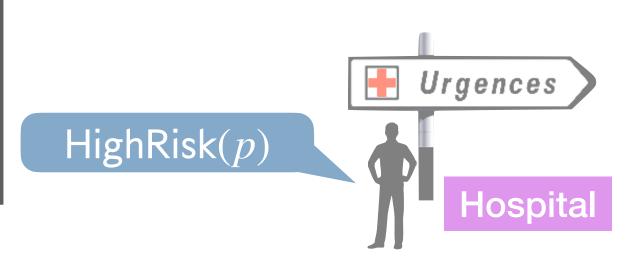
Non-trivial combinations of the huge diversity of knowledge sources available Knowledge sources embed the perspectives of their creators!





### **Knowledge Fusion**

```
\forall x. \neg (\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x))
\forall x. (\mathsf{Tumor}(x) \rightarrow \exists^{=1} y. \mathsf{hasProcess}(y, x))
\forall x \forall y. ((\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \rightarrow \mathsf{HighRisk}(x))
\forall x. (\mathsf{Tumor}(x) \rightarrow \exists^{=1} y. \mathsf{hasTissue}(y, x))
```



Challenge: combining diverse (potentially conflicting) sources without weakening them

- → Multimodal logic characterised by simplified Kripke semantics
- Knowledge relative to "points of view" (standpoints)

Challenge: combining diverse (potentially conflicting) sources without weakening them

- → Multimodal logic characterised by simplified Kripke semantics
- Knowledge relative to "points of view" (standpoints)

```
\forall x. \neg \big(\exists y. \mathsf{hasProcess}(y, x) \land \exists y. \mathsf{hasTissue}(y, x)\big)
\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasTissue}(x, y)\big)
\forall x. \big(\mathsf{Tumor}(x) \to \exists^{=1} y. \mathsf{hasProcess}(y, x)\big)
\forall x \forall y. \big(\mathsf{hasProcess}(x, y) \land \mathsf{Tumor}(y) \to \mathsf{HighRisk}(x)\big)
```

Challenge: combining diverse (potentially conflicting) sources without weakening them

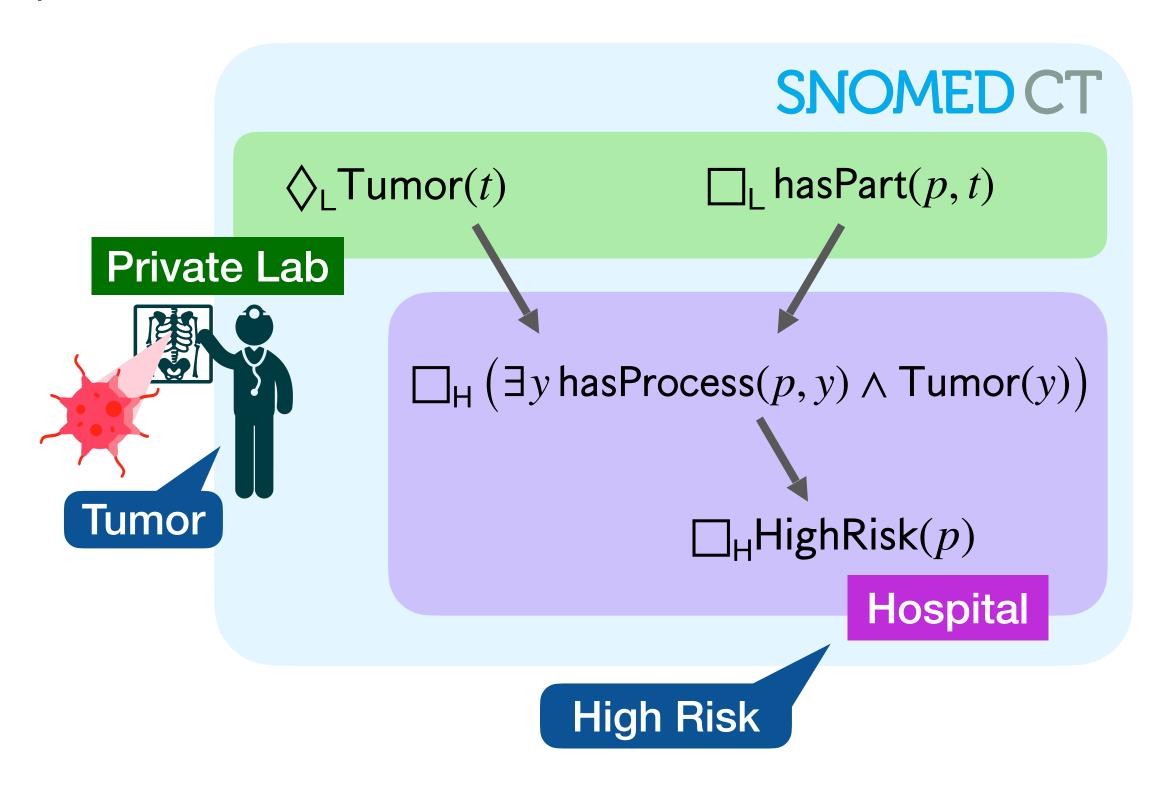
- → Multimodal logic characterised by simplified Kripke semantics
- Knowledge relative to "points of view" (standpoints)

Challenge: combining diverse (potentially conflicting) sources without weakening them

- → Multimodal logic characterised by simplified Kripke semantics
- → Knowledge relative to "points of view" (standpoints)

Challenge: combining diverse (potentially conflicting) sources without weakening them

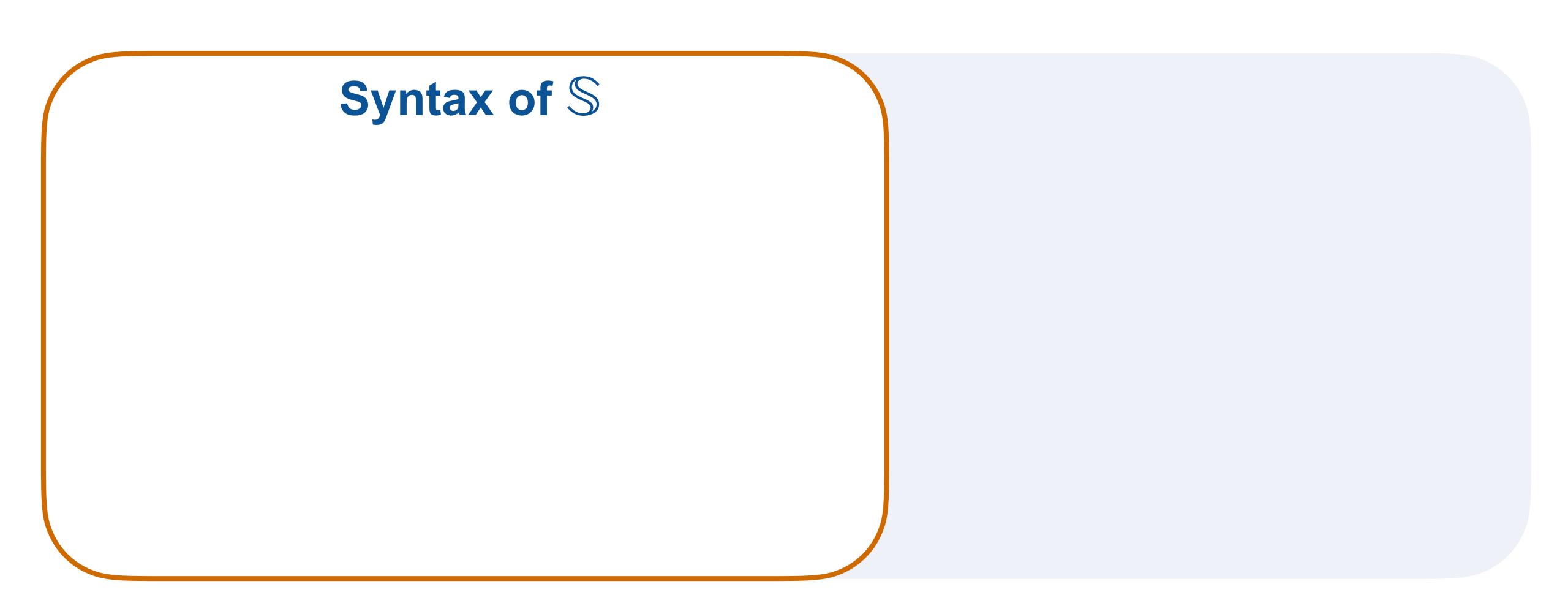
- → Multimodal logic characterised by simplified Kripke semantics
- Knowledge relative to "points of view" (standpoints)



### Contents

- → Motivation for the framework (DONE)
- ightharpoonup First Order Standpoint Logic and Monodic Standpoint  $C^2$  (THE LANGUAGE)
- **→** Transformations (PREPROCESSING)
- ightharpoonup Satisfiability in Monodic Standpoint  $C^2$  (MAIN TECHNICAL RESULT)
- → Application to Ontology Languages (OWL)
- → Nominals Cause Trouble
- → Final Observations and Conclusion

# First-Order Standpoint Logic (Syntax and Semantics)



## Syntax of S

Signature  $\langle \mathbf{P}, \mathbf{C}, \mathbf{S} \rangle$  of predicates, constants and standpoints.

## Syntax of S

Signature  $\langle P, C, S \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, ..., t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$

-  $\diamondsuit_{\mathrm{e}}\phi$  — "To e, it is **conceivable** that  $\phi$ "

## Syntax of S

Signature  $\langle P,C,S \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, \dots, t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$
 counting quantifiers with  $\triangleleft \in \{ \leq, =, \geq \},$ 

-  $\diamondsuit_{\mathrm{e}}\phi$  — "To e, it is **conceivable** that  $\phi$ "

## Syntax of S

Signature  $\langle P, C, S \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, \dots, t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$
 counting quantifiers with  $\triangleleft \in \{ \leq, =, \geq \}$ ,

$$\langle \rangle_{\rm e} \neg \phi \equiv \neg \square_{\rm e} \phi \text{ (dual)}$$

- $\diamondsuit_{\rm e}\phi$  "To e, it is **conceivable** that  $\phi$ "
- $\square_e \phi \longrightarrow$  "To e, it is **unequivocal** that  $\phi$ "

## Syntax of S

Signature  $\langle \mathbf{P}, \mathbf{C}, \mathbf{S} \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, \dots, t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$

$$\text{counting quantifiers with } \triangleleft \in \{ \leq, =, \geq \},$$

$$\diamondsuit_{\rm e} \neg \phi \equiv \neg \square_{\rm e} \phi \text{ (dual)}$$

Standpoint expressions:

$$e_1, e_2 ::= * | s | e_1 \cup e_2 | e_1 \cap e_2 | e_1 \setminus e_2$$

- $\diamondsuit_{\rm e}\phi$   $\longrightarrow$  "To e, it is **conceivable** that  $\phi$ "
- $\square_{\rm e} \phi \longrightarrow$  "To e, it is **unequivocal** that  $\phi$ "

## Syntax of S

Signature  $\langle \mathbf{P}, \mathbf{C}, \mathbf{S} \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, \dots, t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$

$$\text{counting quantifiers with } \triangleleft \in \{ \leq, =, \geq \},$$

$$\diamondsuit_{\mathsf{e}} \neg \phi \equiv \neg \square_{\mathsf{e}} \phi \text{ (dual)}$$

Standpoint expressions:

$$e_1, e_2 ::= * | s | e_1 \cup e_2 | e_1 \cap e_2 | e_1 \setminus e_2$$

- $\diamondsuit_{\rm e}\phi$   $\longrightarrow$  "To e, it is **conceivable** that  $\phi$ "
- $\square_{\rm e} \phi \longrightarrow$  "To e, it is **unequivocal** that  $\phi$ "

#### A formula is:

- **Monodic** : at most one free variable in each subformula of the form  $\lozenge_{\rm e}\phi$  (or  $\square_{\rm e}\phi$ )

$$\forall x. \mathsf{Tissue}(x) \to \square_* \mathsf{Tissue}(x)$$
  $\forall x \forall y. \mathsf{hasTissue}(x, y) \to \square_* \mathsf{hasTissue}(x, y)$ 

## Syntax of S

Signature  $\langle \mathbf{P}, \mathbf{C}, \mathbf{S} \rangle$  of predicates, constants and standpoints. FOSL formulas:

$$\phi, \psi ::= P(t_1, \dots, t_k) \mid t_1 \doteq t_2 \mid \neg \phi \mid \phi \land \psi \mid \exists^{\triangleleft n} x. \phi \mid \Diamond_e \phi$$

$$\text{counting quantifiers with } \triangleleft \in \{ \leq, =, \geq \},$$

$$\diamondsuit_{\mathsf{e}} \neg \phi \equiv \neg \square_{\mathsf{e}} \phi \text{ (dual)}$$

Standpoint expressions:

$$e_1, e_2 ::= * | s | e_1 \cup e_2 | e_1 \cap e_2 | e_1 \setminus e_2$$

- $\lozenge_{\mathrm{e}} \phi$   $\longrightarrow$  "To e, it is **conceivable** that  $\phi$ "
- $\square_{\rm e} \phi \longrightarrow$  "To e, it is **unequivocal** that  $\phi$ "

### A formula is:

- **Monodic** : at most one free variable in each subformula of the form  $\lozenge_{\rm e}\phi$  (or  $\square_{\rm e}\phi$ )

$$\forall x. \mathsf{Tissue}(x) \to \square_* \mathsf{Tissue}(x)$$
  $\forall x \forall y. \mathsf{hasTissue}(x,y) \to \square_* \mathsf{hasTissue}(x,y)$ 

-  $C^2$ : only 2 variables, all predicates of arity  $\leq 2$ 

$$\square_* \forall x \forall y. \mathsf{hasTissue}(x, y) \rightarrow \exists x. \mathsf{hasCell}(y, x)$$

V

### **Semantics of** \$

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

### **Semantics of** \$

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

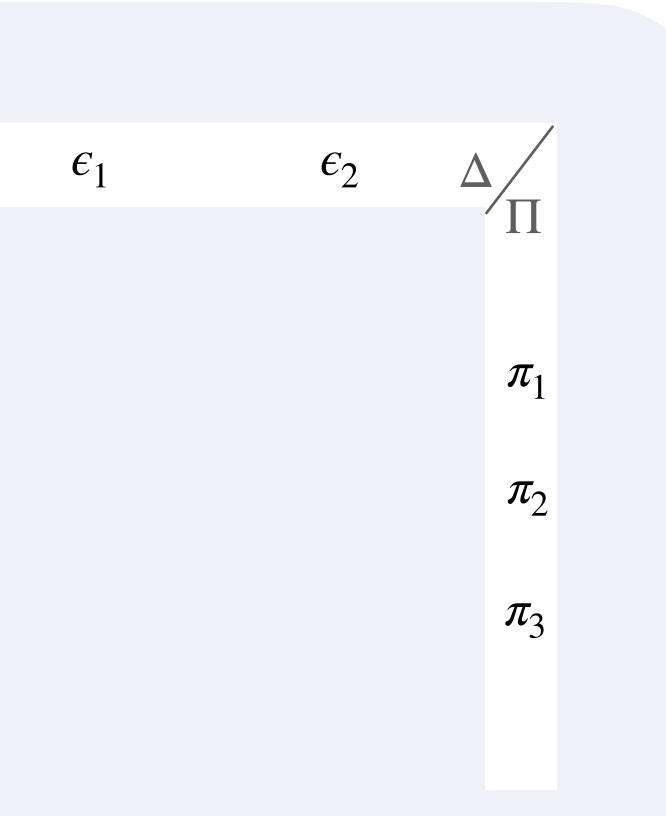
•  $\Delta = \{\epsilon_1, \epsilon_2\}$  domain

 $\epsilon_1$   $\epsilon_2$   $\Delta$ 

### **Semantics of** S

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

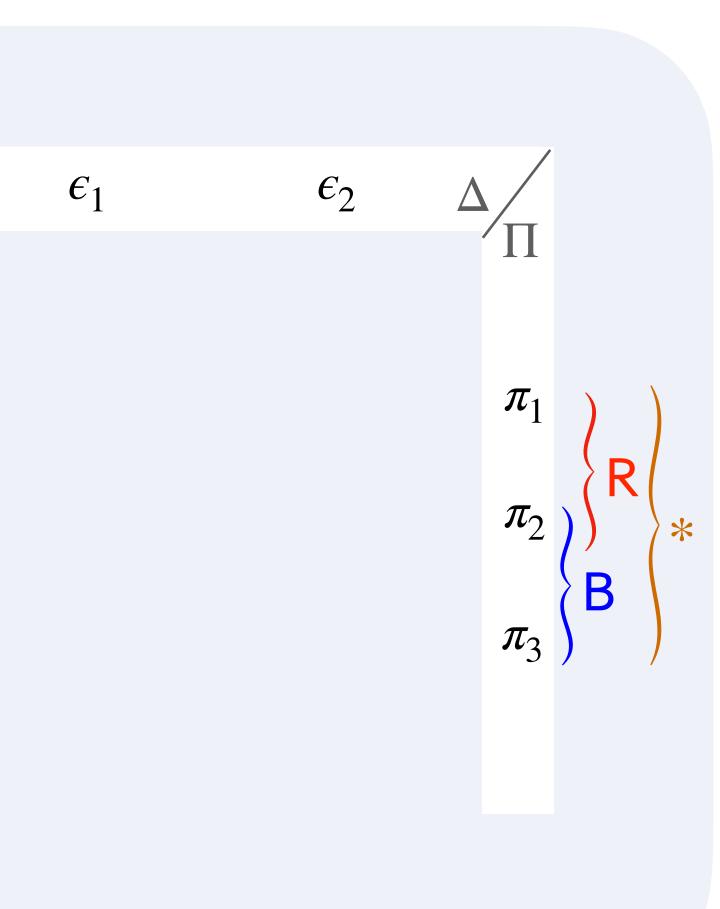
- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds



### **Semantics of** S

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

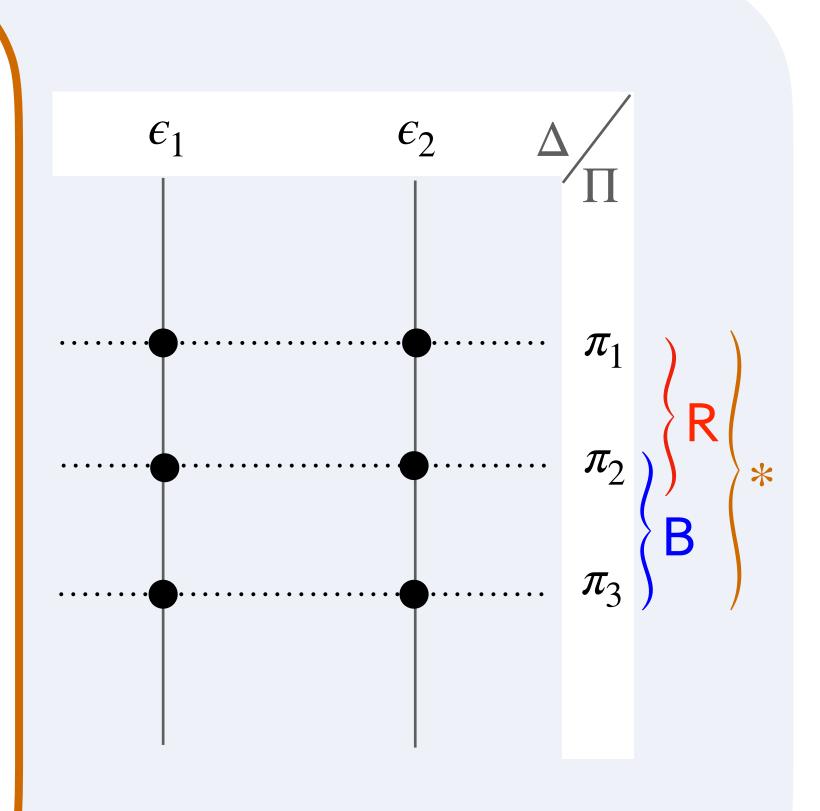
- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment



### **Semantics of** S

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment
- $\gamma(\pi_1) = \{p \mapsto \emptyset, ...\}$  interpretation assignment to worlds

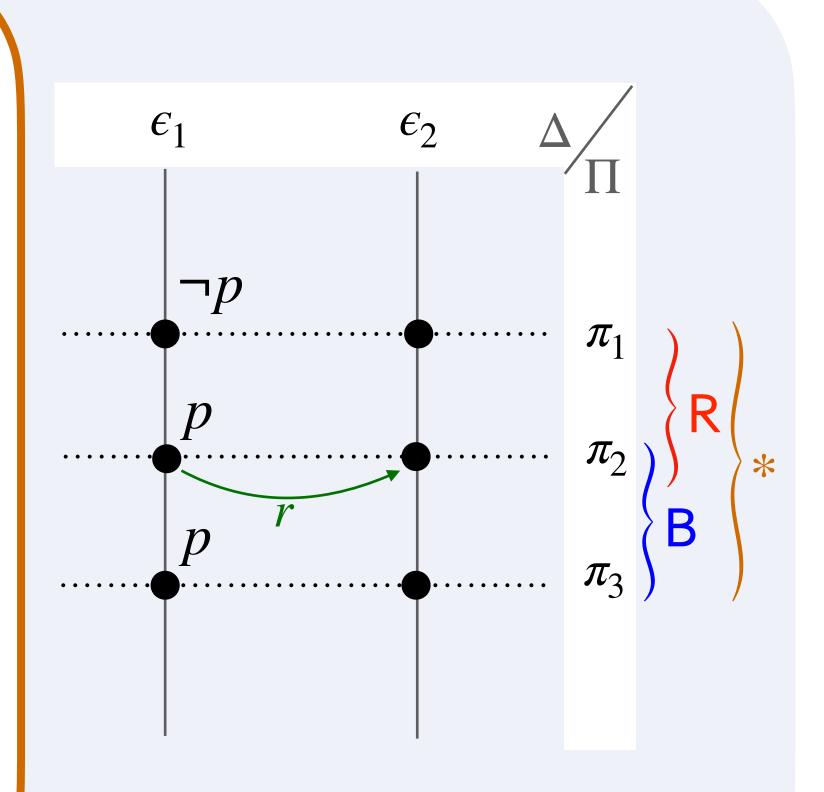


#### **Semantics of** \$

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment
- $\gamma(\pi_1) = \{p \mapsto \emptyset, ...\}$  interpretation assignment to worlds

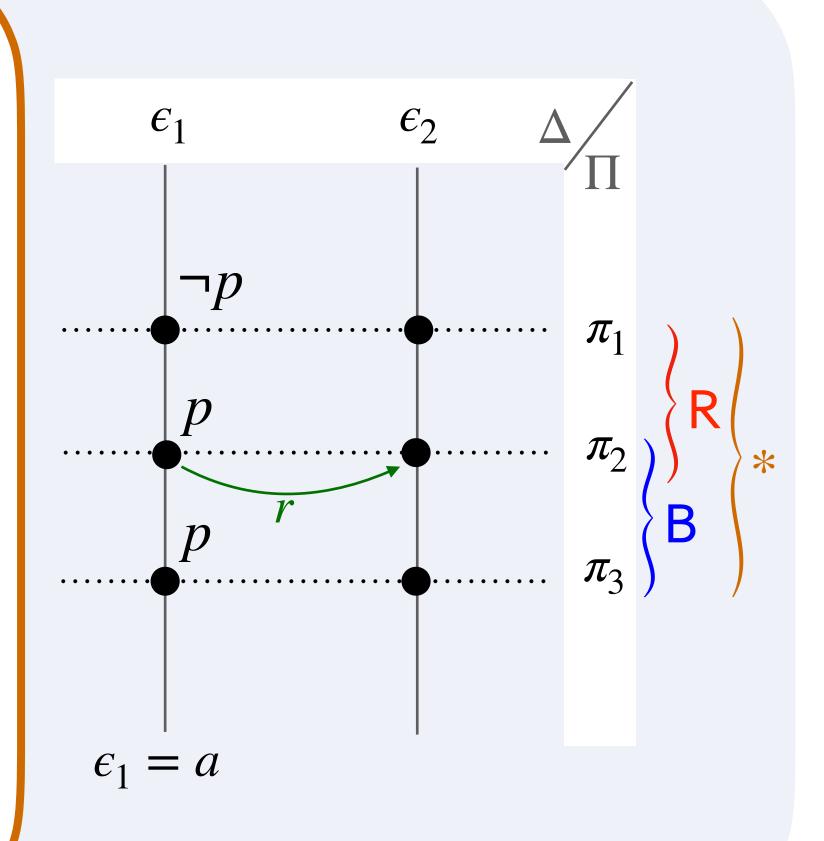


#### **Semantics of** S

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment
- $\gamma(\pi_1) = \{p \mapsto \emptyset, ...\}$  interpretation assignment to worlds

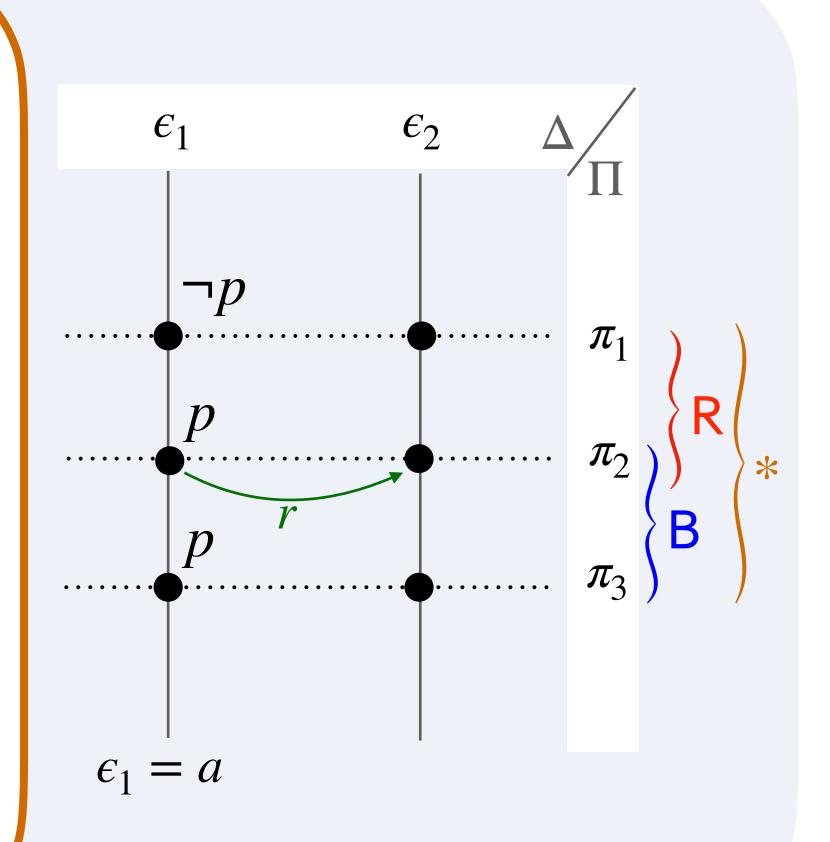


#### **Semantics of** \$

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain  $\mathcal{M} \models \Box_{\mathsf{B}} p(a)$
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment
- $\gamma(\pi_1) = \{p \mapsto \emptyset, ...\}$  interpretation assignment to worlds

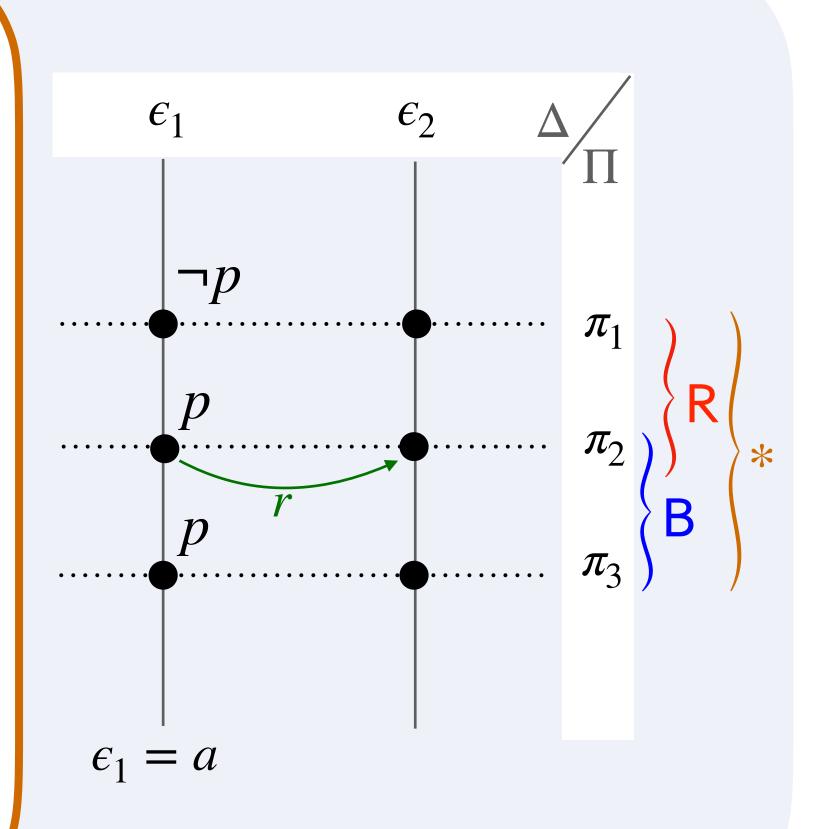


#### **Semantics of** \$

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\mathcal{M} \models \square_{\mathsf{B}} p(a)$
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\mathcal{M} \models \exists x. (\Diamond_{\mathsf{R}} p(x) \land \Diamond_{\mathsf{R}} \neg p(x))$
- $\sigma(R) = \{\pi_1, \pi_2\}$  standpoint  $\sigma(B) = \{\pi_2, \pi_3\}$  assignment
- $\gamma(\pi_1) = \{p \mapsto \emptyset, \ldots\}$  interpretation assignment to worlds

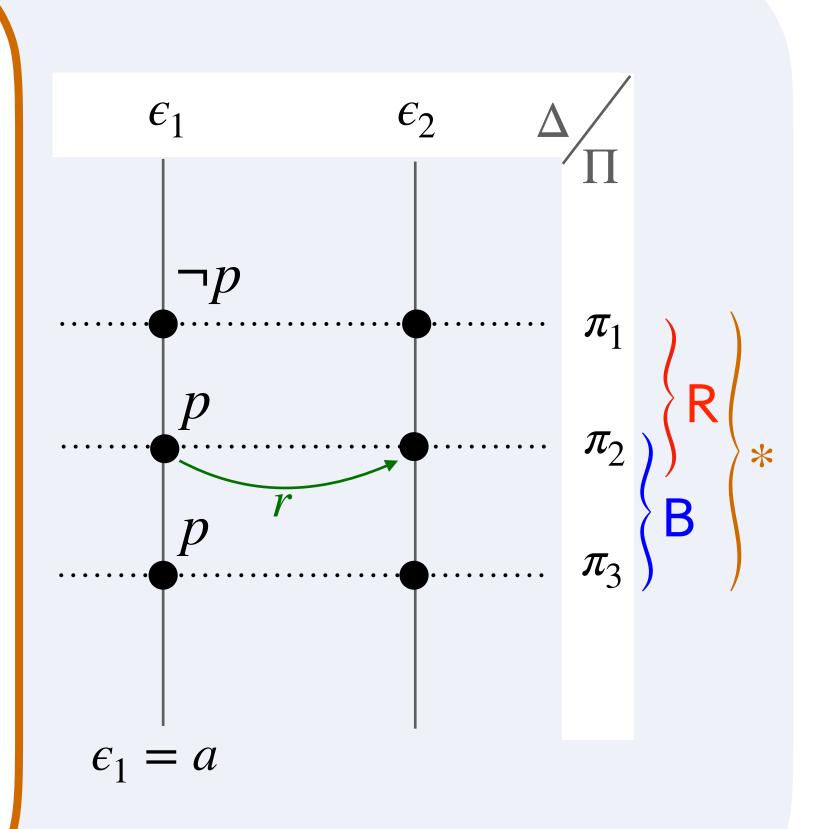


#### **Semantics of** \$

Relational semantics:

$$\mathcal{M} = \langle \Delta, \Pi, \sigma, \gamma \rangle$$

- $\Delta = \{\epsilon_1, \epsilon_2\}$  domain
- $\mathcal{M} \models \square_{\mathsf{B}} p(a)$
- $\Pi = \{\pi_1, \pi_2, \pi_3\}$  worlds
- $\mathcal{M} \models \exists x. (\Diamond_{\mathsf{R}} p(x) \land \Diamond_{\mathsf{R}} \neg p(x))$
- $\begin{array}{l} \bullet \ \sigma(\mathsf{R}) = \{\pi_1, \pi_2\} \quad \text{standpoint} \quad \bullet \ \mathscr{M} \models \square_\mathsf{R} \ \forall x. p(x) \to (\exists y. r(x,y)) \\ \sigma(\mathsf{B}) = \{\pi_2, \pi_3\} \quad \text{assignment} \end{array}$
- $\gamma(\pi_1) = \{p \mapsto \emptyset, \ldots\}$  interpretation assignment to worlds



# Transformations

monodic  $C^2$  FOSL  $\longrightarrow$  nullary- and constant-free S5 monodic  $C^2$  FOSL

monodic  $C^2$  FOSL  $\longrightarrow$  nullary- and constant-free S5 monodic  $C^2$  FOSL

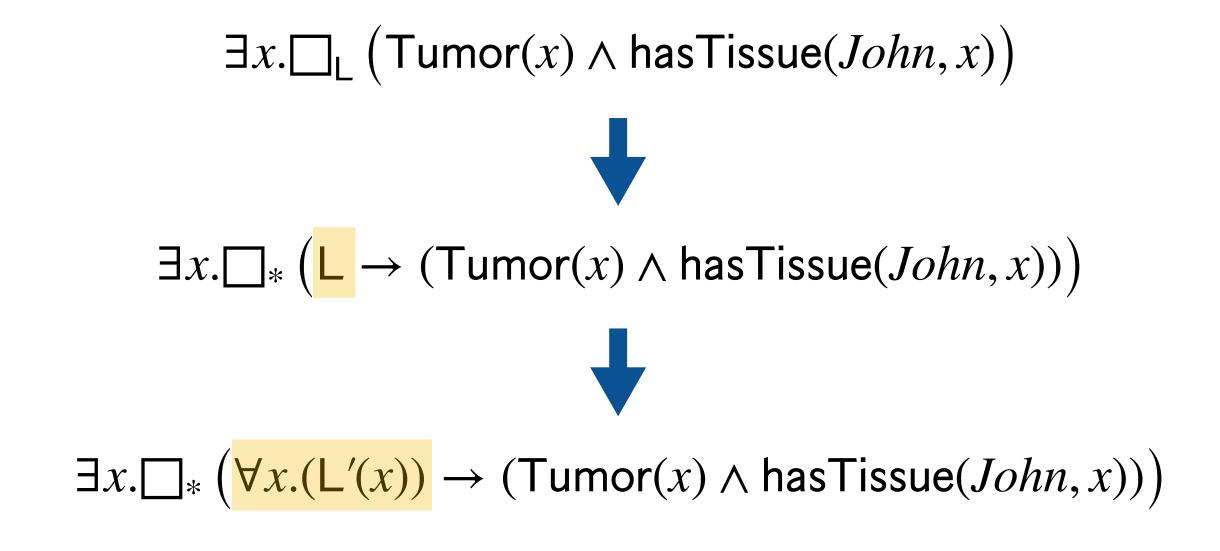
 $\exists x. \Box_{\mathsf{L}} (\mathsf{Tumor}(x) \land \mathsf{hasTissue}(John, x))$ 

monodic  $C^2$  FOSL  $\longrightarrow$  nullary- and constant-free S5 monodic  $C^2$  FOSL

 $\exists x. \Box_{\mathsf{L}} (\mathsf{Tumor}(x) \land \mathsf{hasTissue}(John, x))$   $\exists x. \Box_{*} (\mathsf{L} \rightarrow (\mathsf{Tumor}(x) \land \mathsf{hasTissue}(John, x)))$ 

S5: no standpoint expressions except \*
Simulate standpoint expressions by
marking worlds with nullary predicates.

monodic  $C^2$  FOSL  $\longrightarrow$  nullary- and constant-free S5 monodic  $C^2$  FOSL

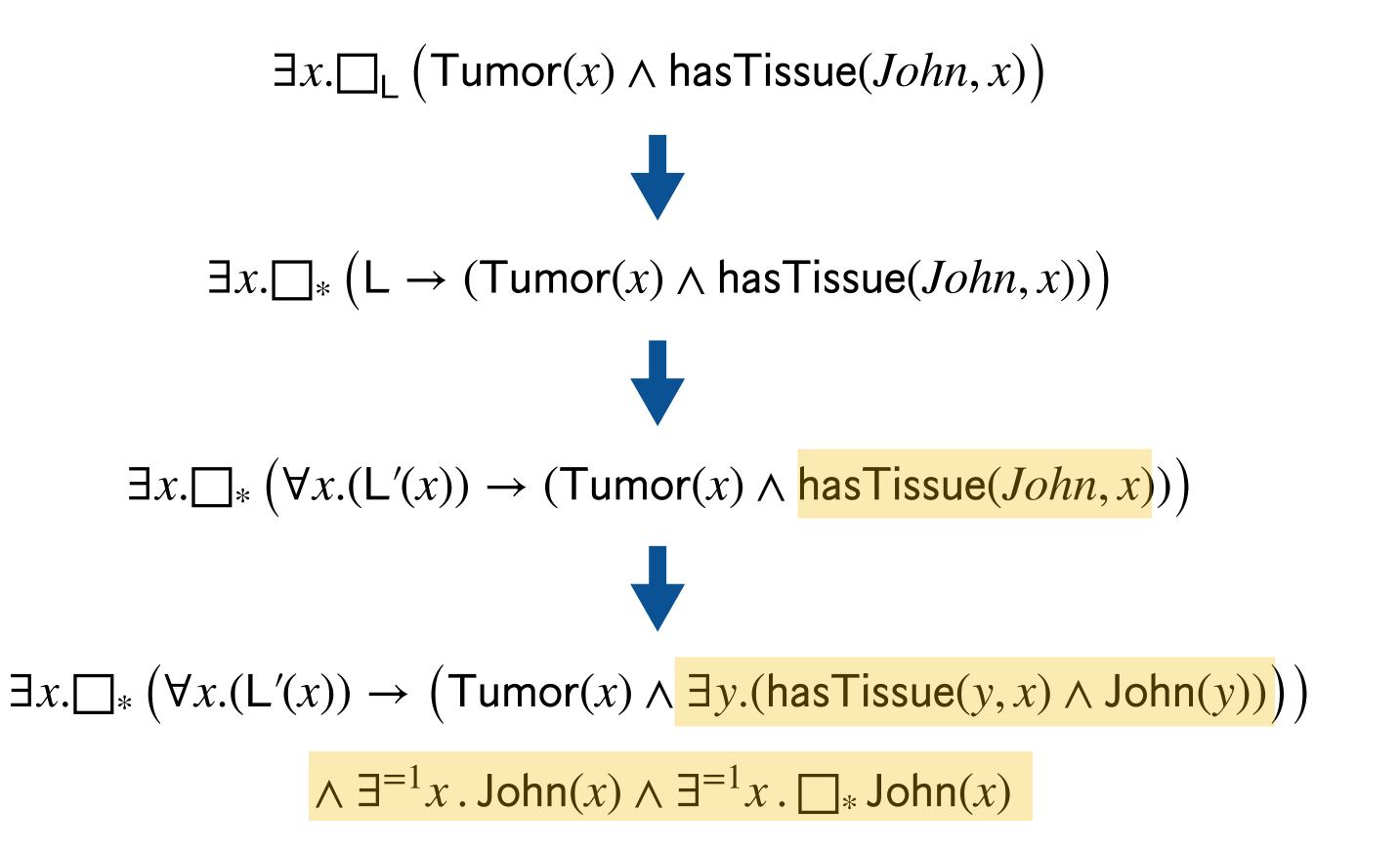


**S5:** no standpoint expressions except \*
Simulate standpoint expressions by
marking worlds with nullary predicates.

nullary-free: all predicates of arity ≥1

Easy: Simulate nullary predicates by immediately quantified unary ones.

monodic  $C^2$  FOSL  $\longrightarrow$  nullary- and constant-free S5 monodic  $C^2$  FOSL



S5: no standpoint expressions except \*

Simulate standpoint expressions by marking worlds with nullary predicates.

nullary-free: all predicates of arity ≥1

Easy: Simulate nullary predicates by immediately quantified unary ones.

constant-free: no constants

Simulate constants by unary predicates (axiomatising uniqueness and rigidity).

# Satisfiability in Monodic Standpoint $C^2$

#### Context

 $\rightarrow$   $C^2$  is NExpTime-complete

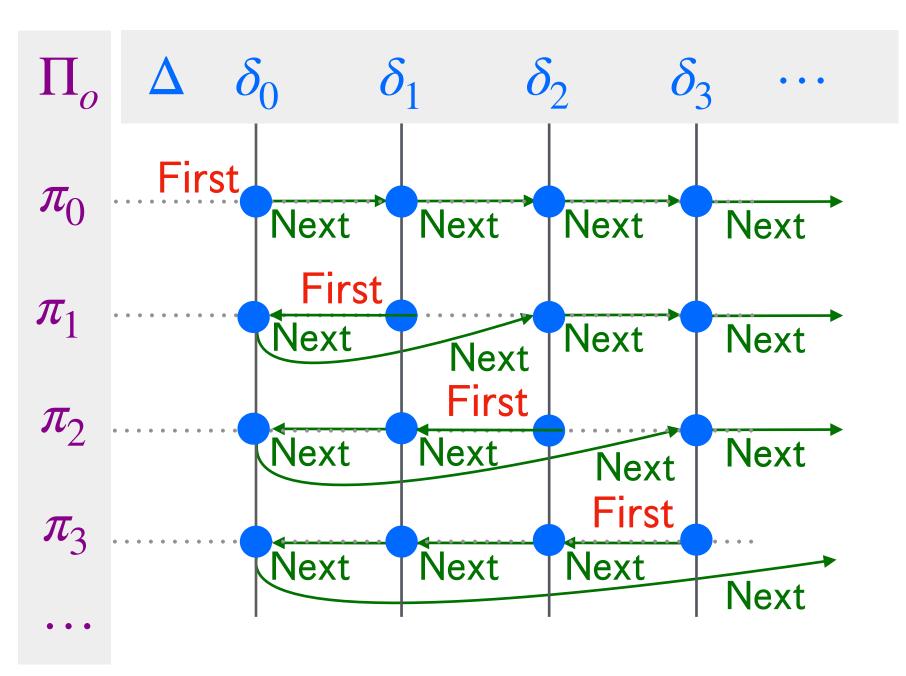
#### Context

- $\rightarrow$   $C^2$  is NExpTime-complete
- → for other logics' standpoint extensions, we often relied on existence of models with few worlds ("small model property")

#### Context

- $\rightarrow$   $C^2$  is NExpTime-complete
- → for other logics' standpoint extensions, we often relied on existence of models with few worlds ("small model property")
- → yet, here we can enforce infinitely many worlds:

$$\forall x. \diamondsuit_* (\mathsf{First}(x))$$
  $\square_* \exists^{=1} x. (\mathsf{First}(x))$  every entity is first only one first entity in some world per world



(nullary- and constant-free S5)

monodic  $C^2$  FOSL formula

(nullary- and constant-free S5)

monodic  $C^2$  FOSL formula



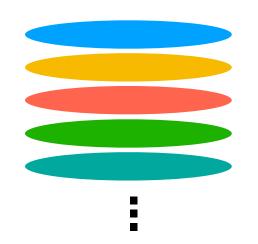
(nullary- and constant-free S5)

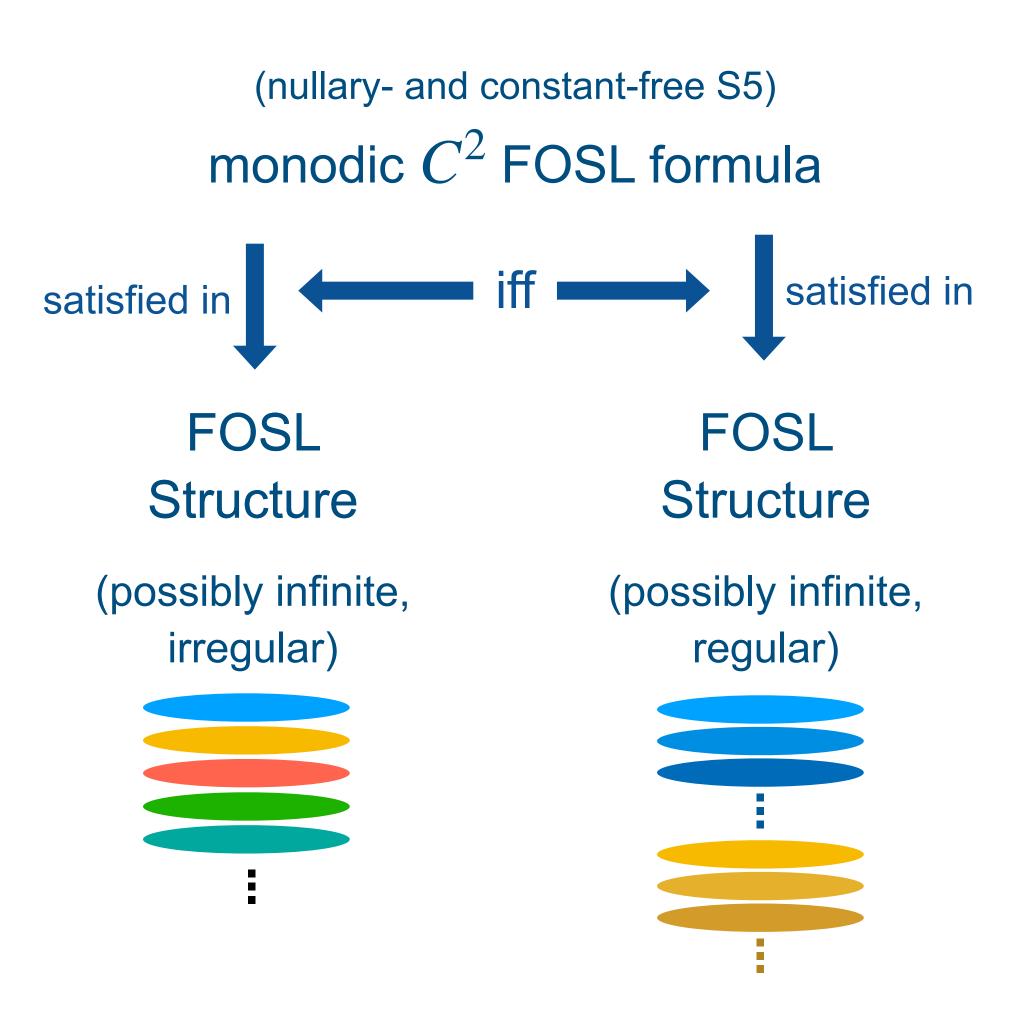
monodic  $C^2$  FOSL formula

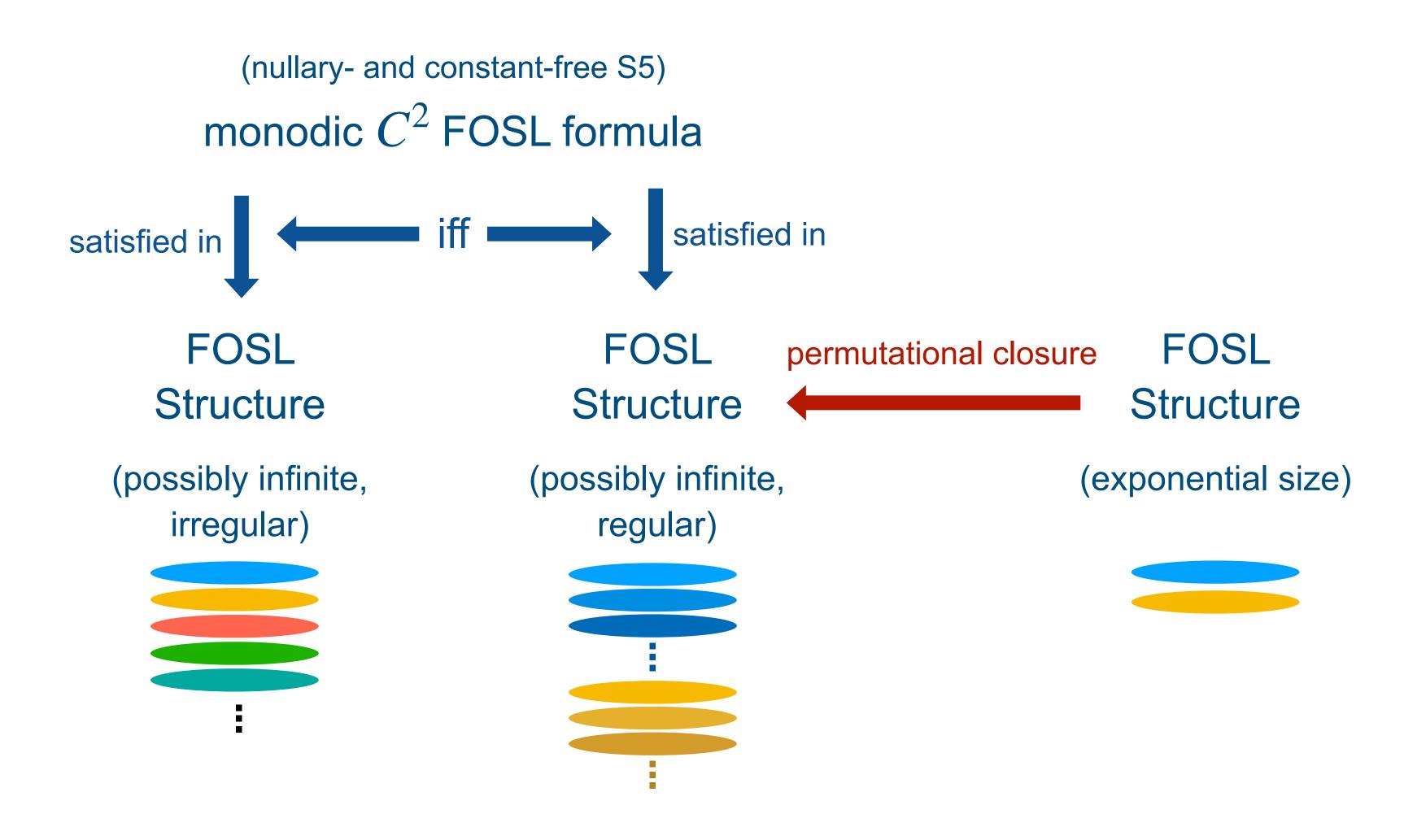


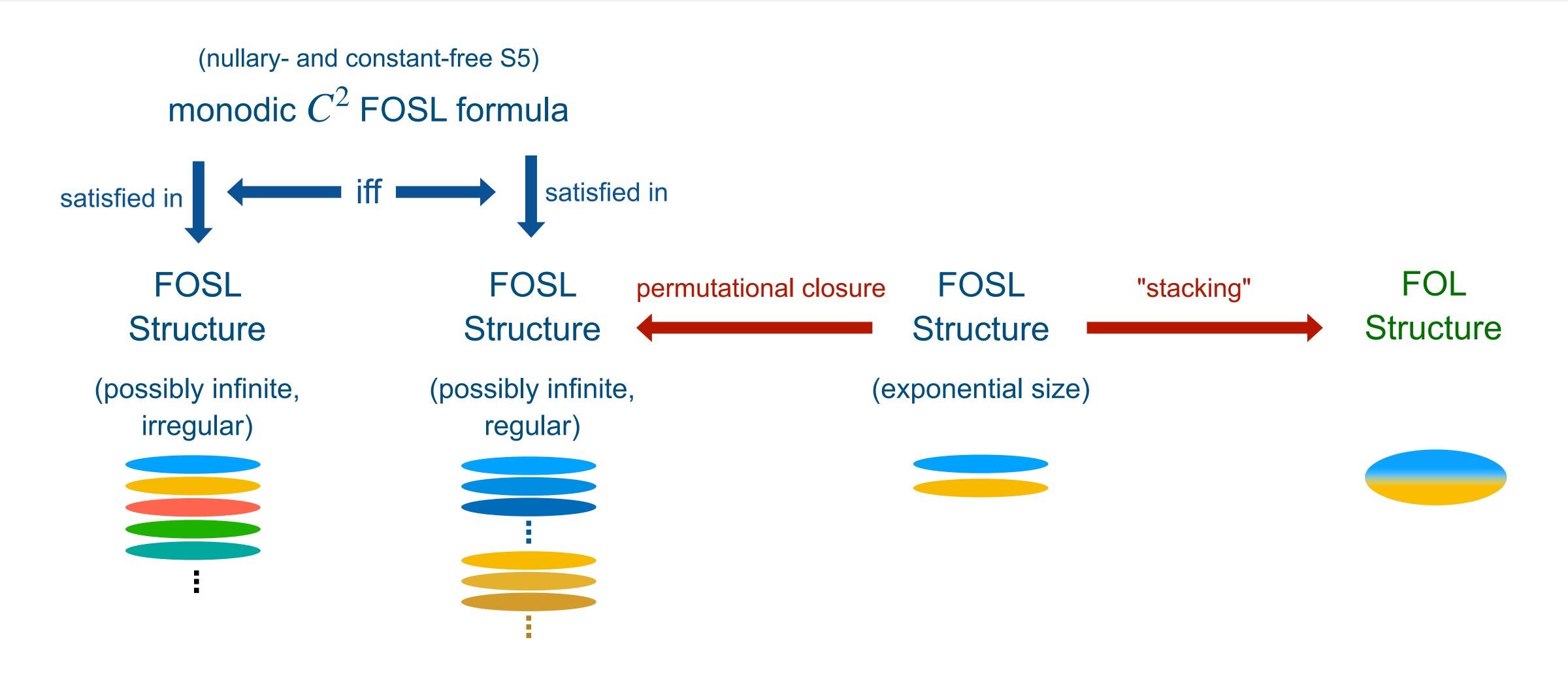
FOSL Structure

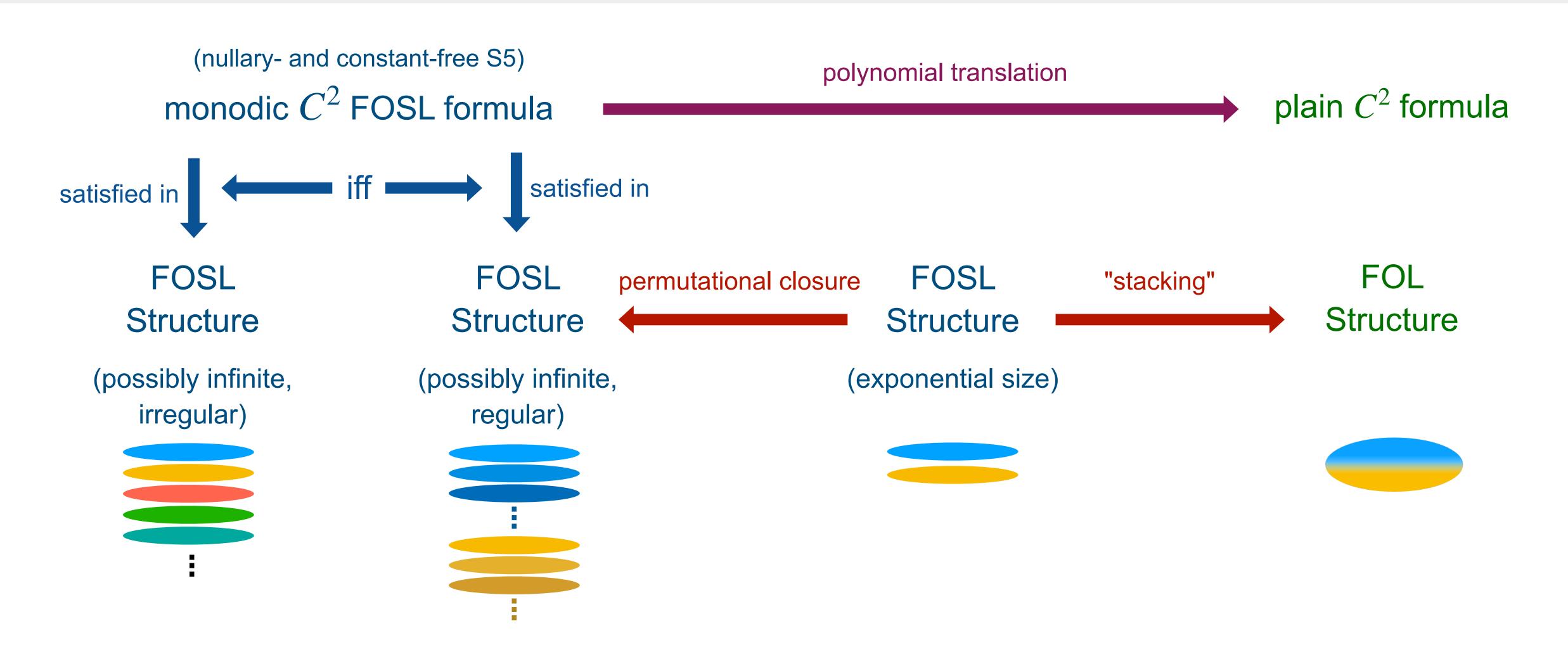
(possibly infinite, irregular)

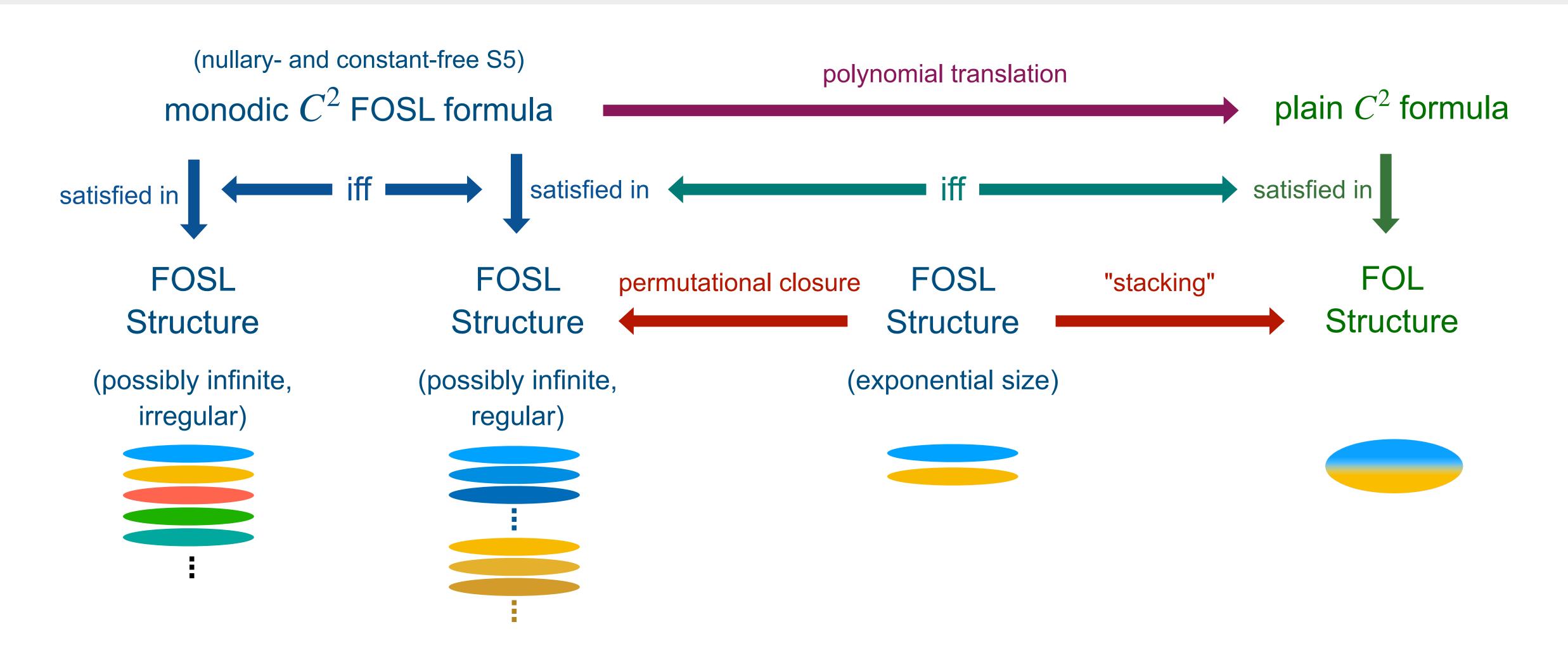


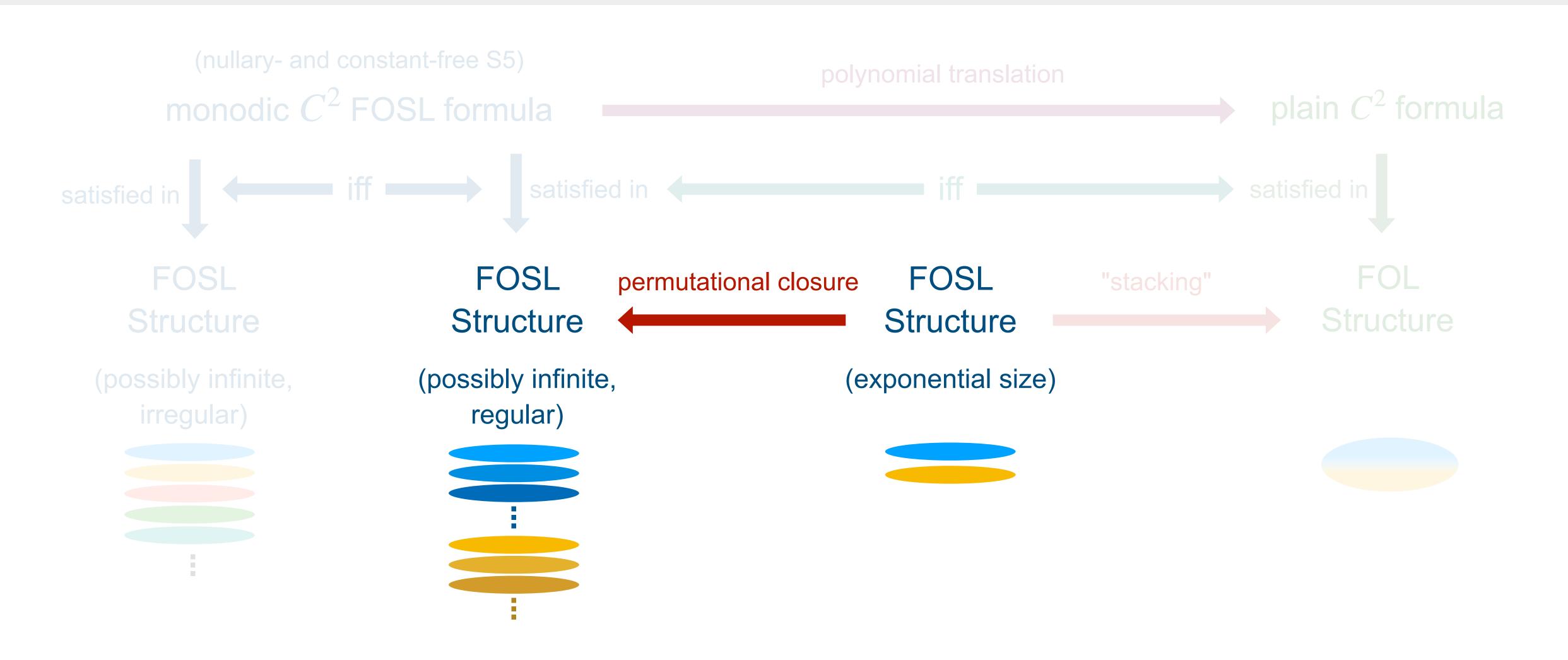


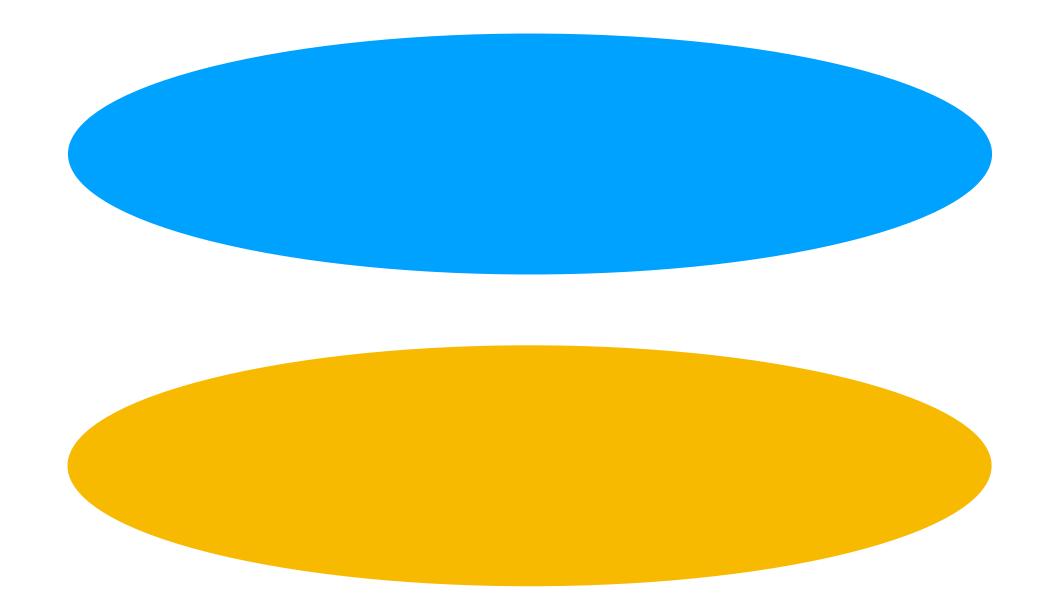


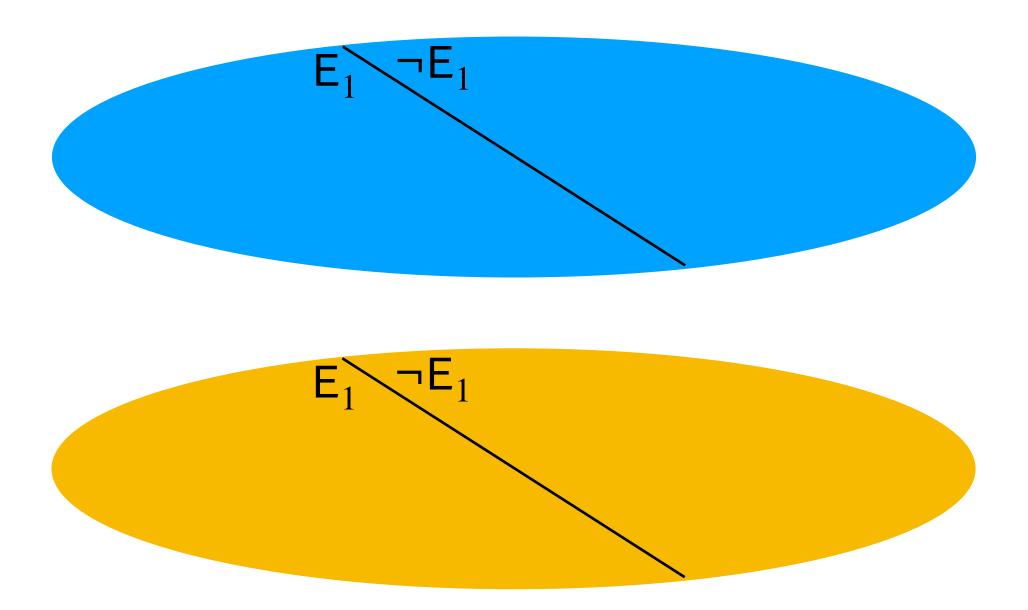


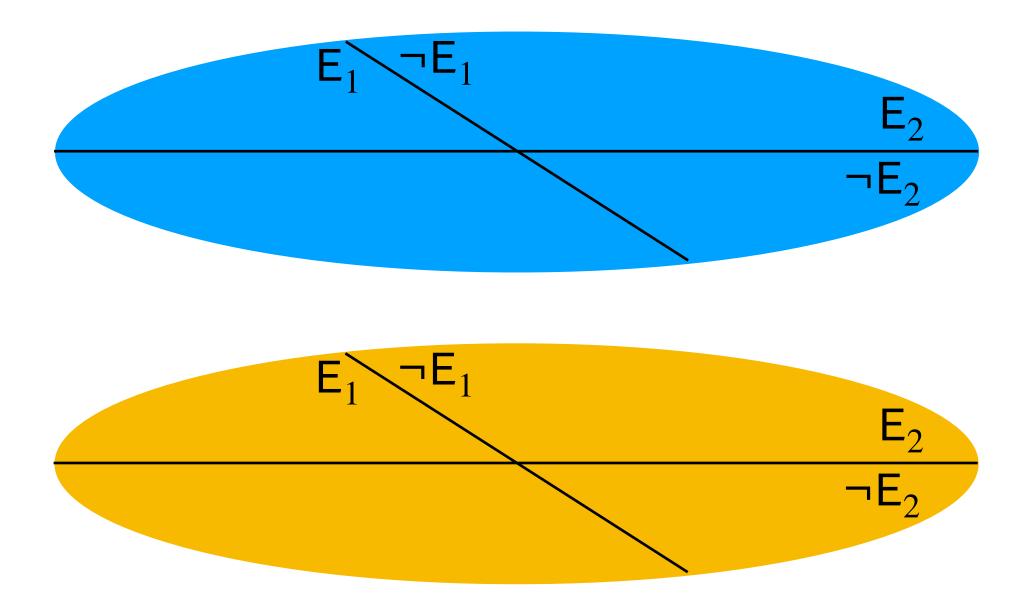


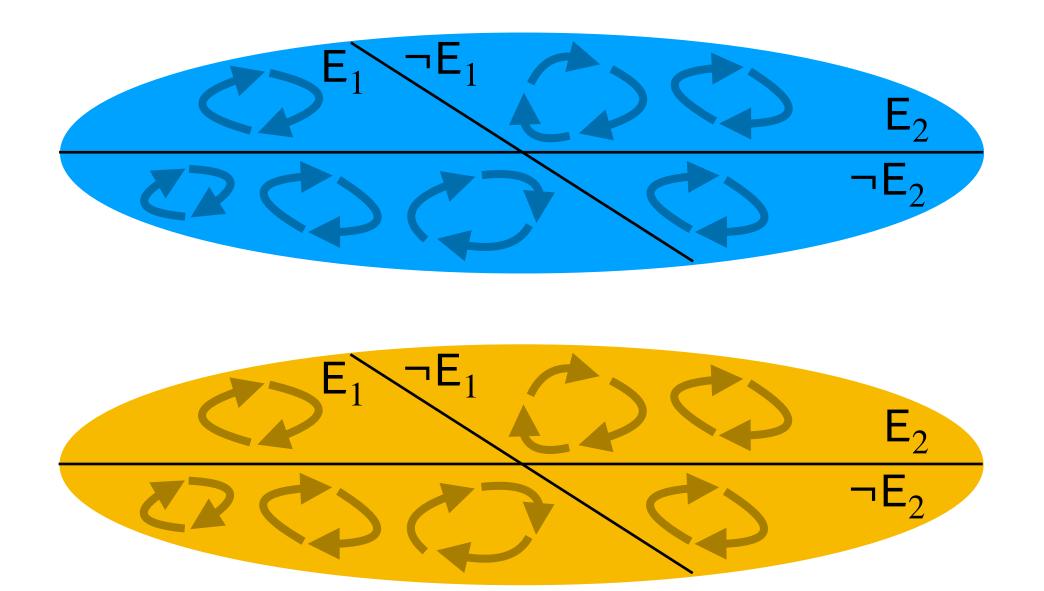


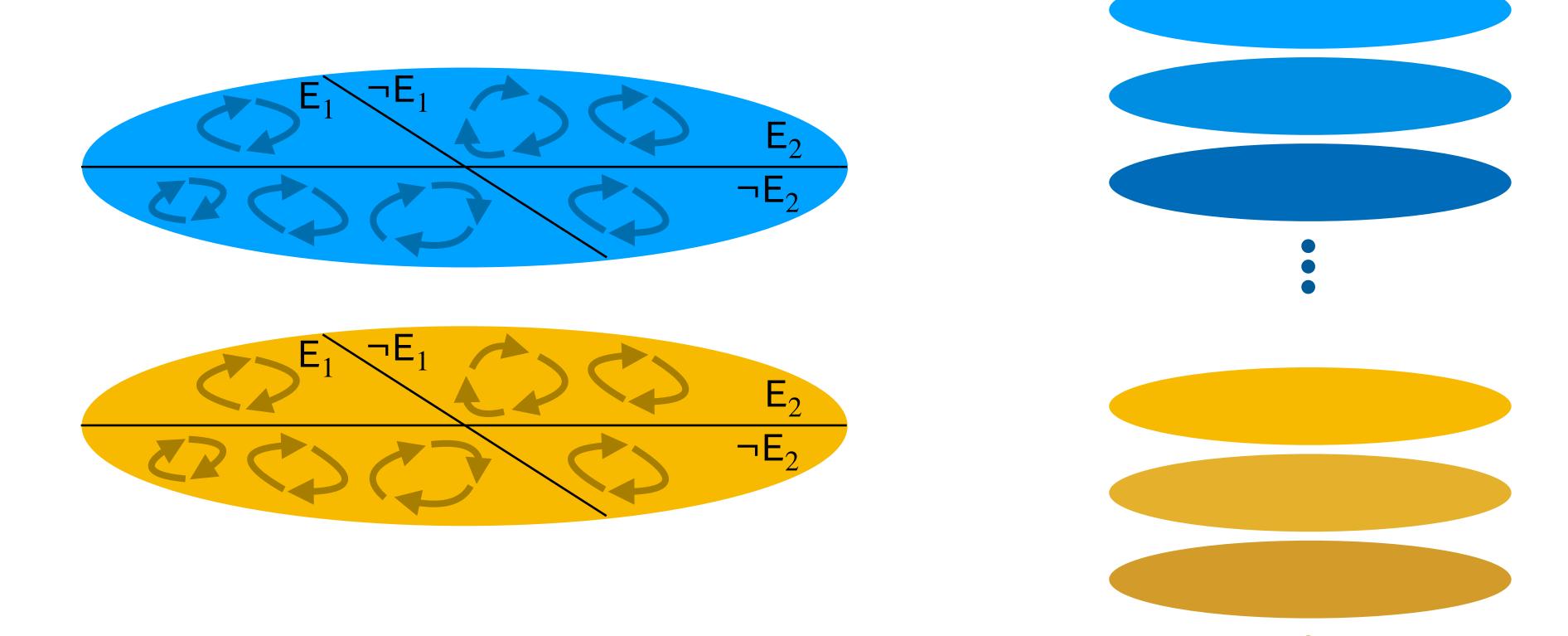


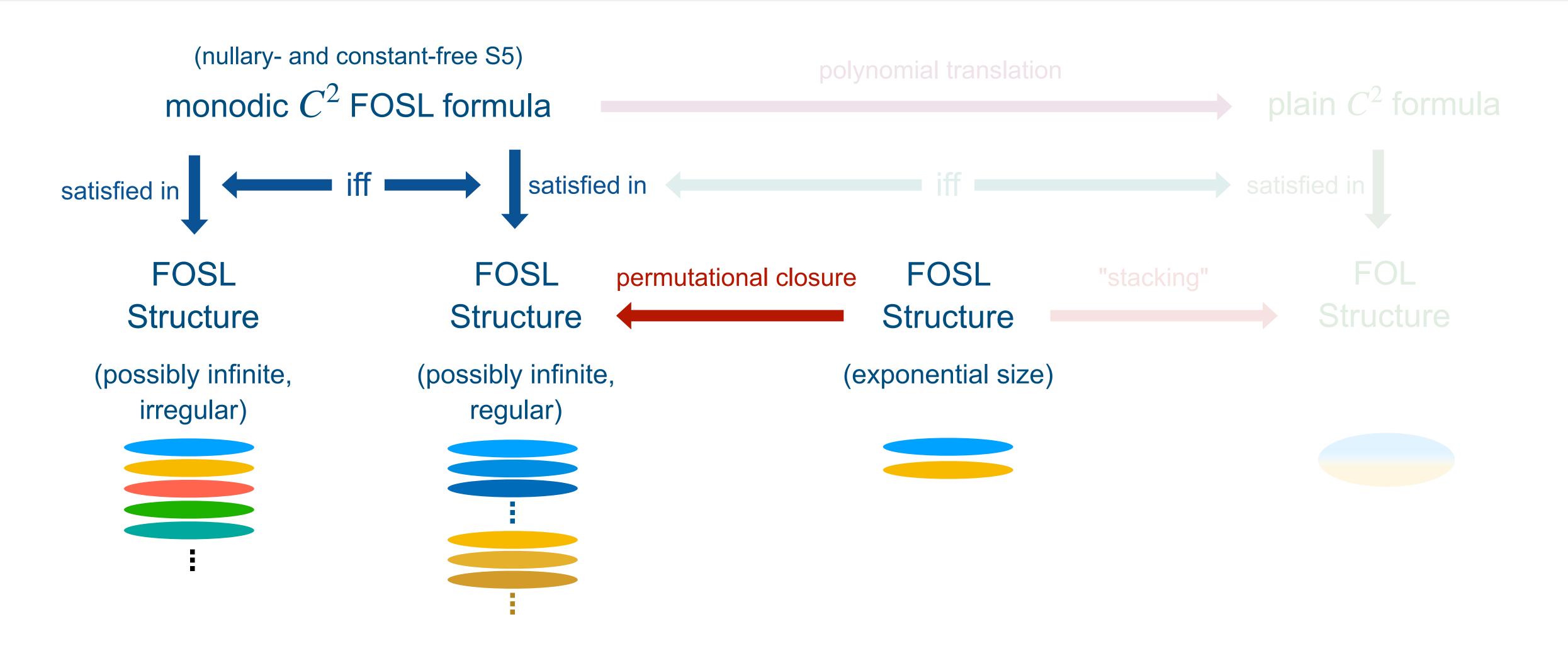


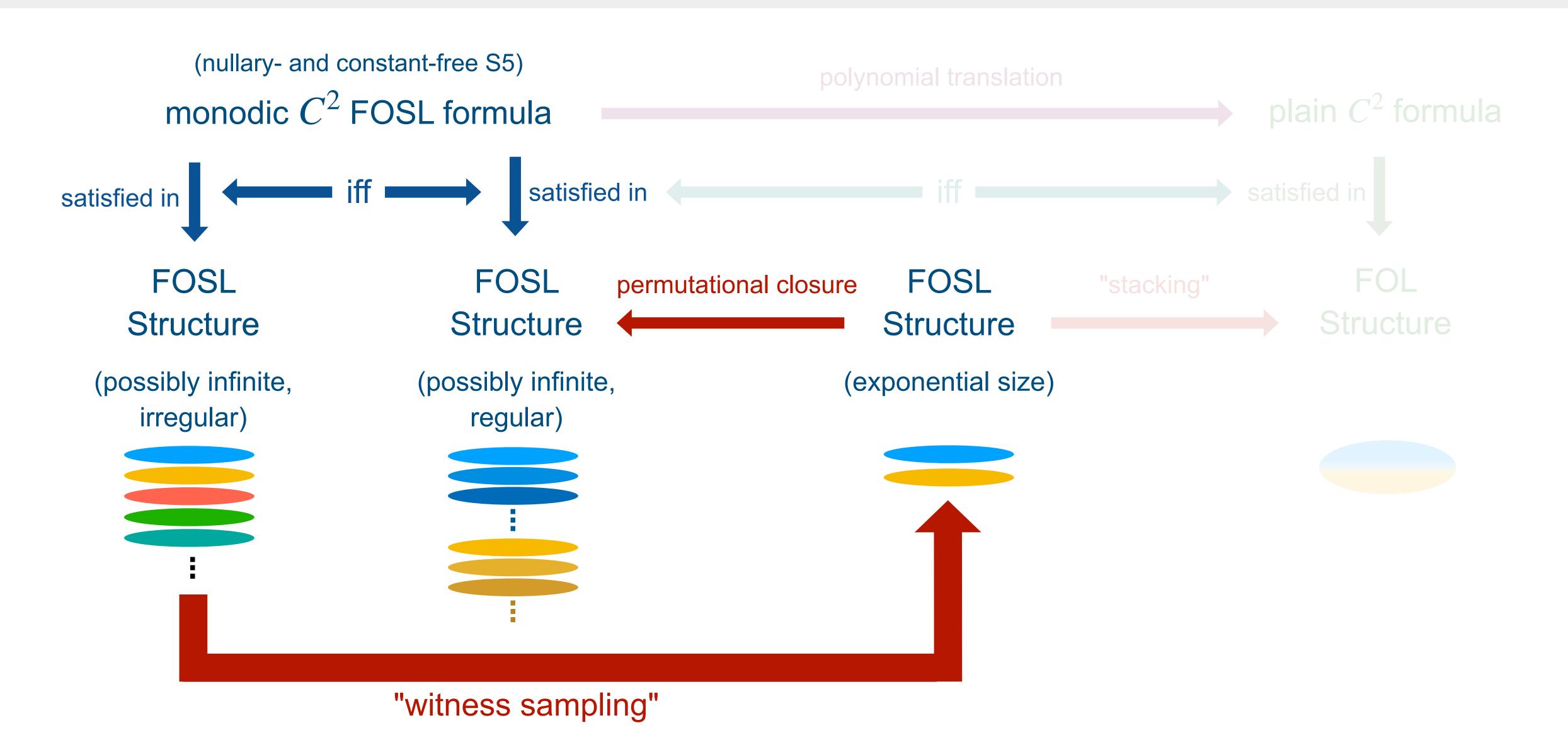


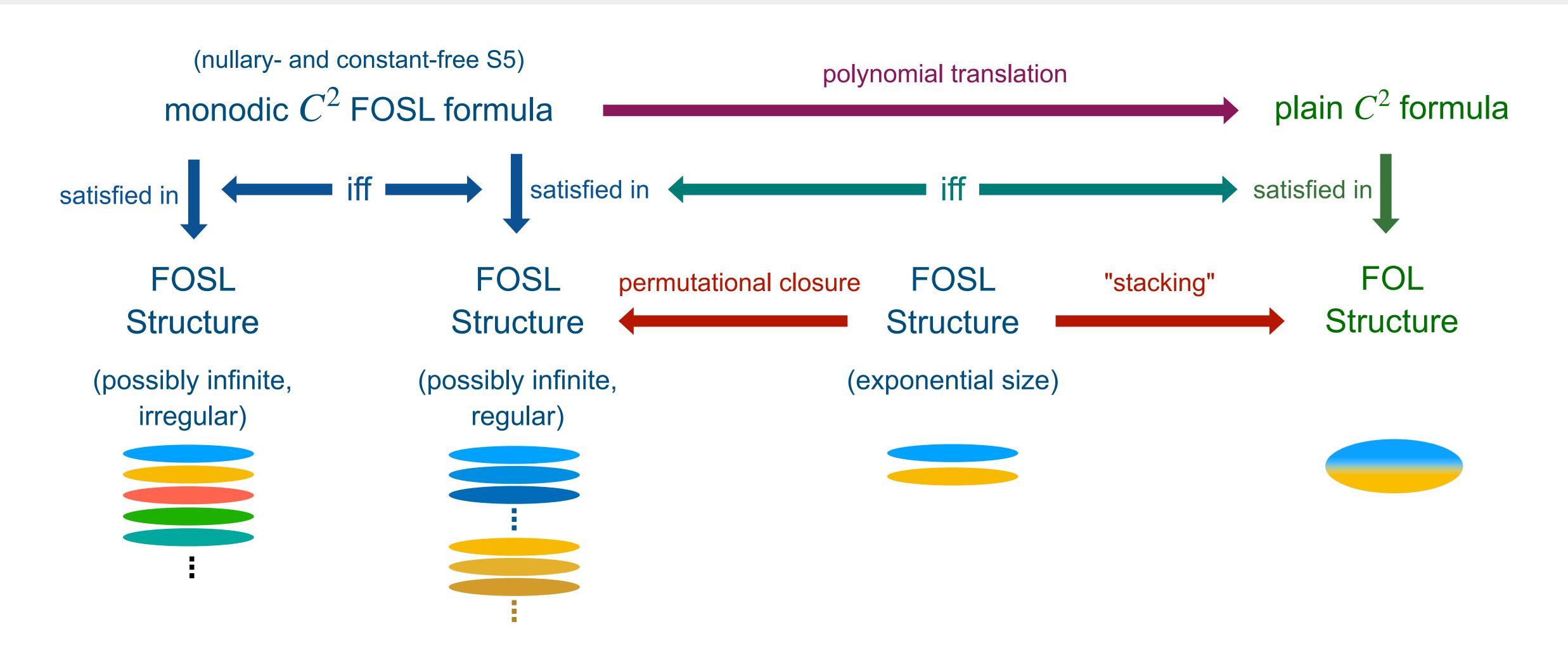


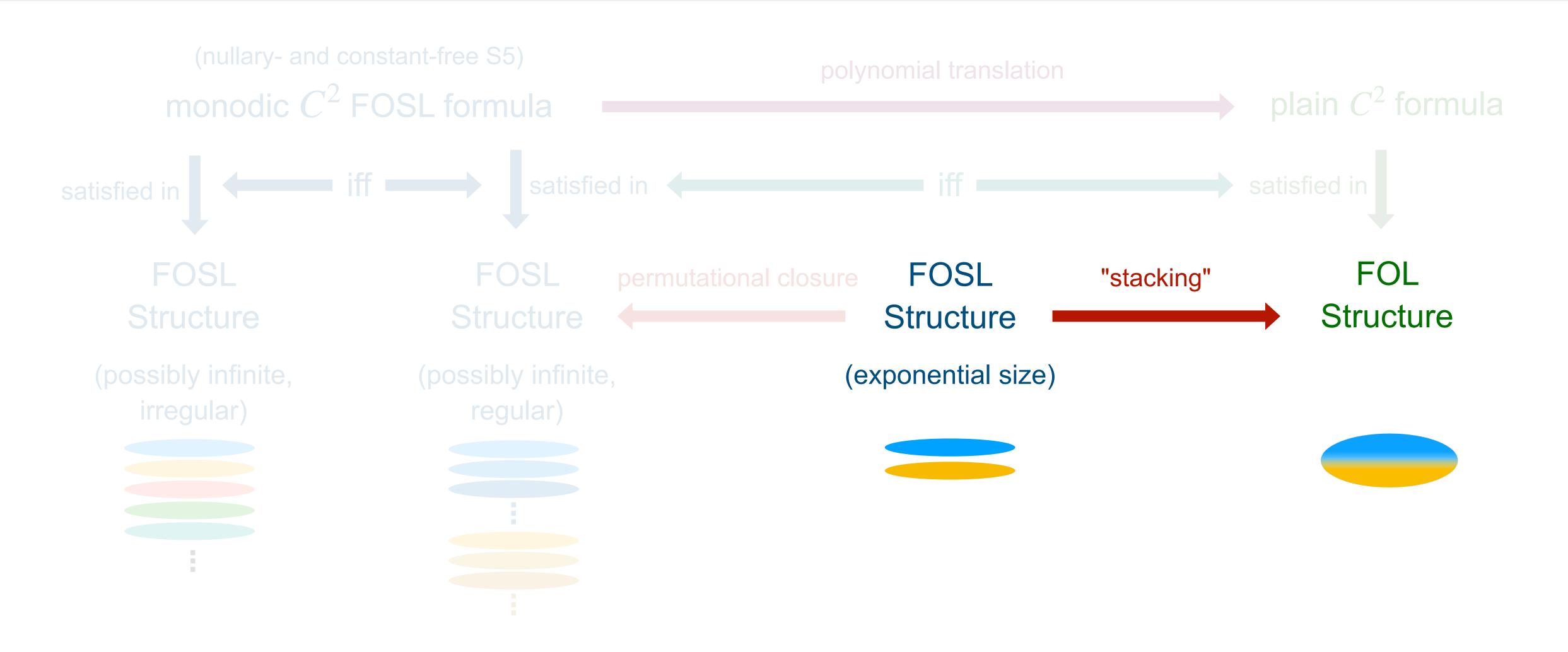




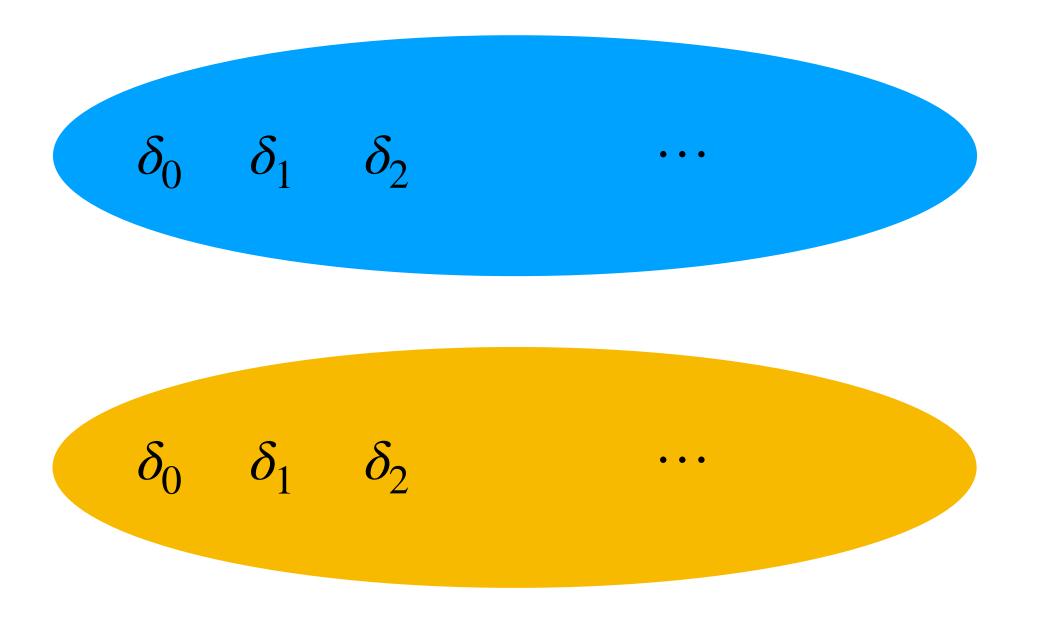




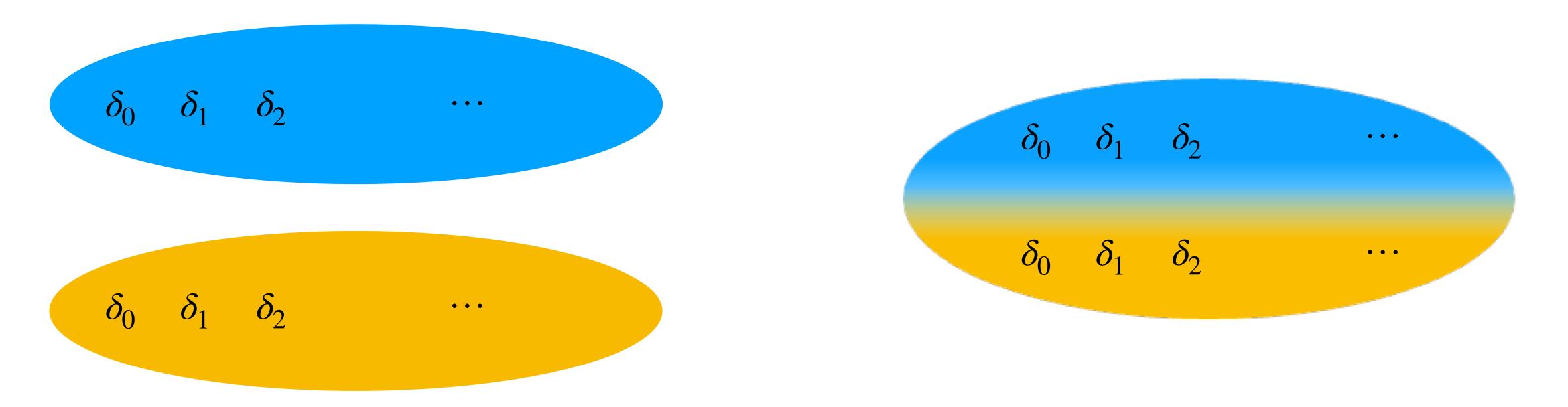




# Stacking Worlds

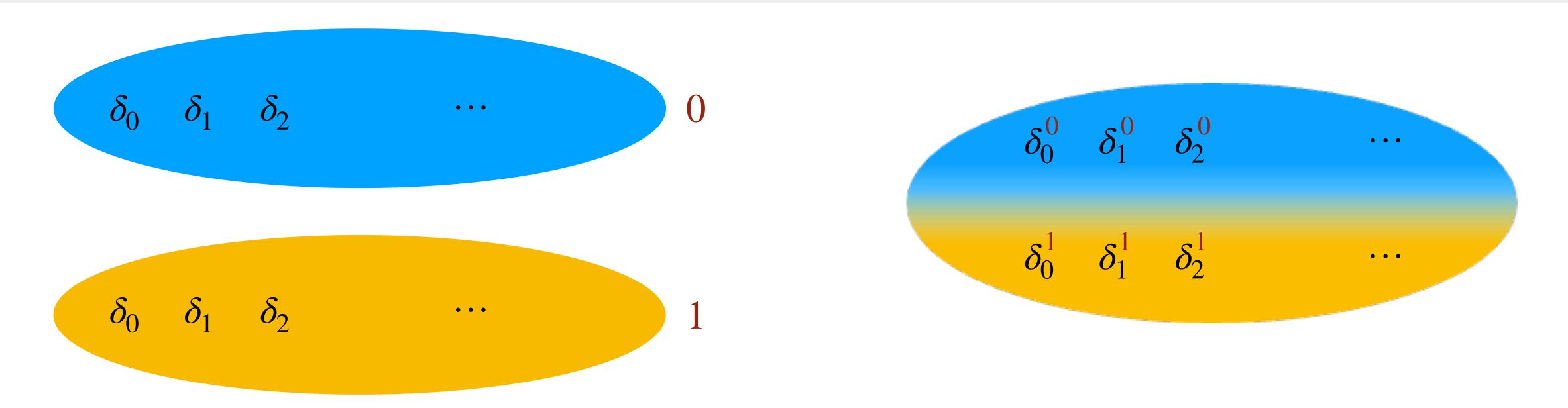


# Stacking Worlds



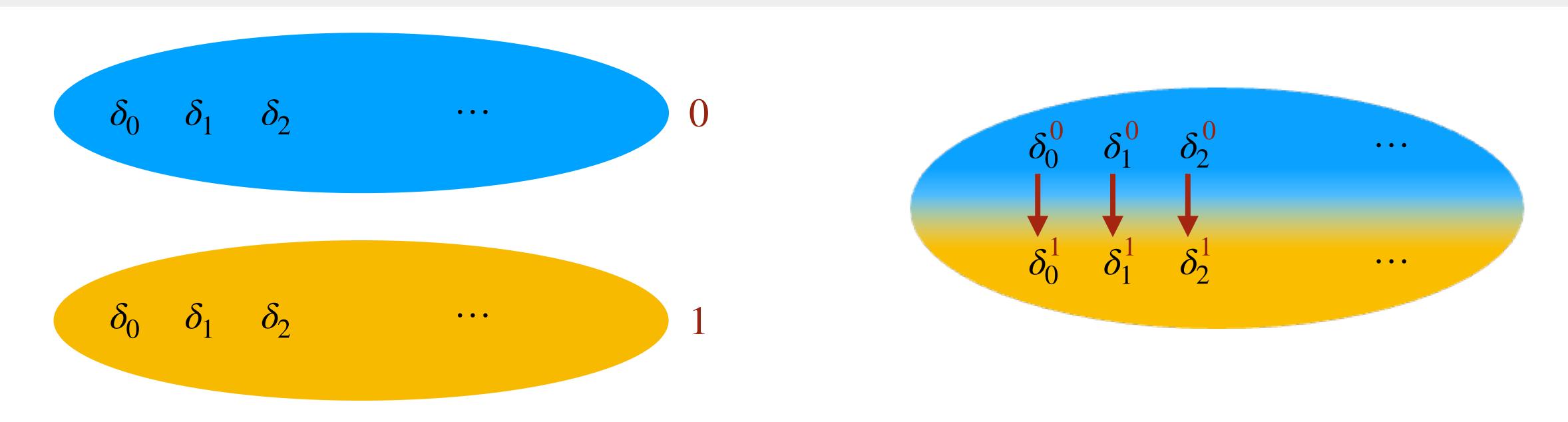
Disjoint union

# Stacking Worlds



- Disjoint union
- Bookkeeping 1: indicate originating worlds by assigning numbers (bit-encoding by unary predicates  $L_0, L_1, ...$ )

### Stacking Worlds

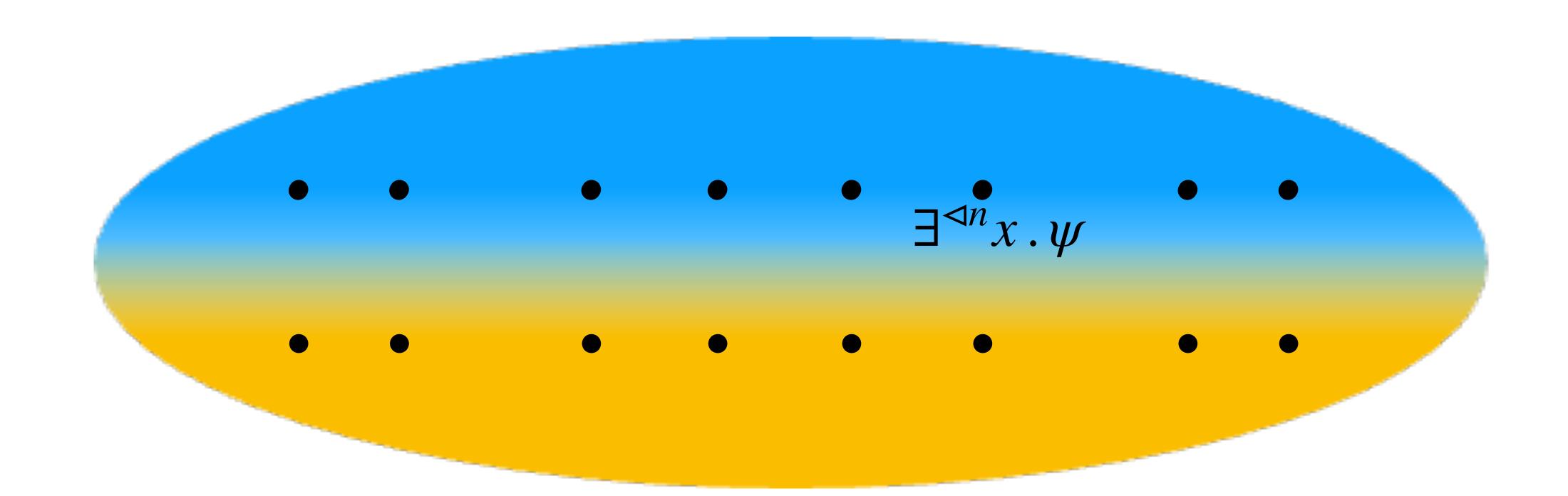


- Disjoint union
- Bookkeeping 1: indicate originating worlds by assigning numbers (bit-encoding by unary predicates  $L_0, L_1, ...$ )
- Bookkeeping 2: connect corresponding elements with consecutive numbers by binary predicate F
- ullet N.B.: Being "well-stacked" interpretation (i.e. the result of such a stacking) can be characterized in  $C^2$

A polytime translation maps a (pretransformed) monodic  $C^2$  FOSL formula to a plain  $C^2$  formula.

A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

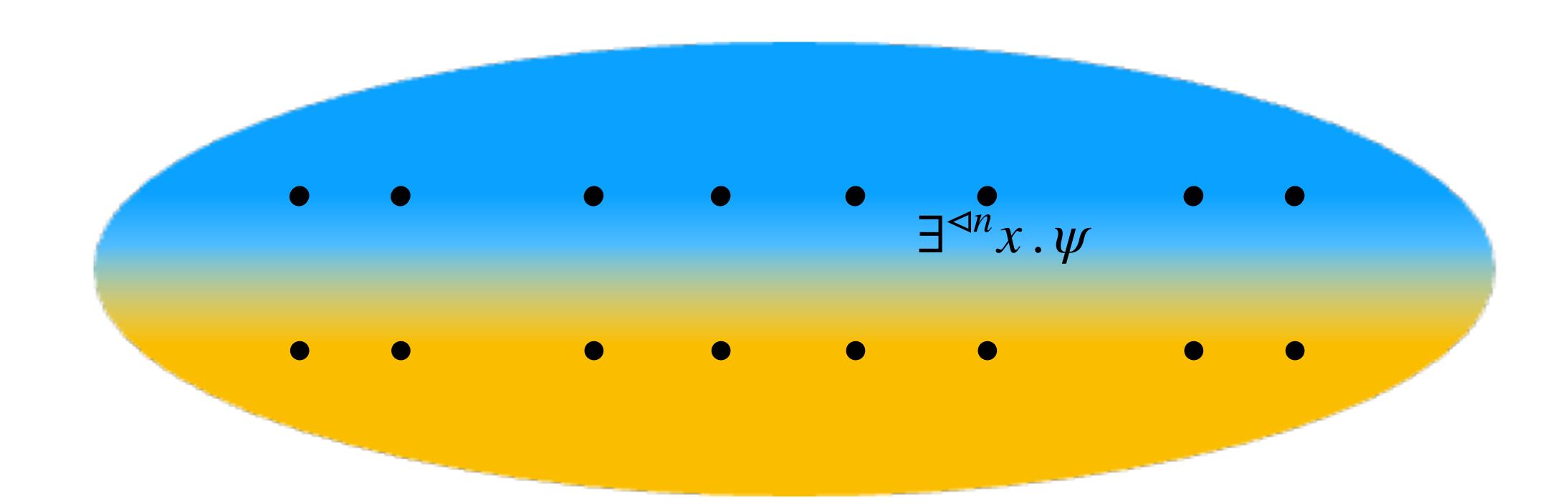
A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.



A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

Basic idea for the interesting cases: consider formulae with free variable y

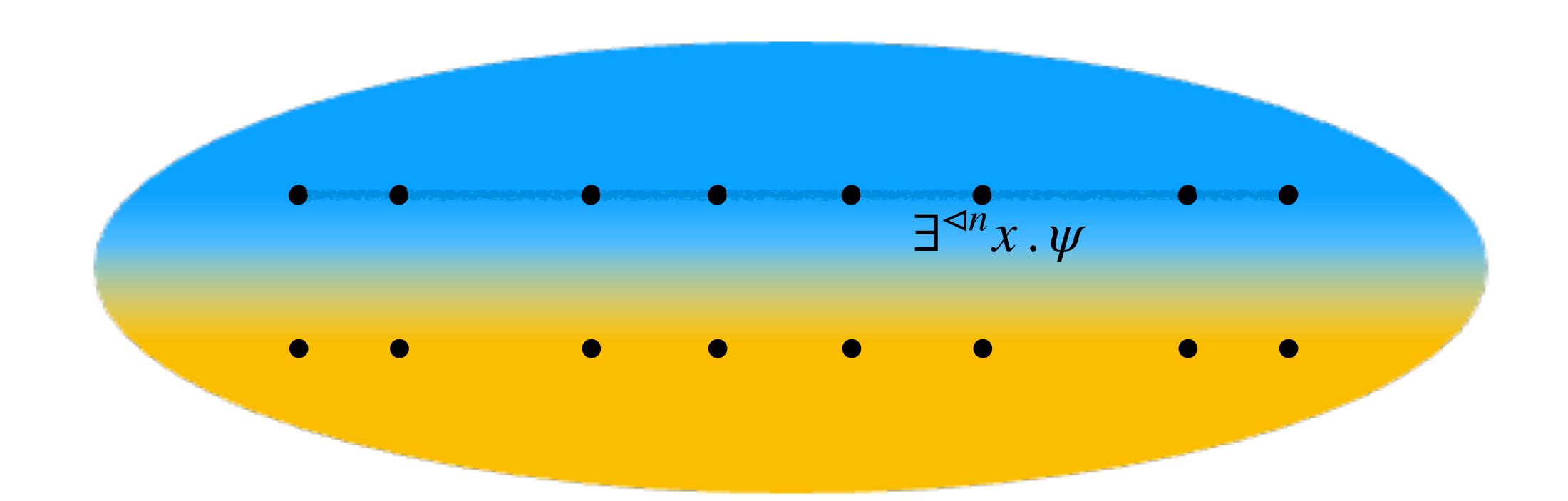
•  $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "



A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

Basic idea for the interesting cases: consider formulae with free variable y

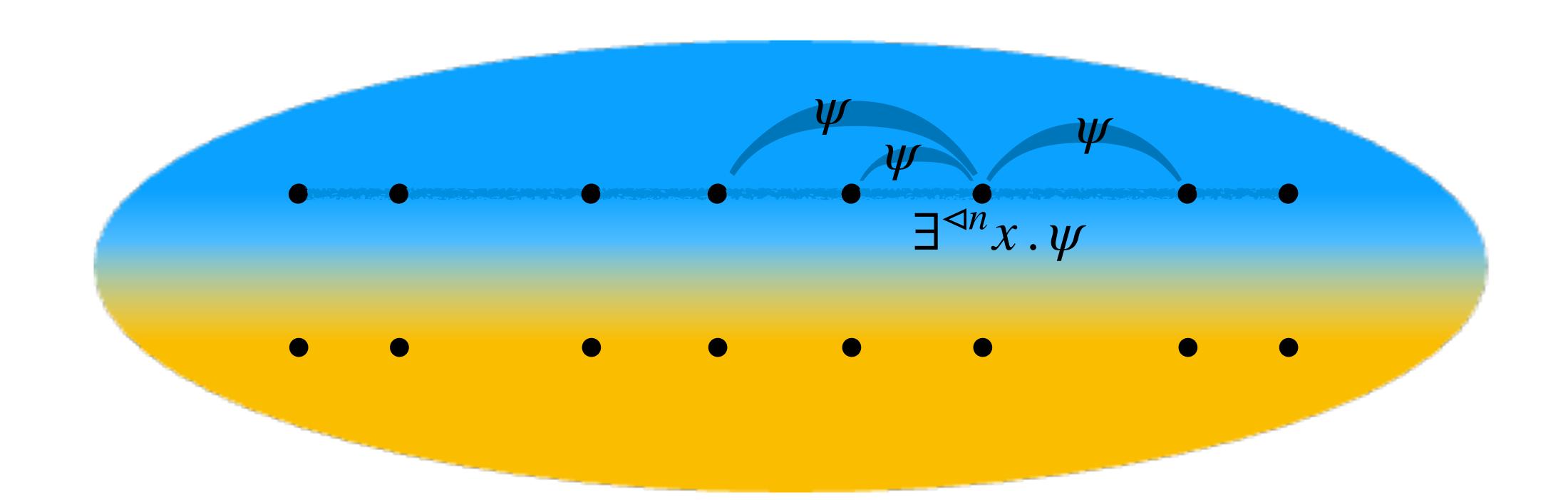
•  $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "



A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

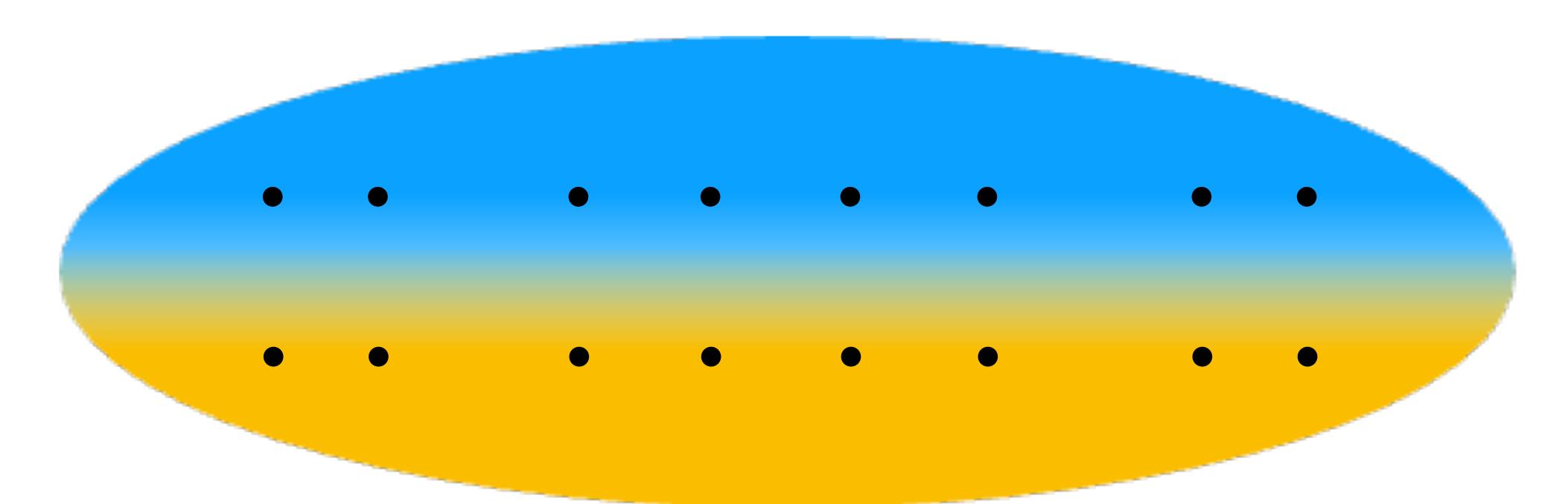
Basic idea for the interesting cases: consider formulae with free variable y

•  $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "



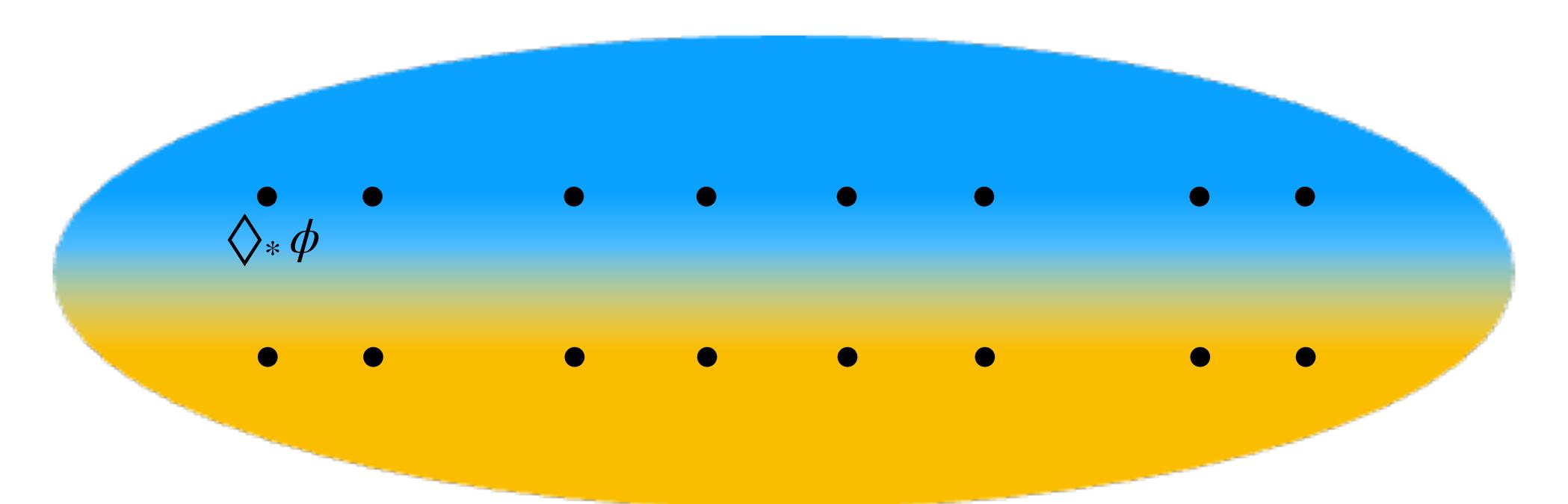
A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "



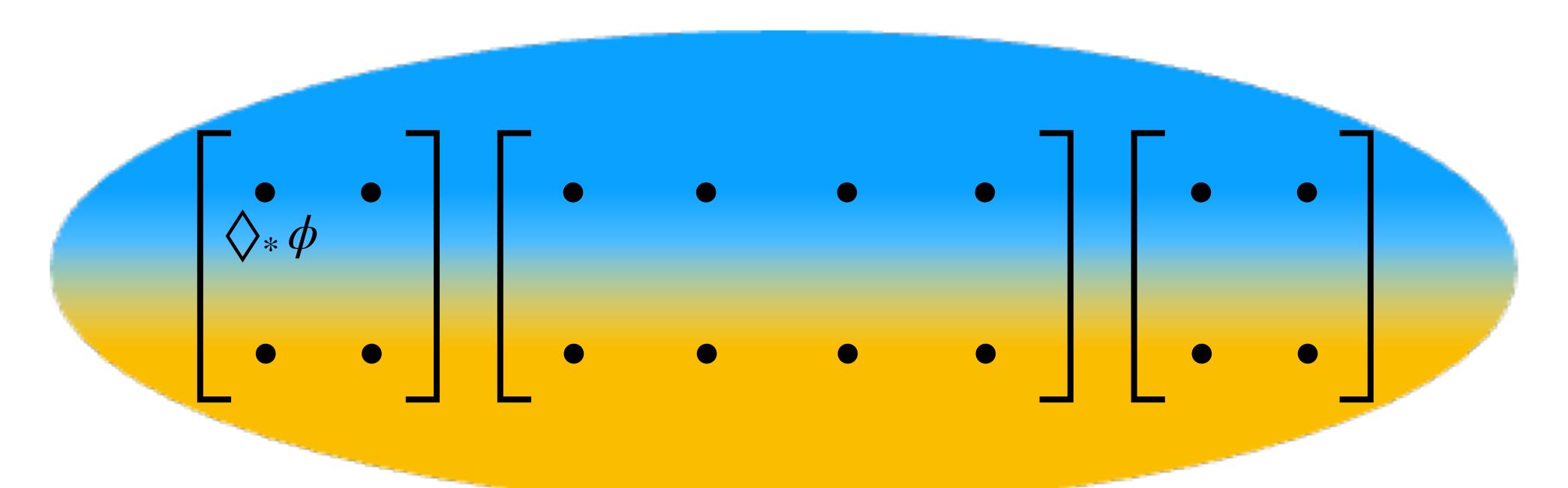
A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "



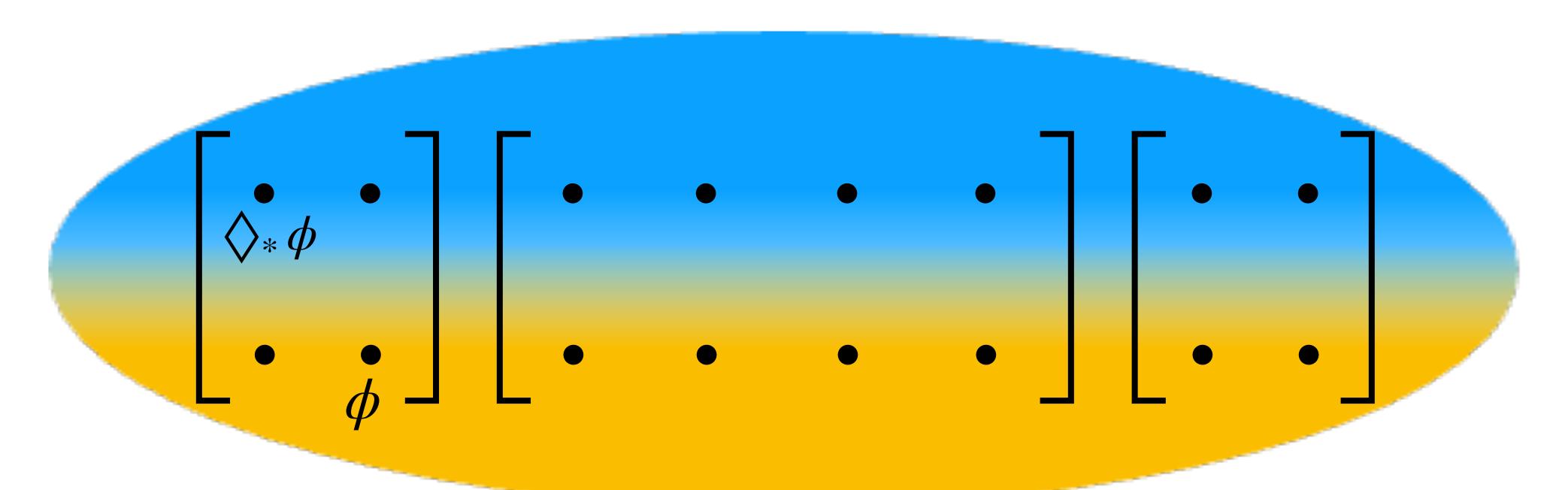
A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "



A polytime translation maps a (pretransformed) monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "



A polytime translation maps a monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

Basic idea for the interesting cases: consider formulae with free variable y

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "

The translation preserves satisfiabiliy.

A polytime translation maps a monodic  $\mathbb{C}^2$  FOSL formula to a plain  $\mathbb{C}^2$  formula.

Basic idea for the interesting cases: consider formulae with free variable y

- $\exists^{\triangleleft n} x . \psi(x, y)$  implemented as "there are  $\triangleleft n$  elements x in the same L-layer as y satisfying  $\psi$ "
- $\Diamond_* \phi(y)$  implemented as "there is an element from the same E-class as y satisfying  $\phi$  "

The translation preserves satisfiabiliy.

Corollary: Satisfiability in monodic standpoint  $C^2$  is  $\operatorname{NExpTime}$ -complete

# Application to Ontology Languages

Adding monodic standpoints to popular expressive DLs does not increase their computational complexity:

Adding monodic standpoints to popular expressive DLs does not increase their computational complexity:

ightharpoonup We can add monodic standpoints to the description logic  $\mathcal{ALCOIQB}^{Self}$ 

(Easy: Essentially just  $C^2$  in diguise)

Adding monodic standpoints to popular expressive DLs does not increase their computational complexity:

ightharpoonup We can add monodic standpoints to the description logic  $\mathcal{ALCOIQB}^{Self}$ 

(Easy: Essentially just  $C^2$  in diguise)

→ We show how to accommodate (possibly standpoint-annotated) role chain axioms.

We obtain monodic standpoint  $SHOIQB_S$  and  $SROIQB_S$ 

subsuming OWL 1 and OWL 2

Adding monodic standpoints to popular expressive DLs does not increase their computational complexity:

ightharpoonup We can add monodic standpoints to the description logic  $\mathcal{ALCOIQB}^{Self}$ 

(Easy: Essentially just  $C^2$  in diguise)

→ We show how to accommodate (possibly standpoint-annotated) role chain axioms.

We obtain monodic standpoint  $SHOIQB_S$  and  $SROIQB_S$ 

subsuming OWL 1 and OWL 2

Theorem: Checking satisfiability of monodic standpoint  $SHOIQB_S$  sentences is NEXPTIME-complete.

Checking satisfiability of monodic standpoint  $SHOIQB_S$  sentences is N2ExpTime-complete.

As observed in earlier works, the interplay of nominals and standpoint modalities is quite troublesome for reasoning:

As observed in earlier works, the interplay of nominals and standpoint modalities is quite troublesome for reasoning:

→ The satisfiability even of monodic standpoint ALCO is already NEXPTIME-hard

(tiling of exponential size grid),
as opposed to monodic standpoint SHIQ, which is known to be EXPTIME-complete.

As observed in earlier works, the interplay of nominals and standpoint modalities is quite troublesome for reasoning:

- → The satisfiability even of monodic standpoint ALCO is already NEXPTIME-hard
  (tiling of exponential size grid),
  as opposed to monodic standpoint SHIQ, which is known to be EXPTIME-complete.
- ightharpoonup Lifting monodicity gentliest (1 binary rigid predicate) causes undecidability even for  $\mathcal{ALCOIF}$  (tiling of infinite grid),
  - while monodic standpoint ALCIF with rigid predicates (and more) is known to be decidable.

### Conclusions

#### Recap:

- Managing perspectives is interesting in knowledge integration scenarios.
- ightharpoonup Reasoning with monodic Standpoint  $C^2$  has the same complexity as with plain  $C^2$ .
- → This warrants complexity-neutral extensions of Ontology Languages by monodic standpoints.
- → The interplay of standpoint modalities and nominals causes trouble.

### Conclusions

#### Recap:

- Managing perspectives is interesting in knowledge integration scenarios.
- ightharpoonup Reasoning with monodic Standpoint  $C^2$  has the same complexity as with plain  $C^2$ .
- → This warrants complexity-neutral extensions of Ontology Languages by monodic standpoints.
- The interplay of standpoint modalities and nominals causes trouble.

#### **Future Work:**

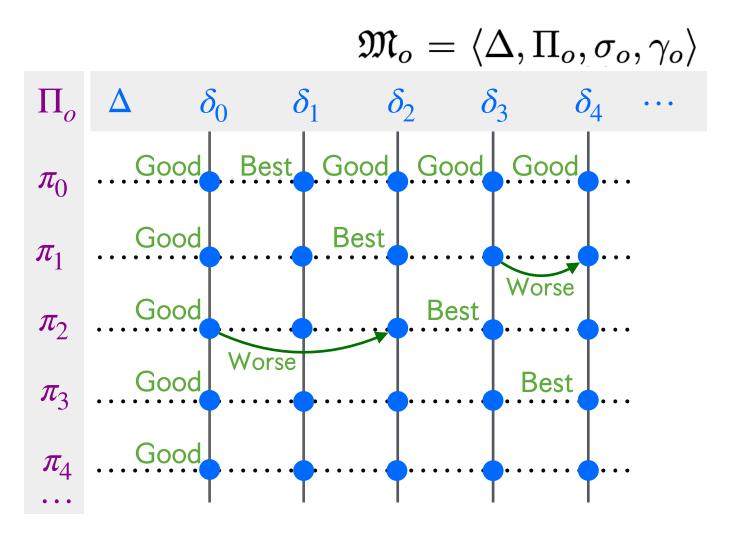
- → Implementation of translations and integration with existing reasoners
- → Lifting the monodicity restriction
- → Towards conceptual modelling with standpoints for knowledge integration challenges

## Bonus Material

For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

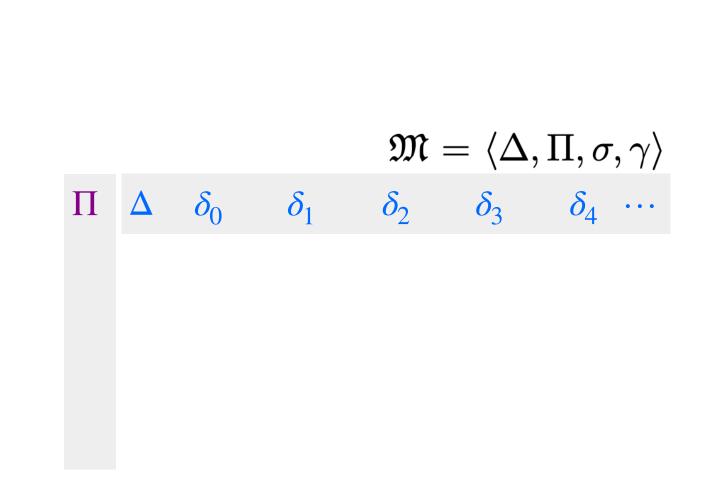
$$\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$$
 $E_0 = \Box_*(\mathsf{Good}(x))$ 
 $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$ 
 $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 

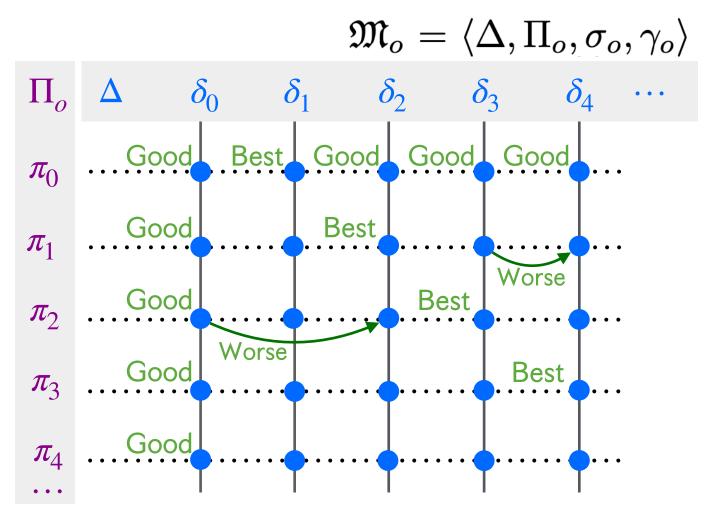


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

$$\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$$
 $E_0 = \Box_*(\mathsf{Good}(x))$ 
 $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$ 
 $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 



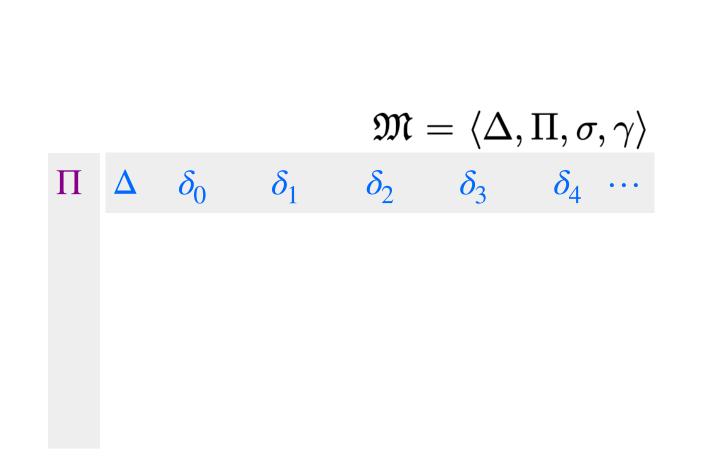


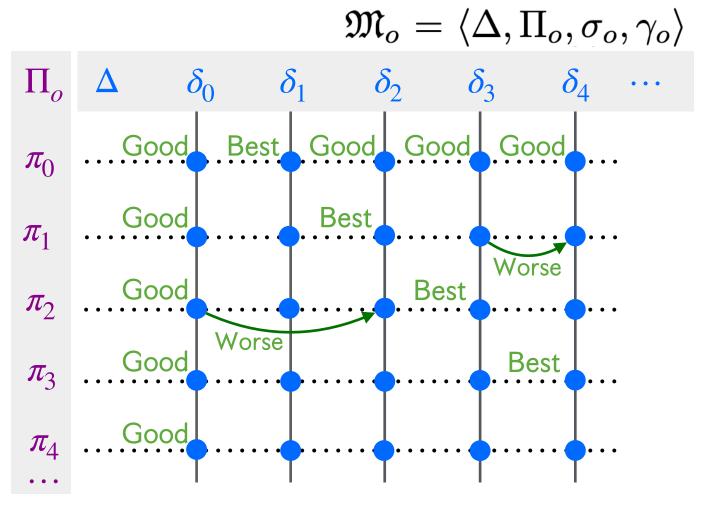
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)

$$\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$$
 $E_0 = \Box_*(\mathsf{Good}(x))$ 
 $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$ 
 $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 





For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

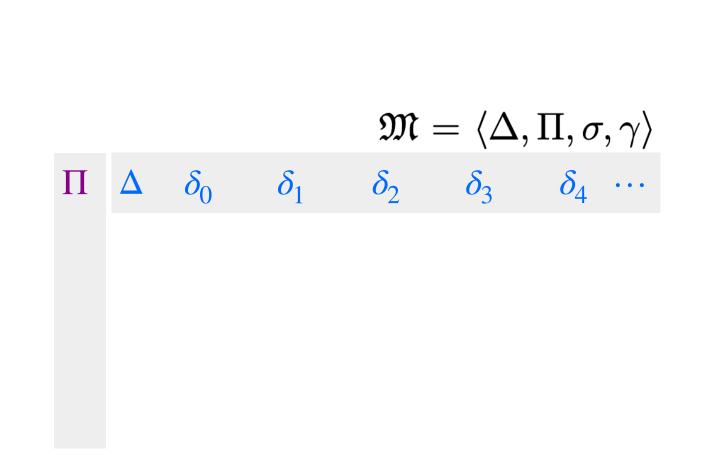
- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $Q_* \psi_i$  (Set the same extension in structure)

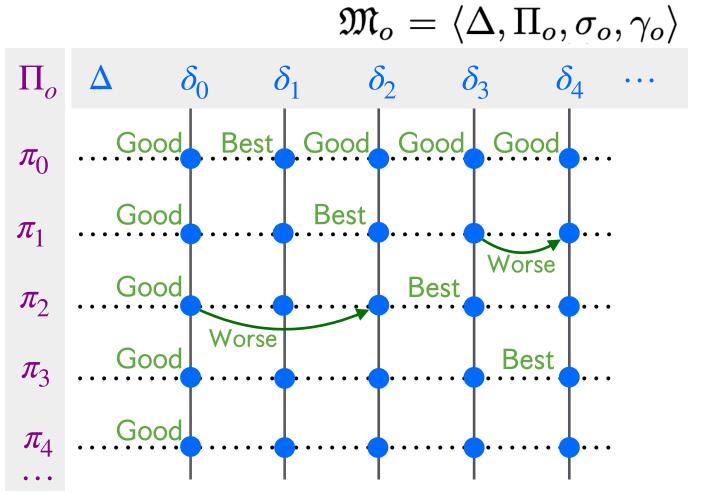
$$\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 \text{ with}$$

$$E_0 = \Box_*(\mathsf{Good}(x))$$

$$E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$$

$$E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$$

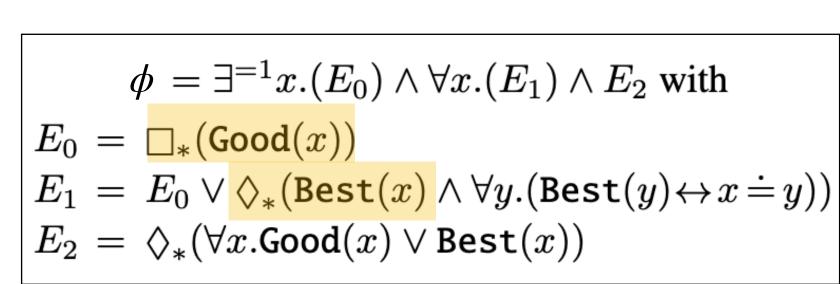


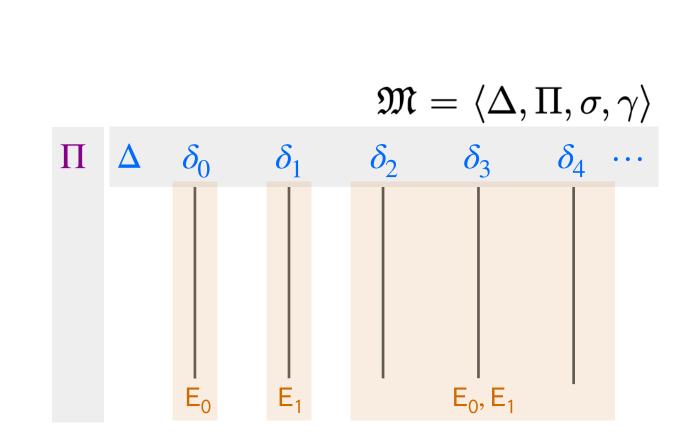


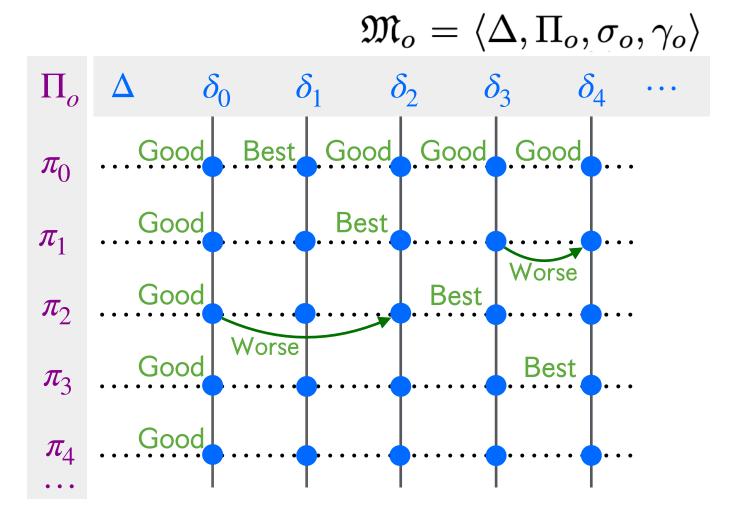
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)



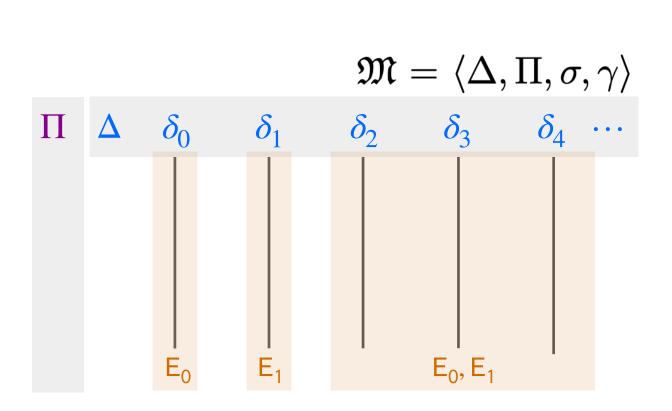


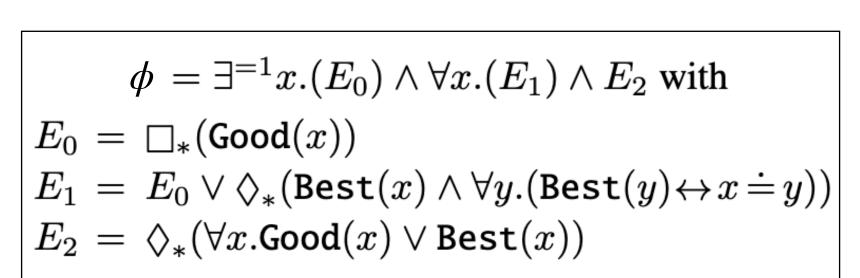


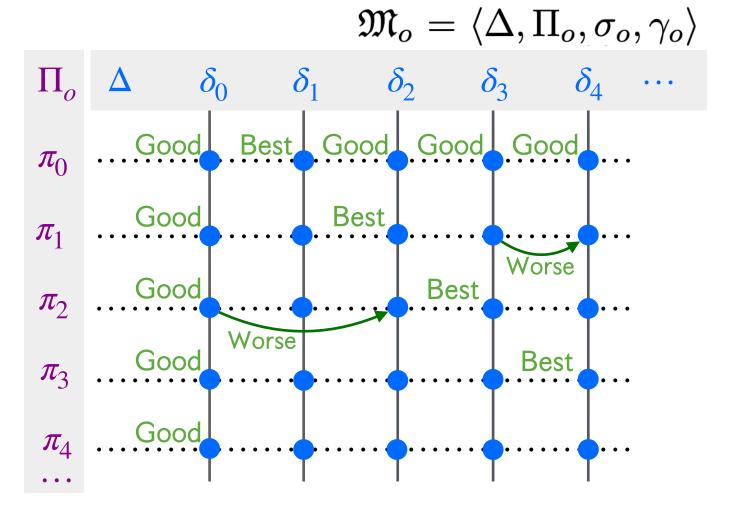
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $\mathbf{E}_i$  per monodic sub-formula  $\lozenge * \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$



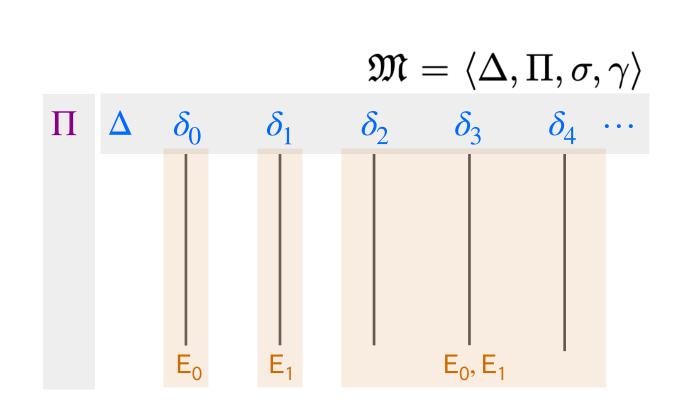


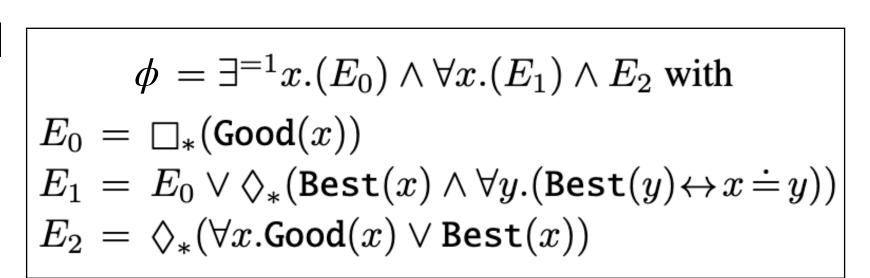


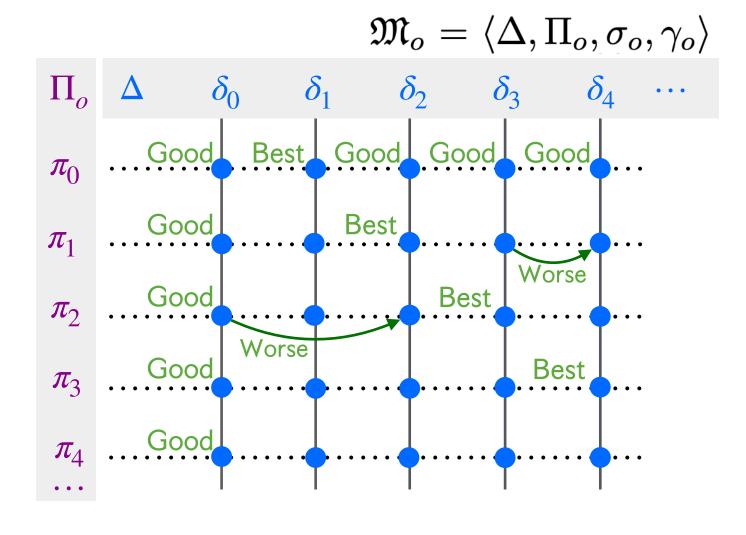
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $Q_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:

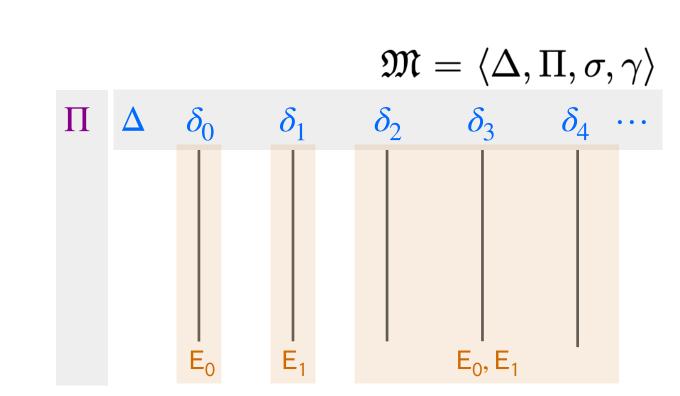


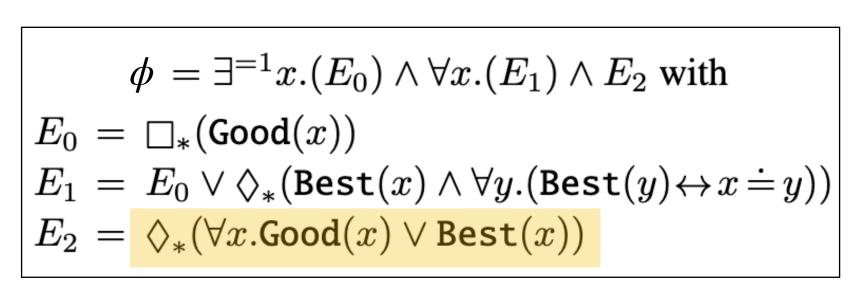


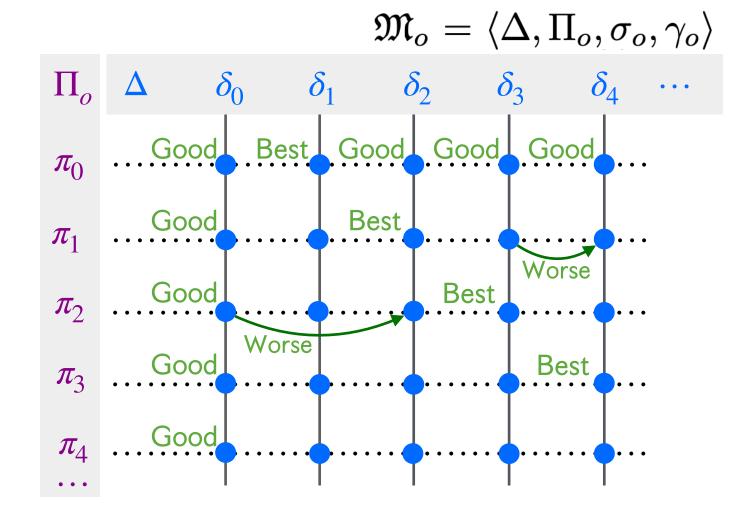


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula

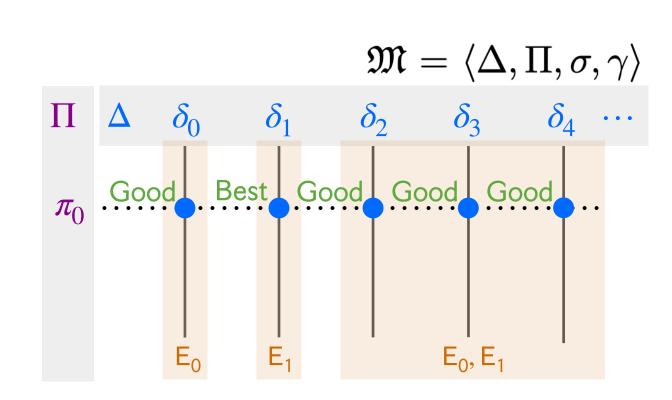


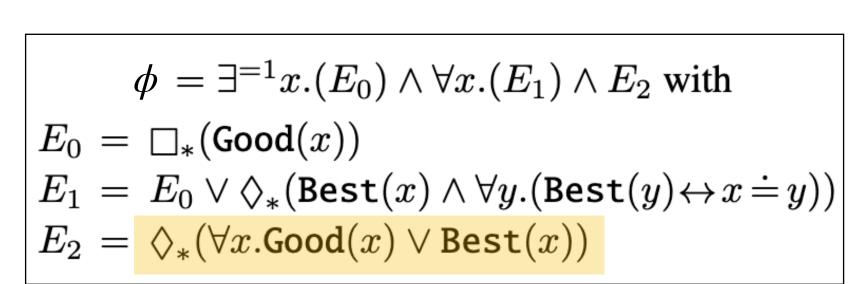


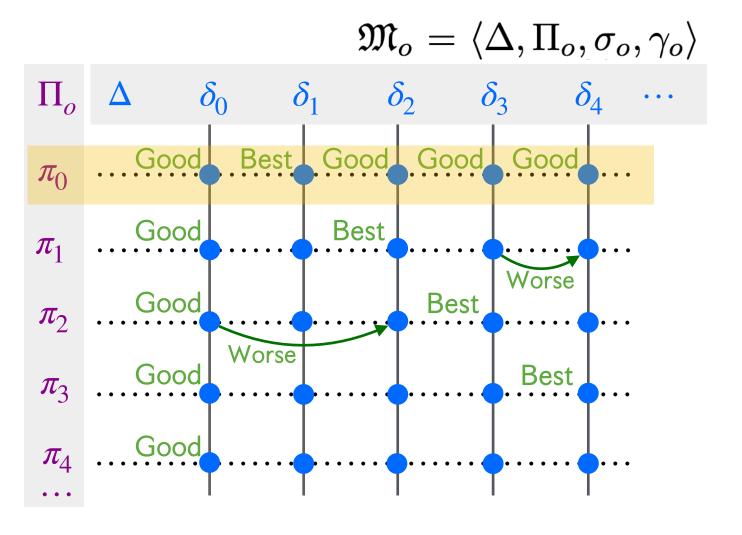


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\lozenge$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula

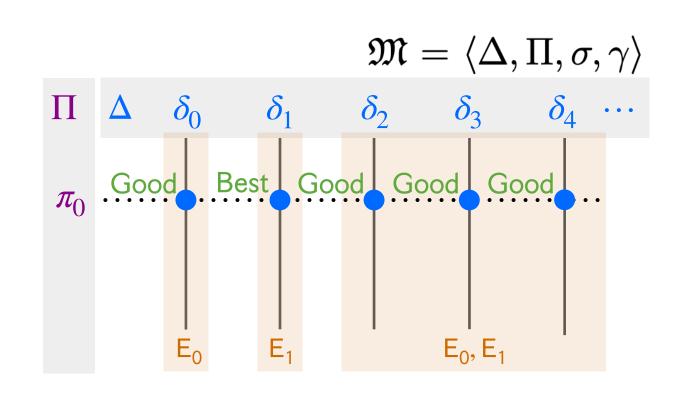


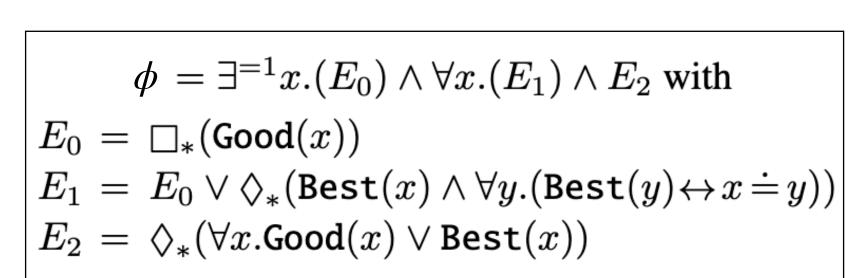


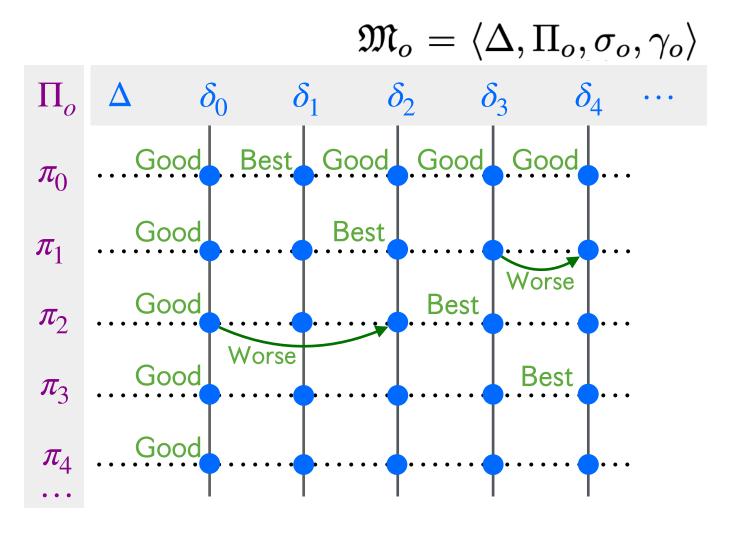


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula

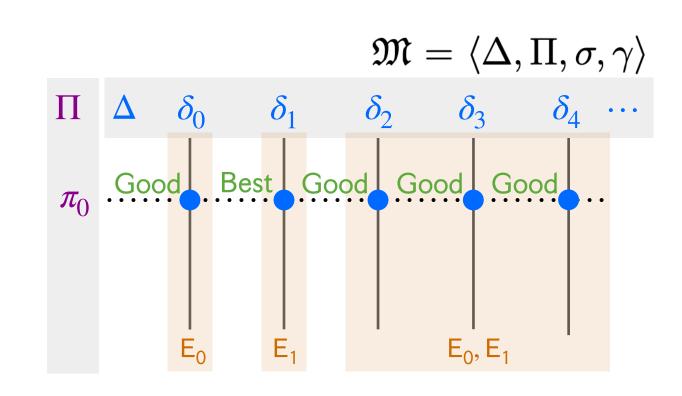


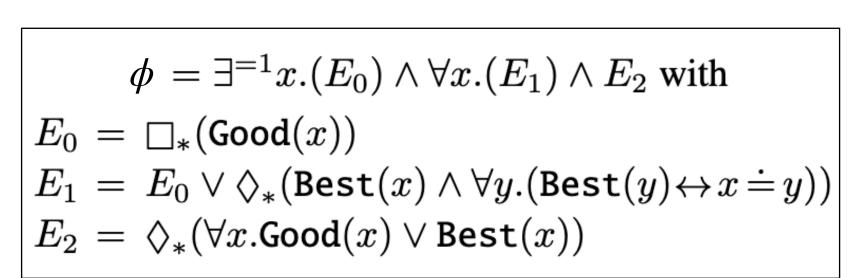


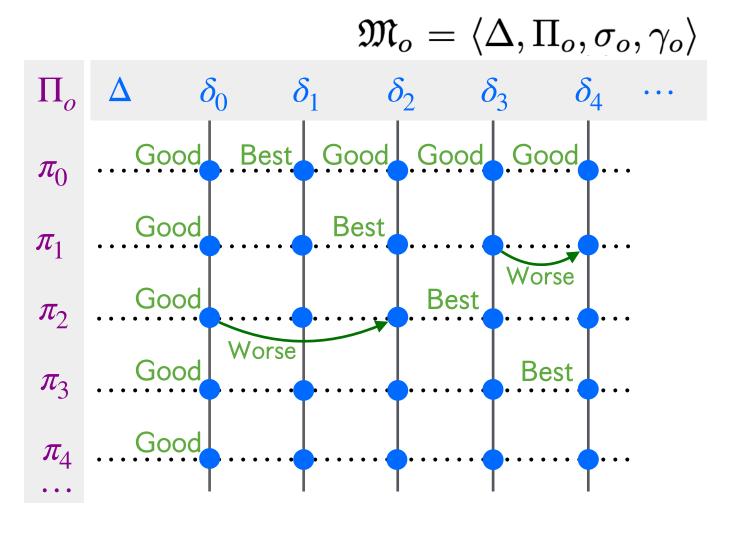


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T, pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

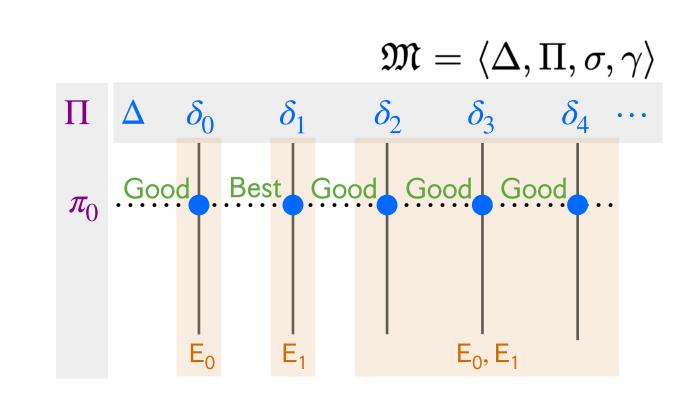


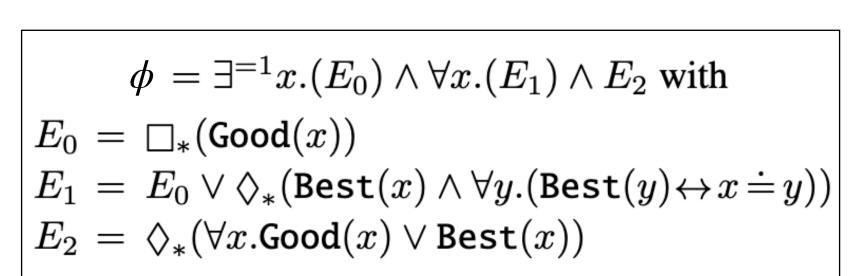


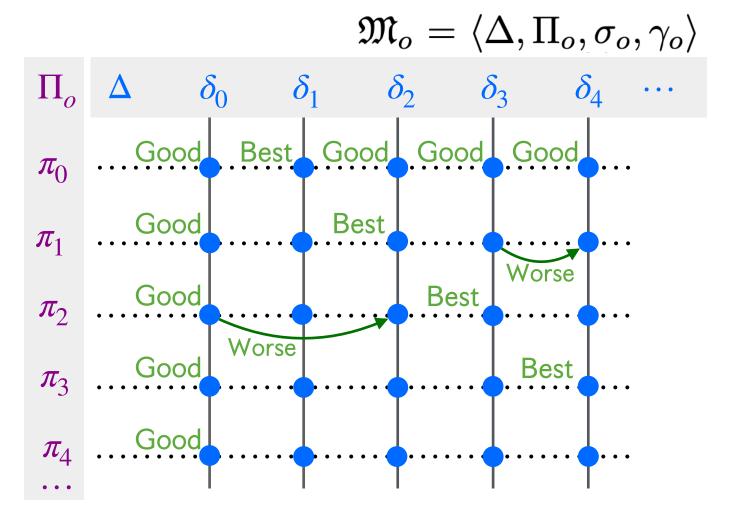


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



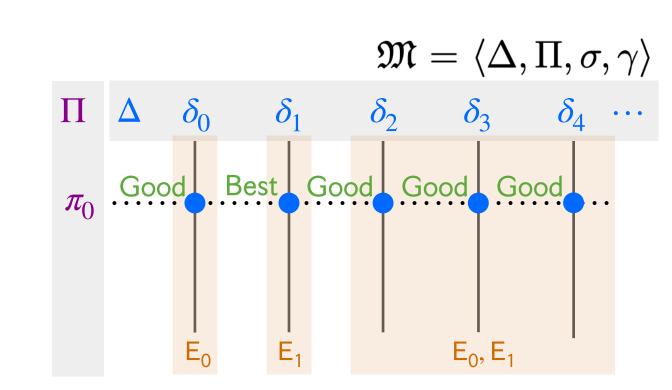




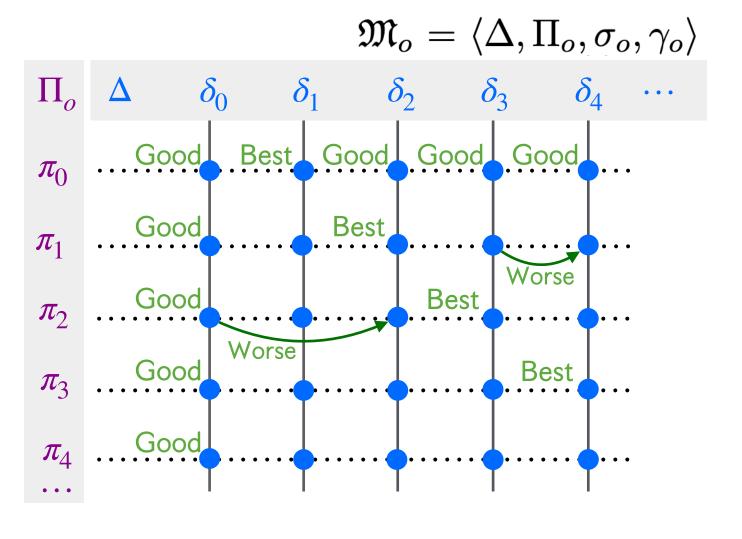
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

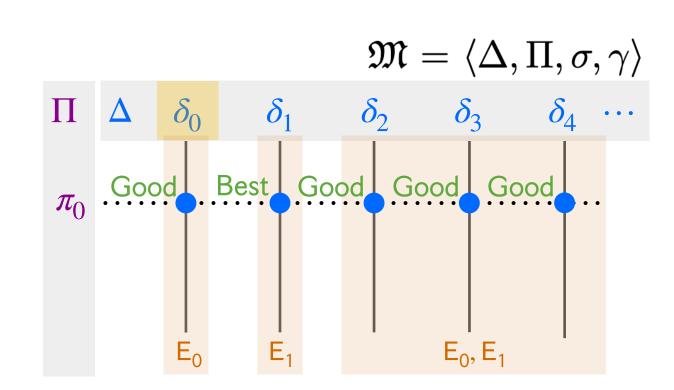


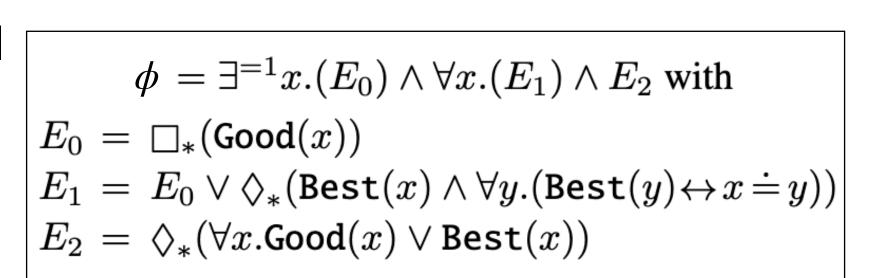
 $\phi=\exists^{=1}x.(E_0)\wedge orall x.(E_1)\wedge E_2 ext{ with } \ E_0=igspace_*( ext{Good}(x)) \ E_1=E_0ee \diamondsuit_*( ext{Best}(x)\wedge orall y.( ext{Best}(y)\!\leftrightarrow\! x\,\dot=\,y)) \ E_2=\diamondsuit_*(orall x. ext{Good}(x)ee ext{Best}(x))$ 

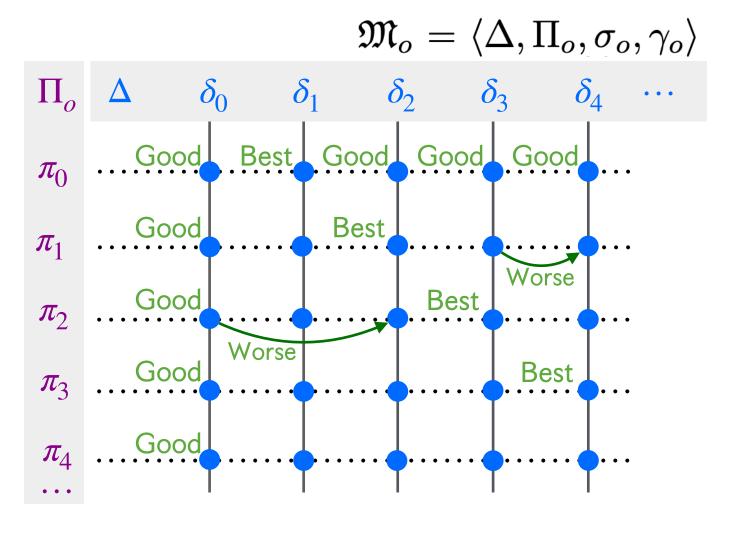


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



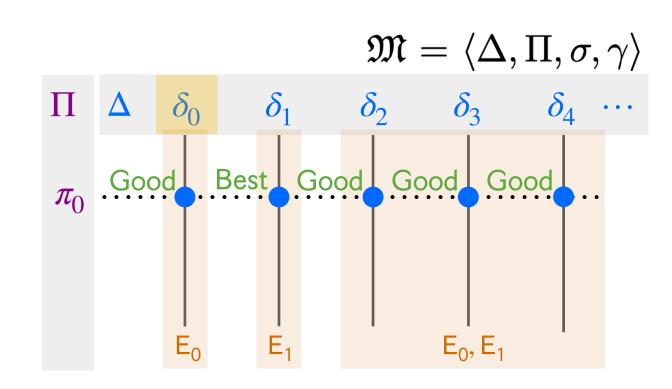




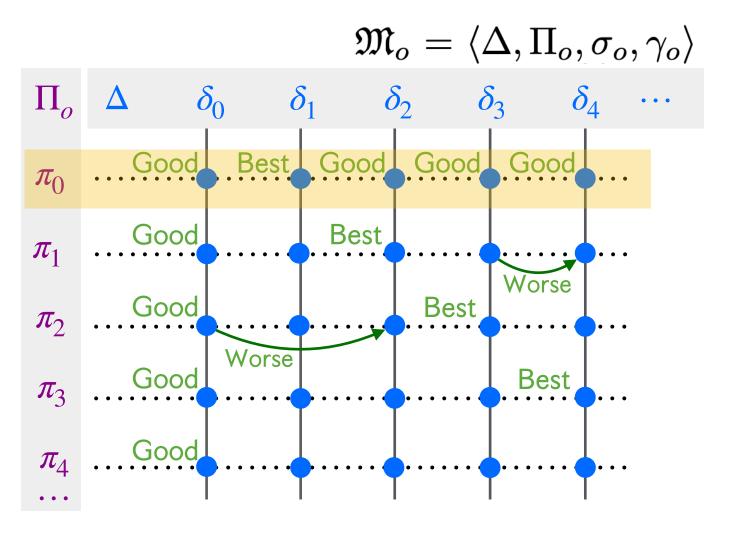
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

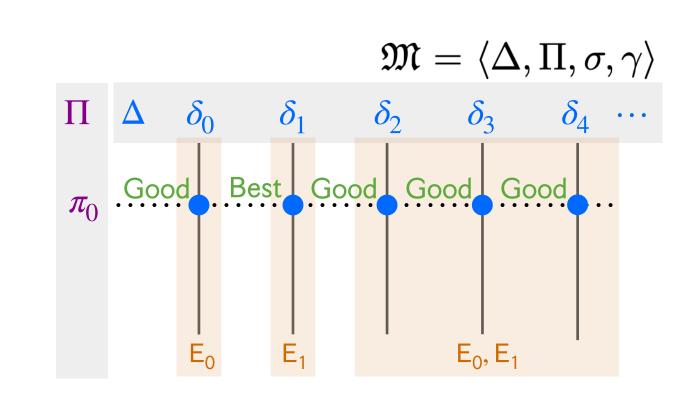


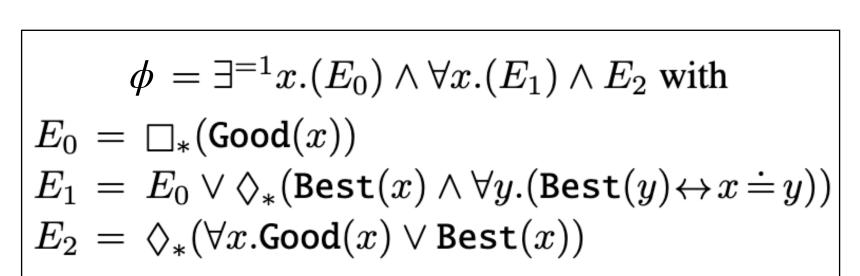
 $\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$   $E_0 = \Box_*(\mathsf{Good}(x))$   $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \,\dot{=}\, y))$   $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 

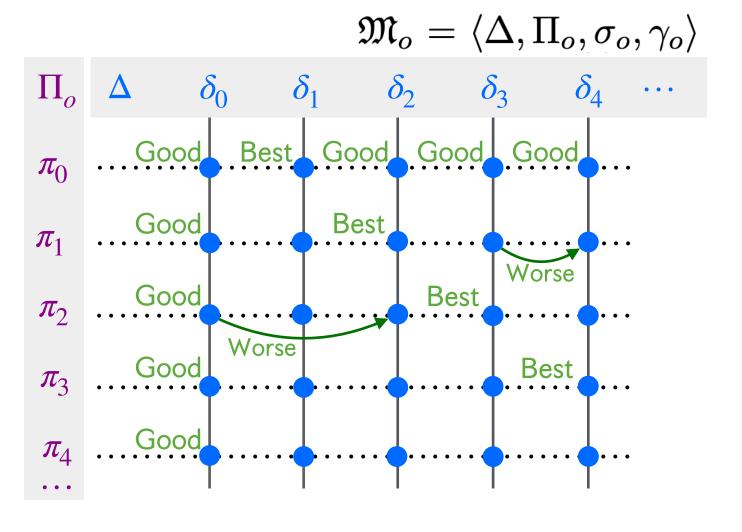


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$







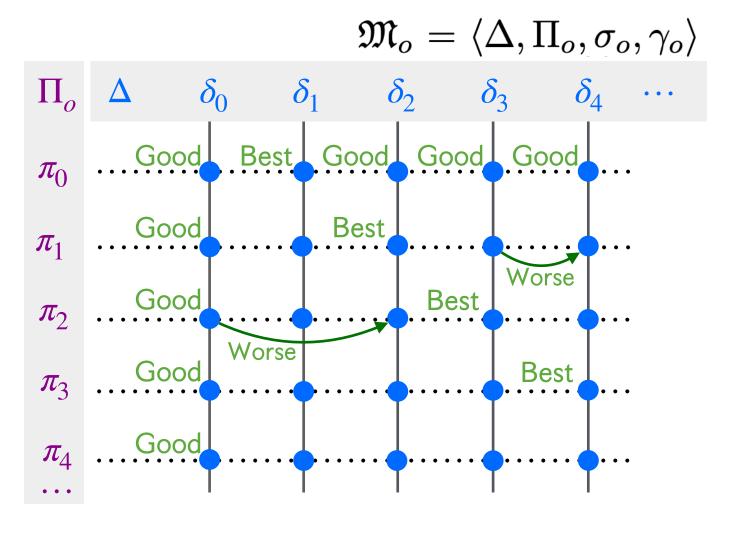
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



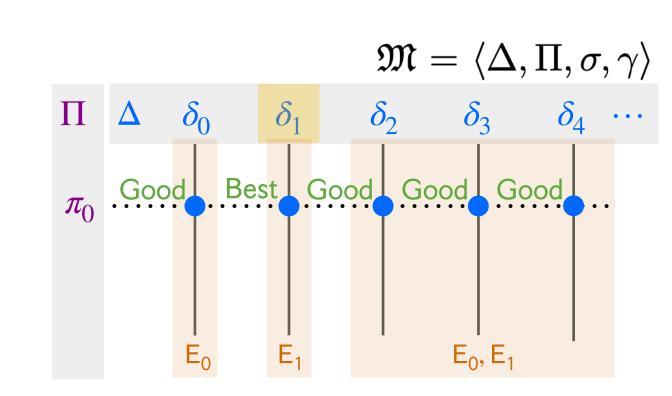
 $\phi=\exists^{=1}x.(E_0)\wedge orall x.(E_1)\wedge E_2 ext{ with } \ E_0=igspace_*( ext{Good}(x)) \ E_1=E_0ee \diamondsuit_*( ext{Best}(x)\wedge orall y.( ext{Best}(y)\!\leftrightarrow\! x\,\dot=\,y)) \ E_2=\diamondsuit_*(orall x. ext{Good}(x)ee ext{Best}(x))$ 



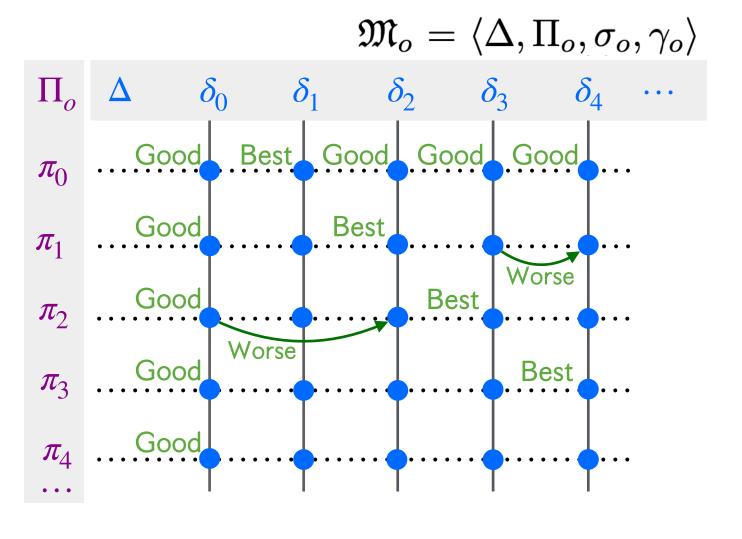
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



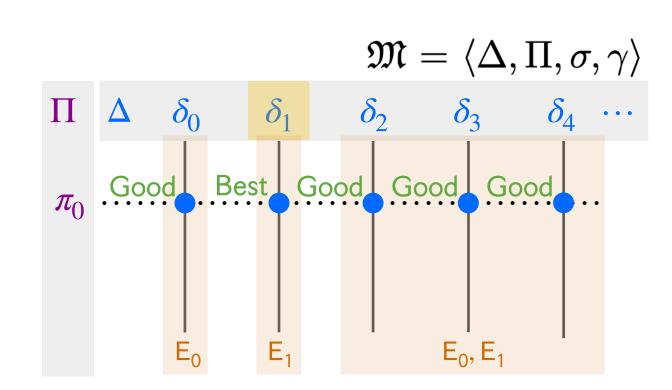
 $\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$   $E_0 = \Box_*(\mathsf{Good}(x))$   $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \,\dot{=}\, y))$   $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 



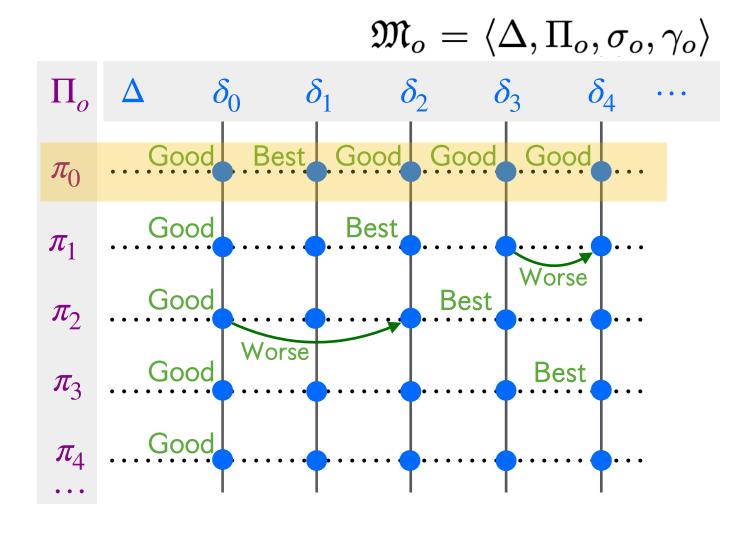
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

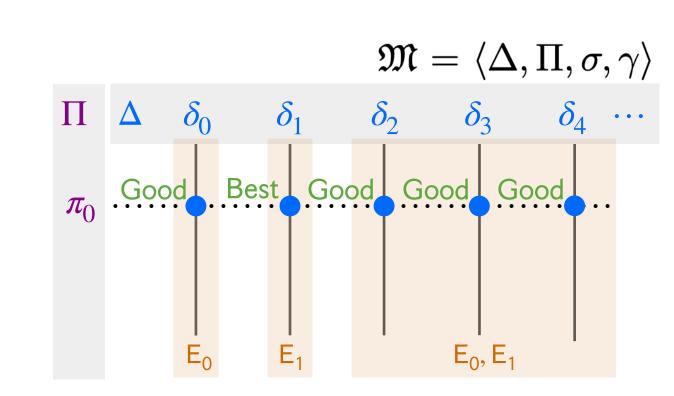


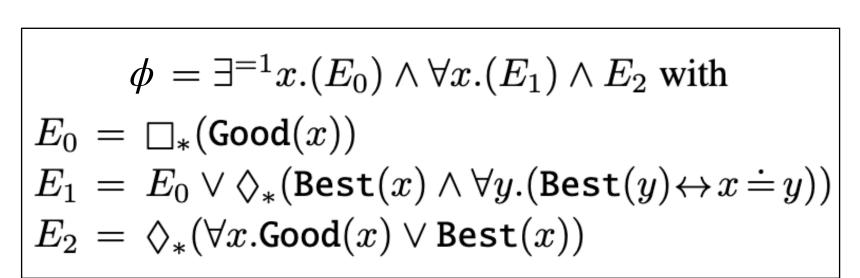
 $\phi=\exists^{=1}x.(E_0)\wedge orall x.(E_1)\wedge E_2 ext{ with } \ E_0=igspace_*( ext{Good}(x)) \ E_1=E_0ee \diamondsuit_*( ext{Best}(x)\wedge orall y.( ext{Best}(y)\!\leftrightarrow\! x\,\dot=\,y)) \ E_2=\diamondsuit_*(orall x. ext{Good}(x)ee ext{Best}(x))$ 

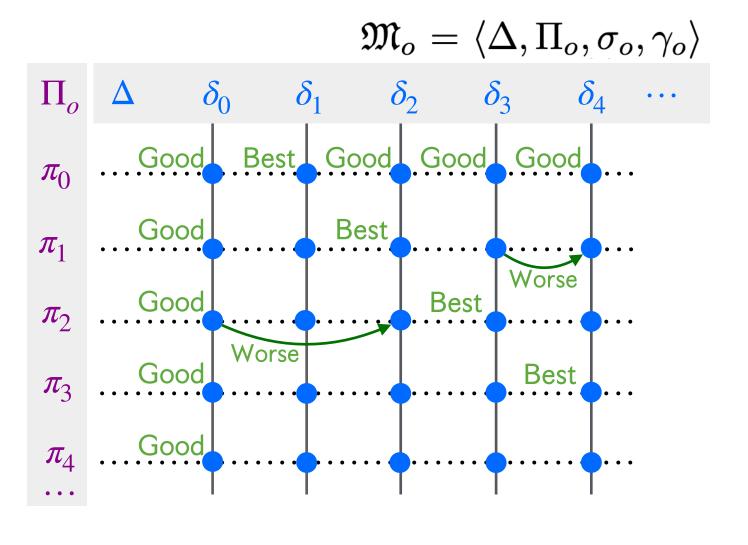


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

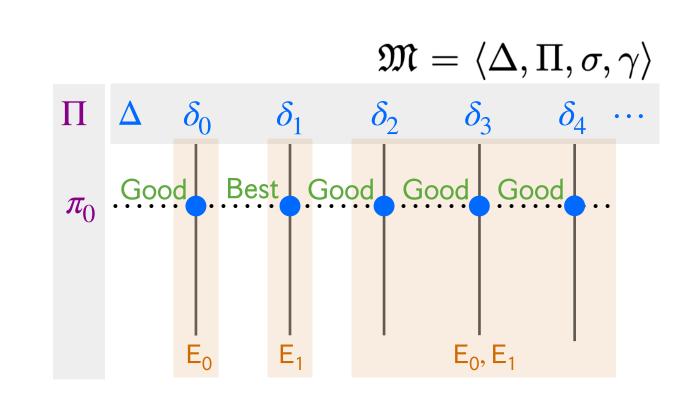


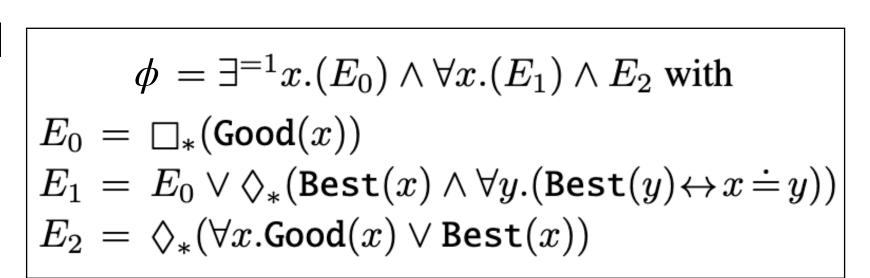


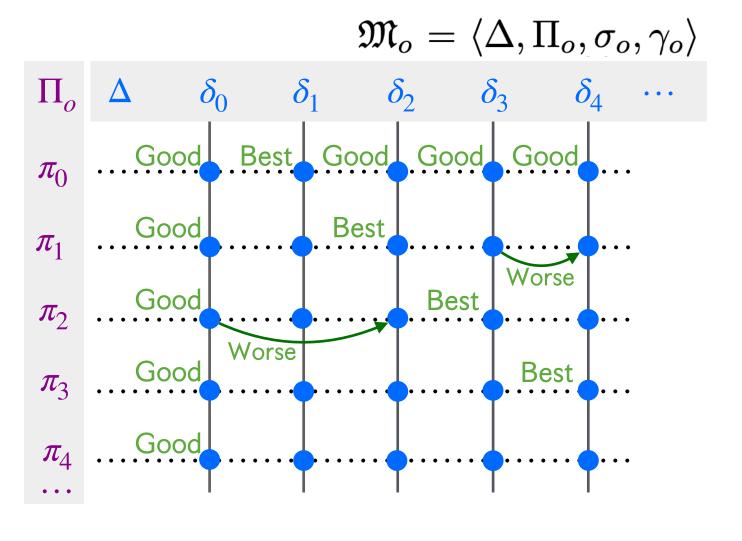


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

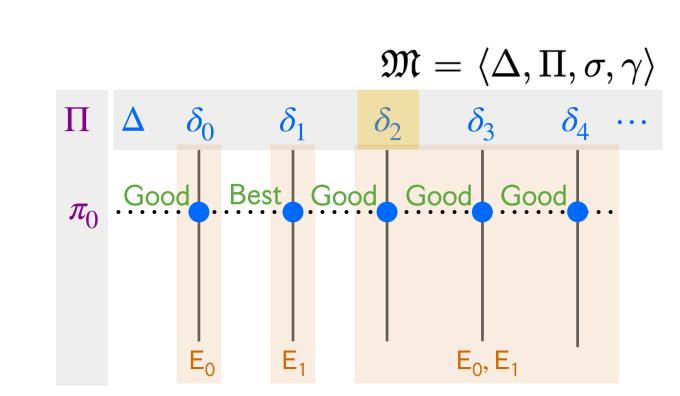




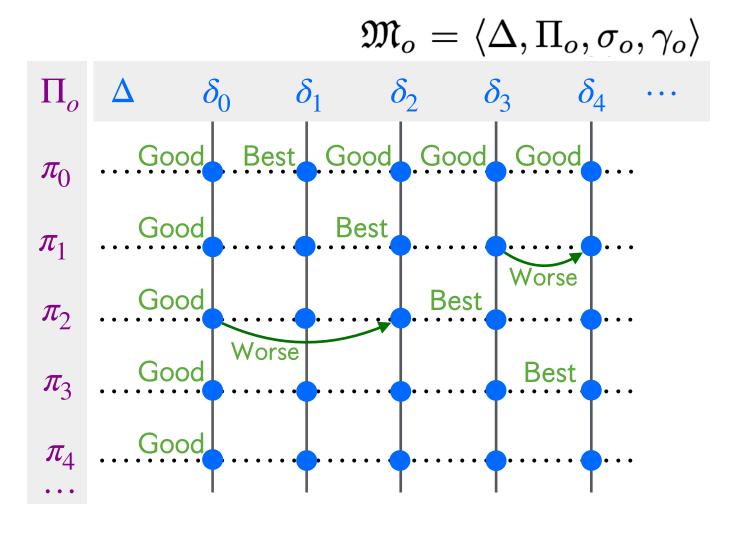


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



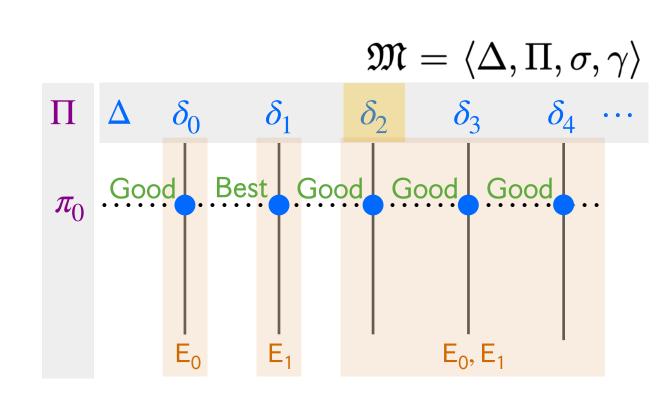




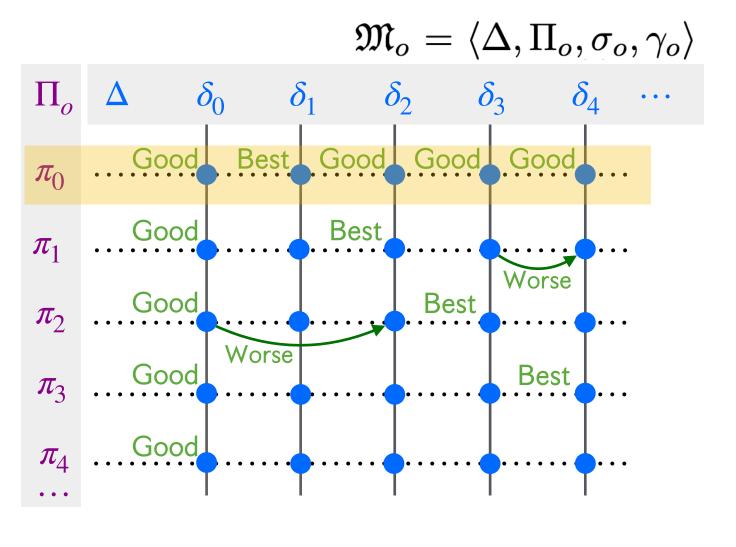
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

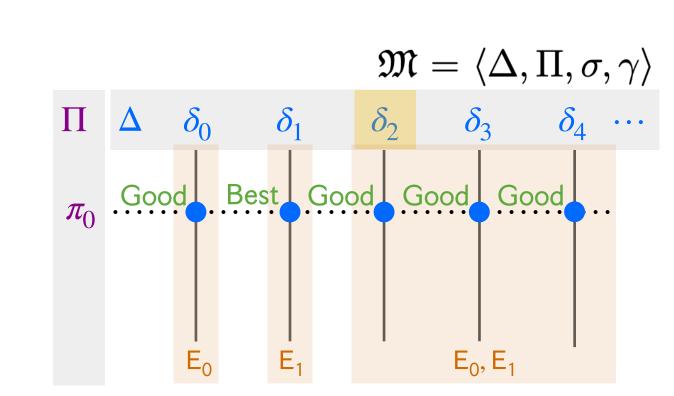


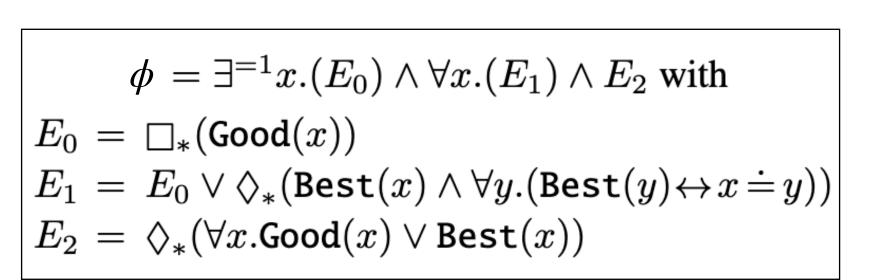
 $\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$   $E_0 = \Box_*(\mathsf{Good}(x))$   $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$   $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 

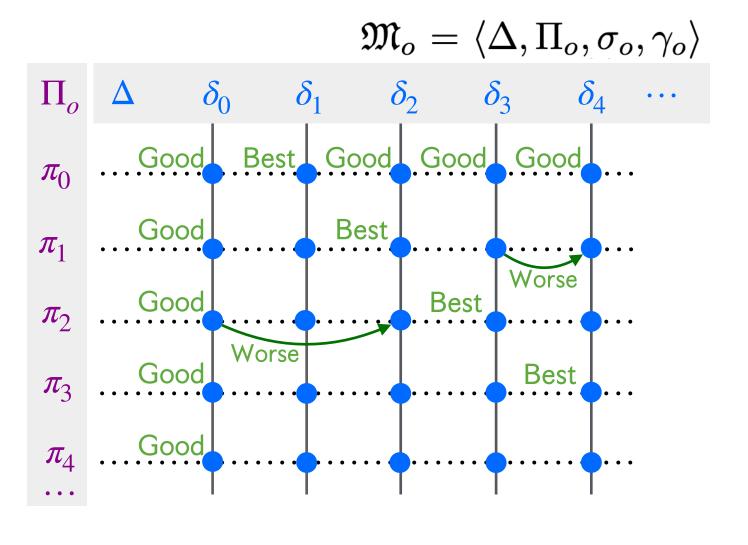


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

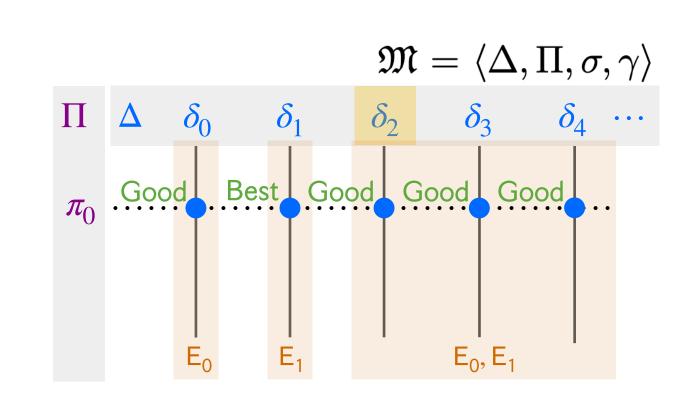


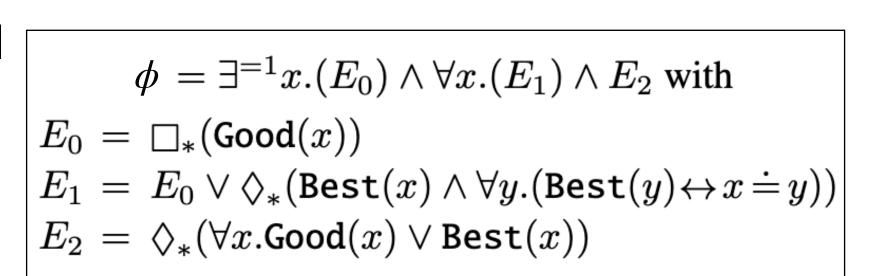


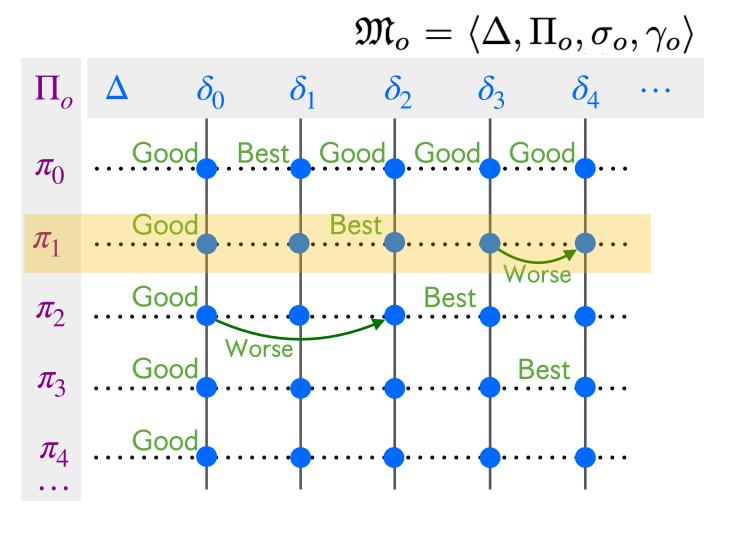


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

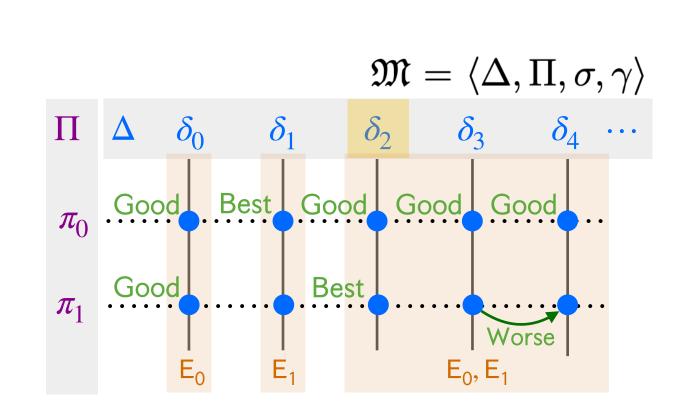


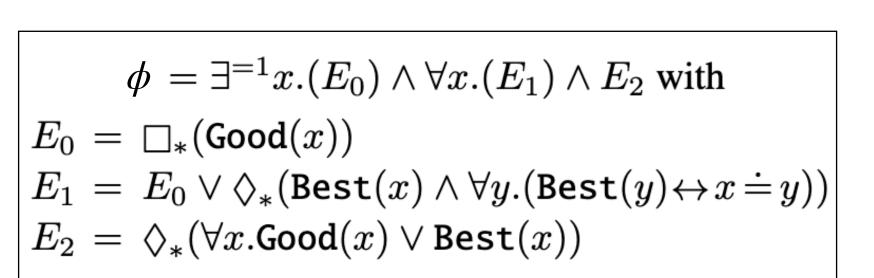


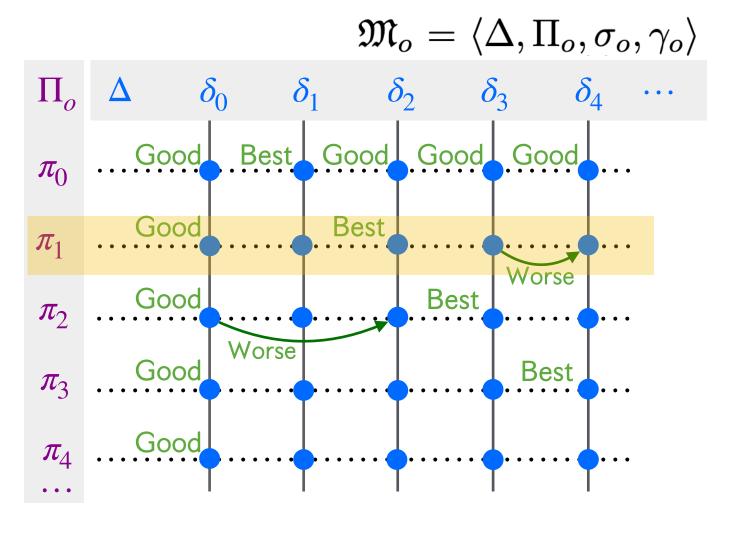


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit * \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$



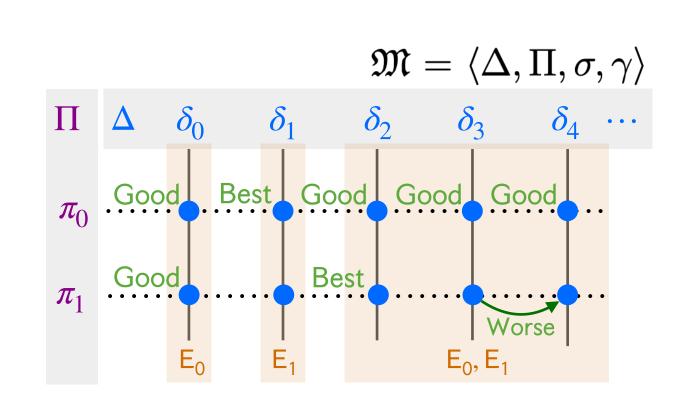




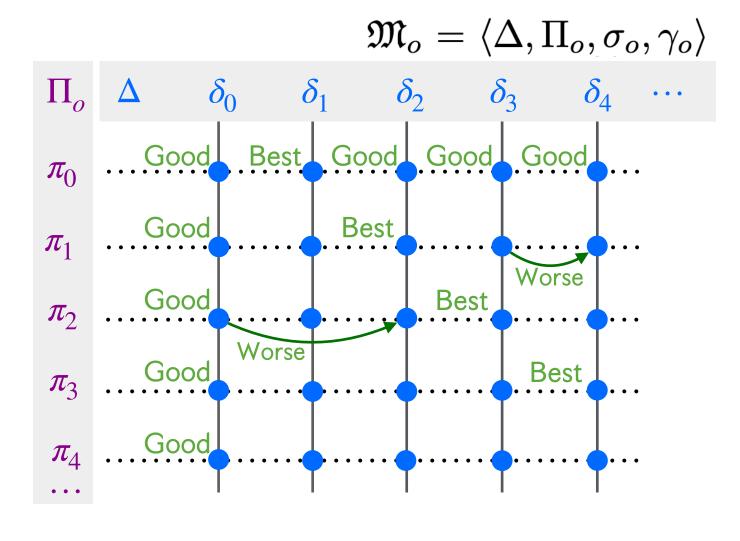
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

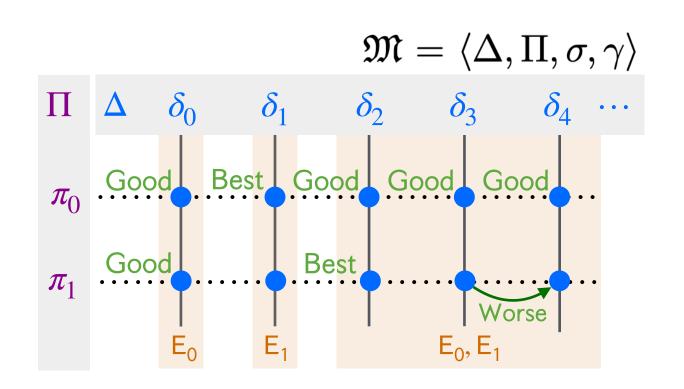
Building the exponential structure from a model  $\mathfrak{M}_o = \langle \Delta, \Pi_o, \sigma_o, \gamma_o \rangle$ :

- Add one rigid unary predicate  $E_i$  per monodic sub-formula  $\diamondsuit_* \psi_i$  (Set the same extension in structure)
- Select from  $\Pi_o$ 
  - a  $\pi$  if no  $\diamondsuit$ -subformulas; otherwise:
  - a  $\pi$  for each sentential  $\diamondsuit_* \psi$  subformula
  - for each realised E-type T,  $\{\mathsf{E}_0\}, \{\mathsf{E}_1\}, \{\mathsf{E}_0, \mathsf{E}_1\}$  pick  $\delta$  of type T a  $\pi$  satisfying  $\psi_i$  for  $\delta$  per  $\mathsf{E}_i \in T$

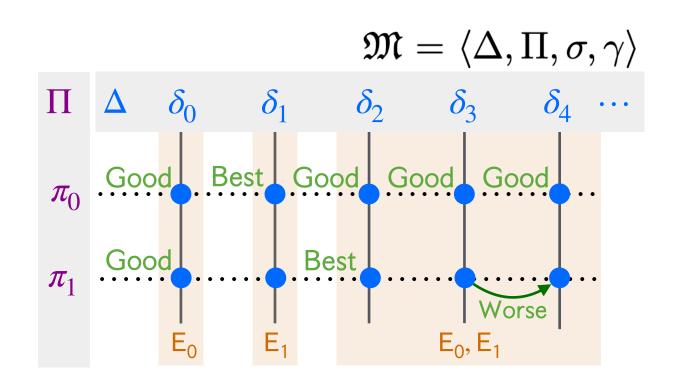


 $\phi = \exists^{=1}x.(E_0) \land \forall x.(E_1) \land E_2 ext{ with}$   $E_0 = \Box_*(\mathsf{Good}(x))$   $E_1 = E_0 \lor \Diamond_*(\mathsf{Best}(x) \land \forall y.(\mathsf{Best}(y) \leftrightarrow x \stackrel{.}{=} y))$   $E_2 = \Diamond_*(\forall x.\mathsf{Good}(x) \lor \mathsf{Best}(x))$ 



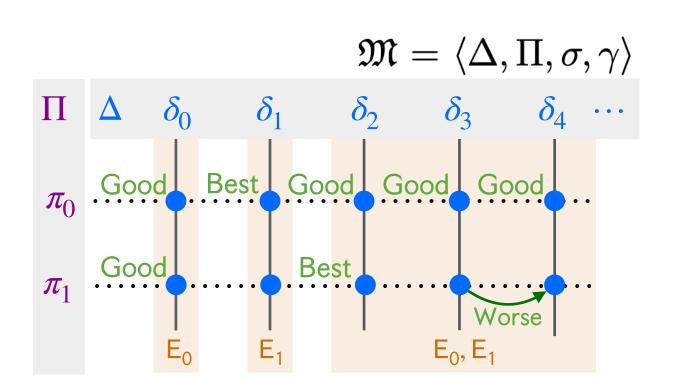


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model



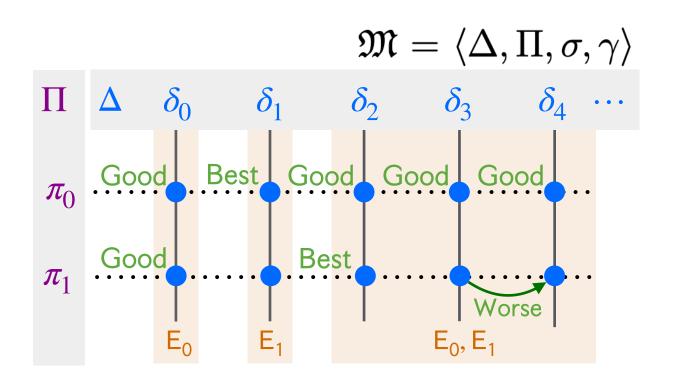
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

The  $P_E$ -stable permutational closure of  $\mathfrak M$ 



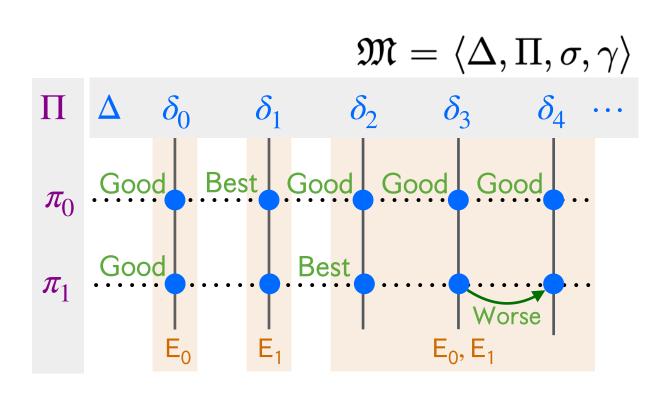
For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{E}}$ 
  - $\mathbb{P}_{\mathsf{F}}$ : set of permutations  $f:\Delta\to\Delta$  that preserve  $\mathsf{E}_i$  membership



For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

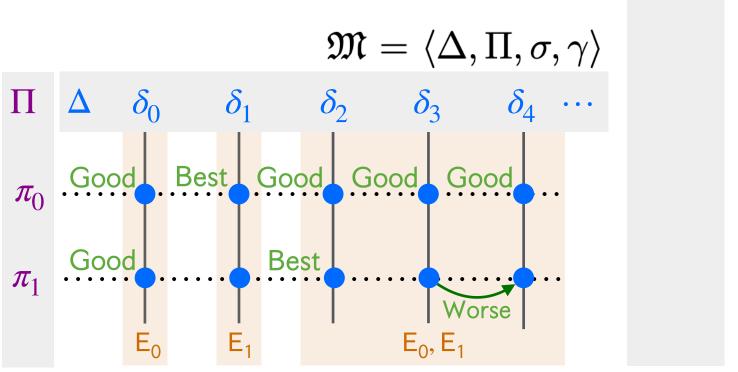
- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)} = \{ (f(\delta_1), f(\delta_2)) \mid (\delta_1, \delta_2) \in P^{\gamma(\pi)} \}$

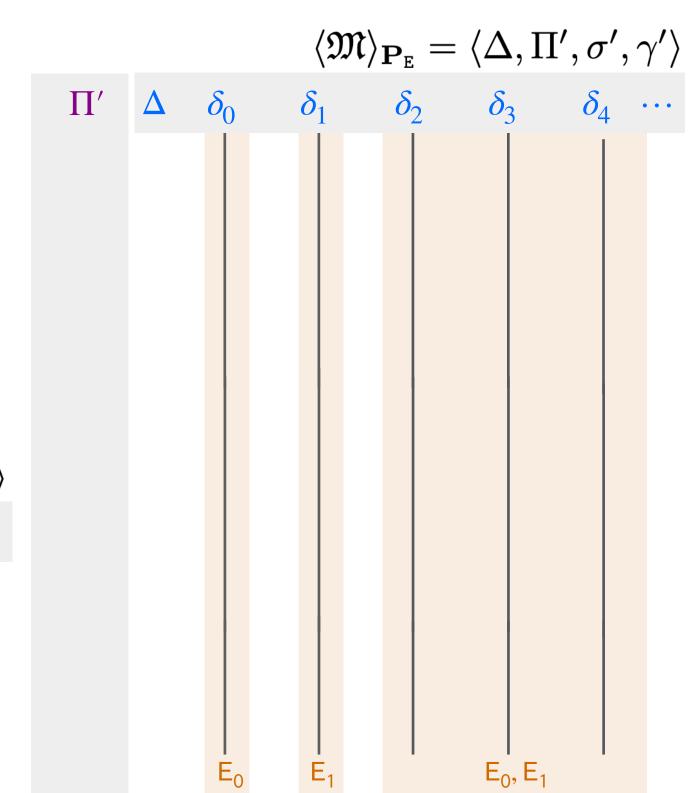


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

#### The $P_{\mathsf{E}}$ -stable permutational closure of $\mathfrak M$

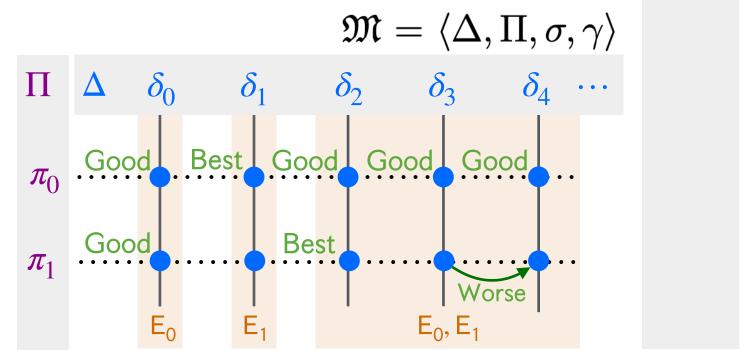
- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)} = \{ (f(\delta_1), f(\delta_2)) \mid (\delta_1, \delta_2) \in P^{\gamma(\pi)} \}$

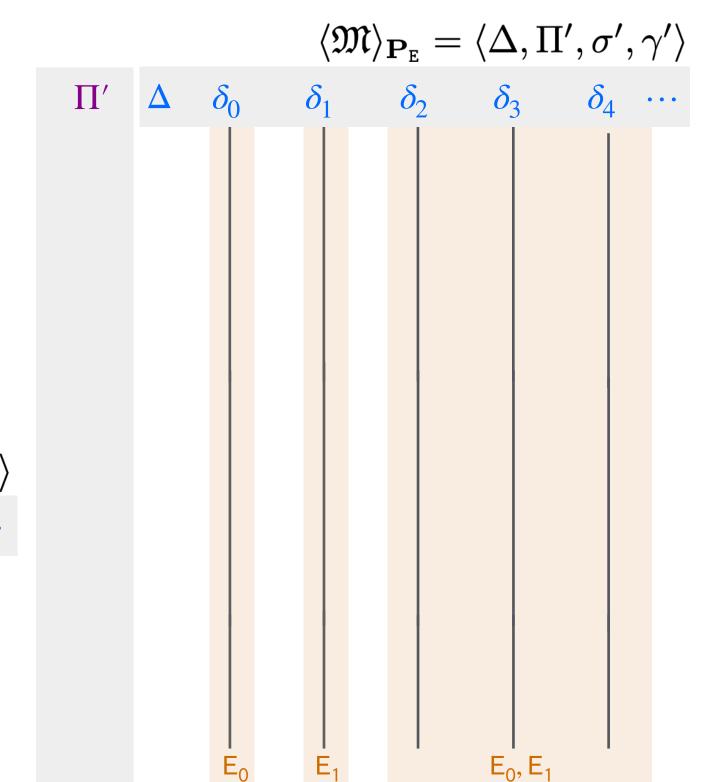




For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

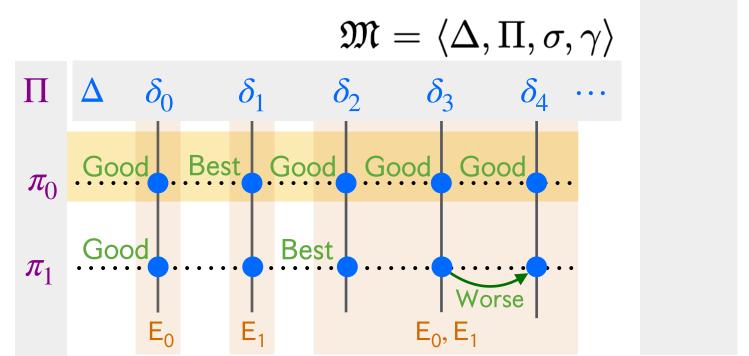
- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)}=\{(f(\delta_1),f(\delta_2))\mid (\delta_1,\delta_2)\in P^{\gamma(\pi)}\}$ Elements swapped around, preserving world internal structure

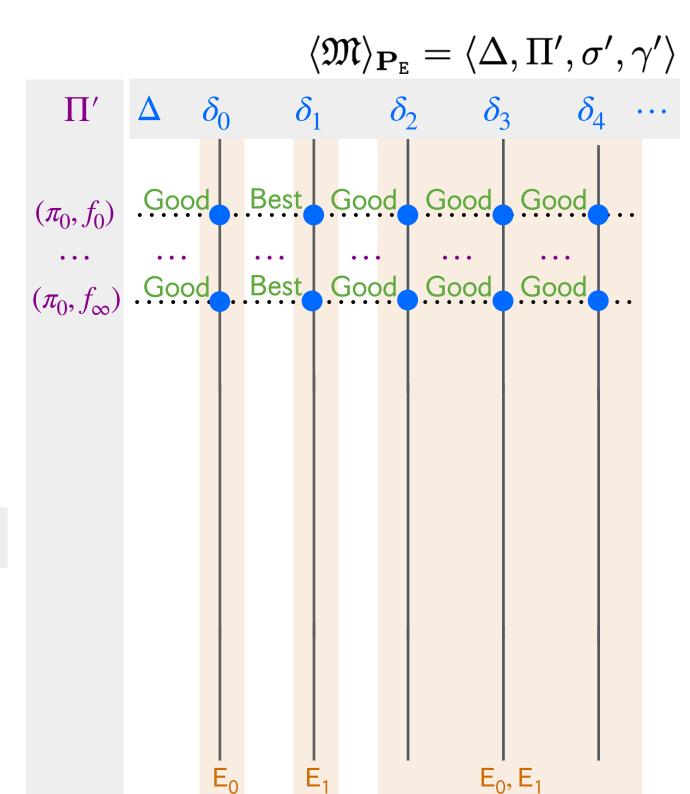




For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

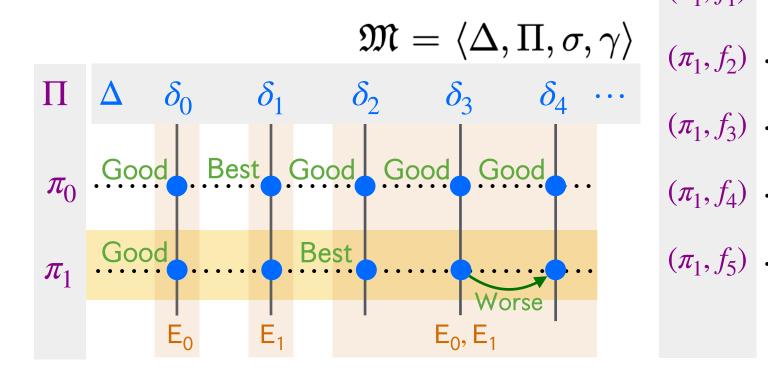
- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)}=\{(f(\delta_1),f(\delta_2))\mid (\delta_1,\delta_2)\in P^{\gamma(\pi)}\}$  Elements swapped around, preserving world internal structure

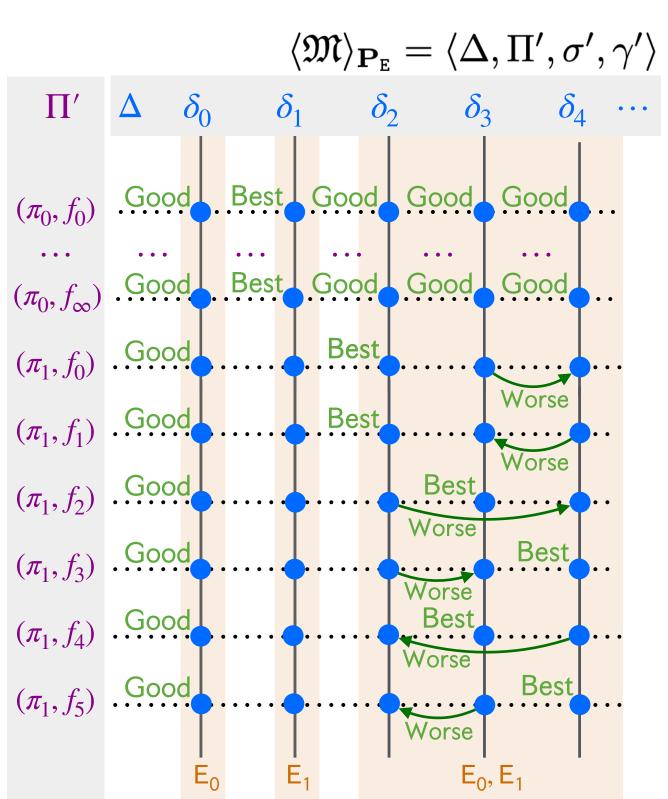




For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)} = \{(f(\delta_1),f(\delta_2)) \mid (\delta_1,\delta_2) \in P^{\gamma(\pi)}\}$ Elements swapped around, preserving world internal structure

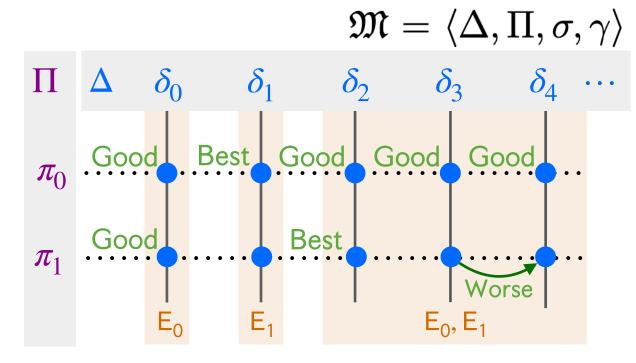


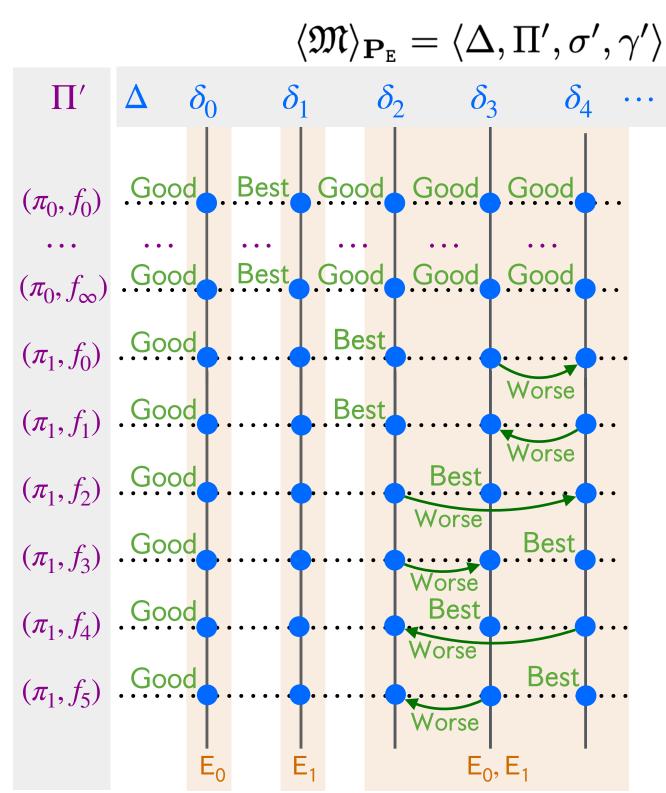


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)} = \{(f(\delta_1),f(\delta_2)) \mid (\delta_1,\delta_2) \in P^{\gamma(\pi)}\}$ Elements swapped around, preserving world internal structure

$$\phi=\exists^{=1}x.(E_0)\wedge orall x.(E_1)\wedge E_2 ext{ with}$$
  $E_0=\Box_*(\operatorname{Good}(x))$   $E_1=E_0\vee \diamondsuit_*(\operatorname{Best}(x)\wedge orall y.(\operatorname{Best}(y)\!\leftrightarrow\! x\,\dot=\,y))$   $E_2=\diamondsuit_*(orall x.\operatorname{Good}(x)\vee\operatorname{Best}(x))$ 

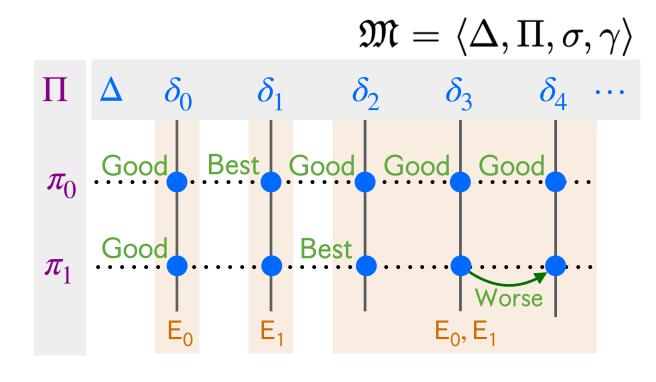


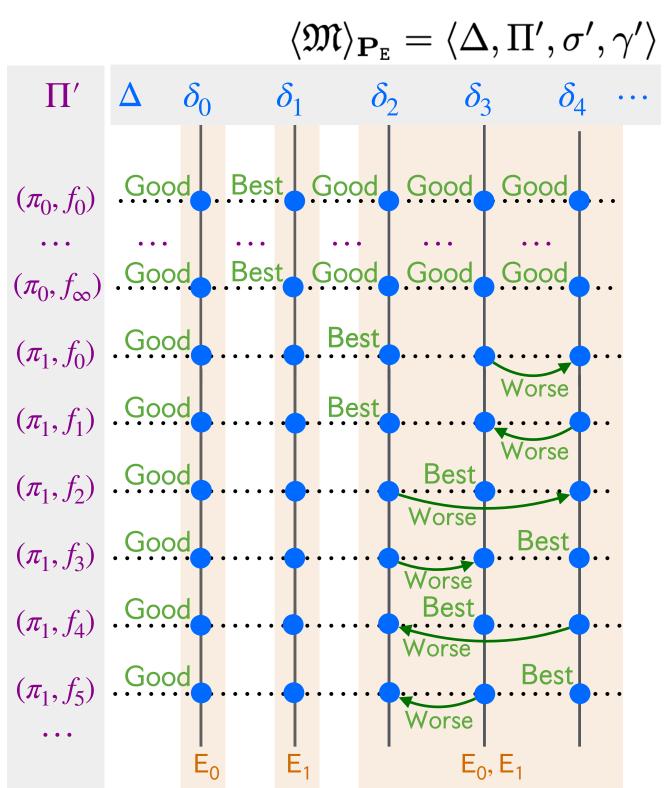


For any satisfiable  $\phi$ , we construct an (exp.) structure that yields a model

- $\Pi' = \Pi \times \mathbb{P}_{\mathsf{F}}$ 
  - $\mathbb{P}_{\mathsf{E}}$  : set of permutations  $f \colon \Delta \to \Delta$  that preserve  $\mathsf{E}_i$  membership
- $P^{\gamma'(\pi,f)} = \{ f(\delta) \mid \delta \in P^{\gamma(\pi)} \}$
- $P^{\gamma'(\pi,f)} = \{(f(\delta_1),f(\delta_2)) \mid (\delta_1,\delta_2) \in P^{\gamma(\pi)}\}$ Elements swapped around, preserving world internal structure

$$\begin{array}{l} \phi = \exists^{=1}x.(E_0) \wedge \forall x.(E_1) \wedge E_2 \text{ with} \\ E_0 = \; \Box_*(\mathsf{Good}(x)) \\ E_1 = E_0 \vee \lozenge_*(\mathsf{Best}(x) \wedge \forall y.(\mathsf{Best}(y) {\leftrightarrow} x \,\dot{=}\, y)) \\ E_2 = \; \lozenge_*(\forall x.\mathsf{Good}(x) \vee \mathsf{Best}(x)) \end{array}$$



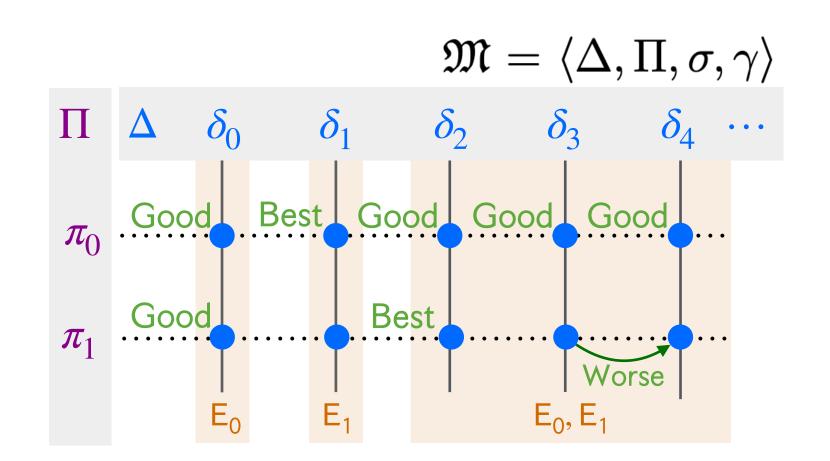


 $\mathfrak{M}$ 

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi|=2^m$ ),

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi| = 2^m$ ),  $\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}}) \text{ with signature } \langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \emptyset \rangle$ 

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi| = 2^m$ ),  $\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}}) \text{ with signature } \langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \varnothing \rangle$ 

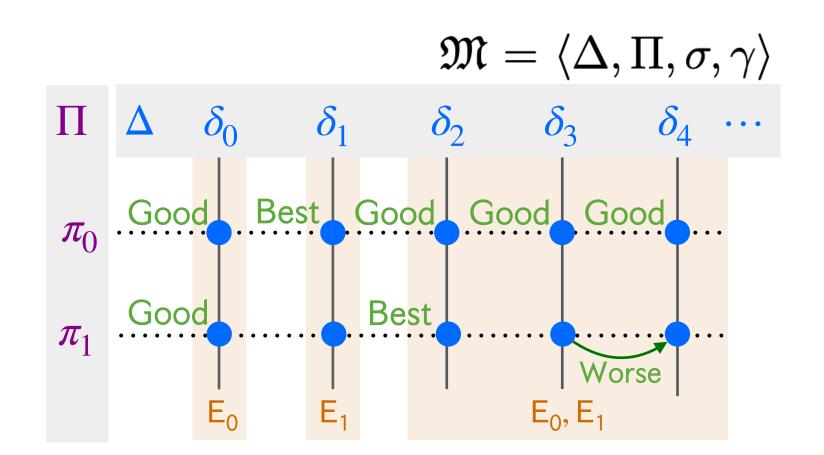


$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi|=2^m$ ),

$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$
 with signature  $\langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \emptyset \rangle$ 

• 
$$\Delta' = \Delta \times \{0, ..., 2^m - 1\}$$



$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$

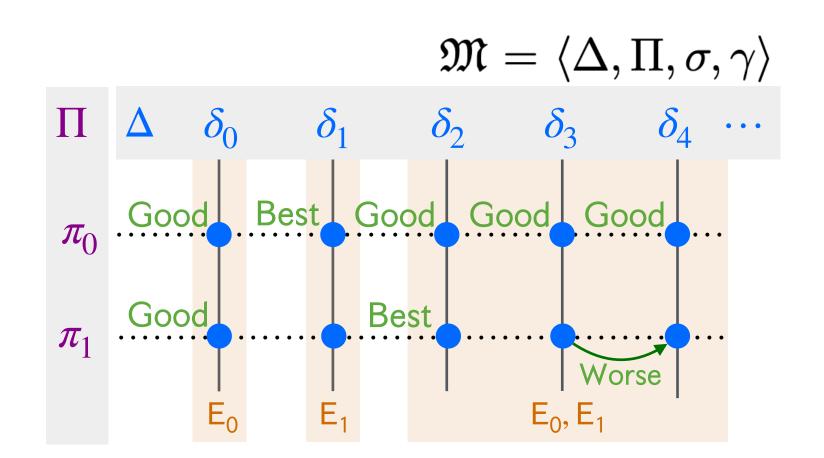
$$(\delta_0, 0)^{\bullet} (\delta_1, 0)^{\bullet} (\delta_2, 0)^{\bullet} (\delta_3, 0)^{\bullet} (\delta_4, 0)^{\bullet} \cdots$$

$$(\delta_0, 1)^{\bullet} (\delta_1, 1)^{\bullet} (\delta_2, 1)^{\bullet} (\delta_3, 1)^{\bullet} (\delta_4, 1)^{\bullet} \cdots$$

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi| = 2^m$ ),

$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$
 with signature  $\langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \emptyset \rangle$ 

- $\Delta' = \Delta \times \{0, ..., 2^m 1\}$
- $L_j^{\mathcal{I}} = \{(\delta, i) \mid \text{the } j^{th} \text{ bit of bin}(i) \text{ is } 1\}$



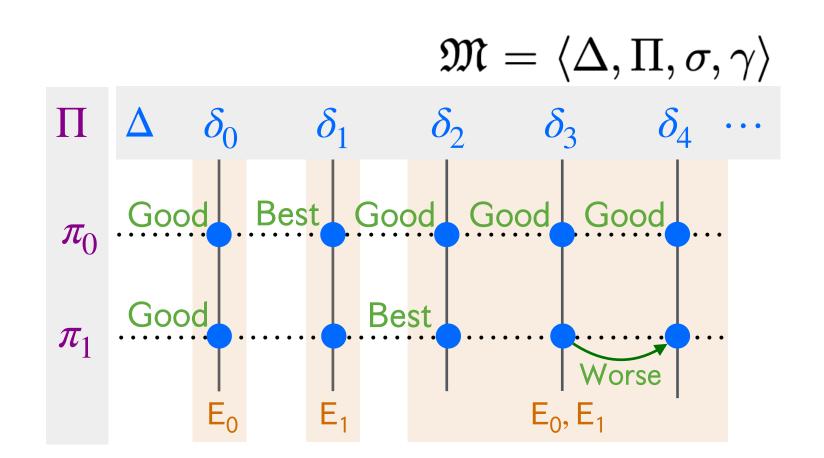
$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$

$$(\delta_{0}, 0)^{\bullet} (\delta_{1}, 0)^{\bullet} (\delta_{2}, 0)^{\bullet} (\delta_{3}, 0)^{\bullet} (\delta_{4}, 0)^{\bullet} \cdots$$

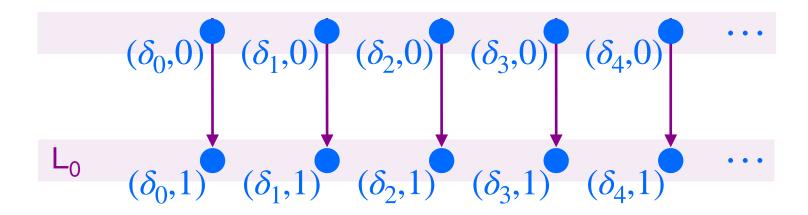
$$(\delta_{0}, 1)^{\bullet} (\delta_{1}, 1)^{\bullet} (\delta_{2}, 1)^{\bullet} (\delta_{3}, 1)^{\bullet} (\delta_{4}, 1)^{\bullet} \cdots$$

The stacked interpretation of  $\mathfrak{M}$  (with  $|\Pi| = 2^m$ ),  $\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}}) \text{ with signature } \langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \varnothing \rangle$ 

- $\Delta' = \Delta \times \{0, ..., 2^m 1\}$
- $L_i^{\mathcal{I}} = \{(\delta, i) \mid \text{the } j^{th} \text{ bit of bin}(i) \text{ is } 1\}$
- $F^{\mathcal{I}} = \{ ((\delta, i), (\delta, i + 1)) \mid \delta \in \Delta, i < 2^m 1 \}$



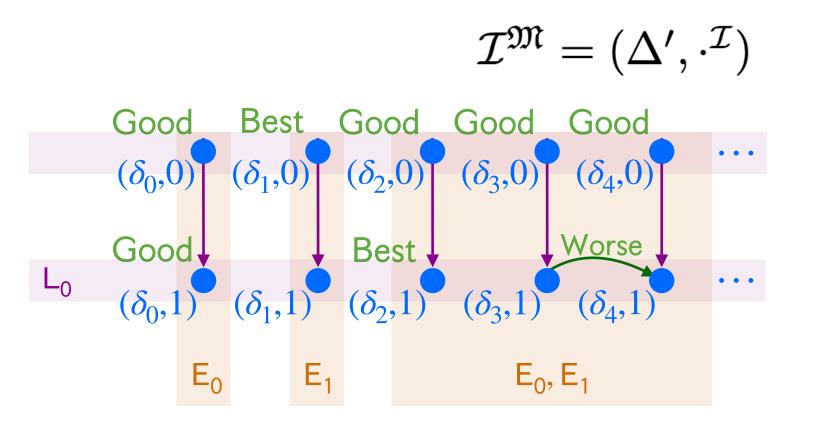
$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$

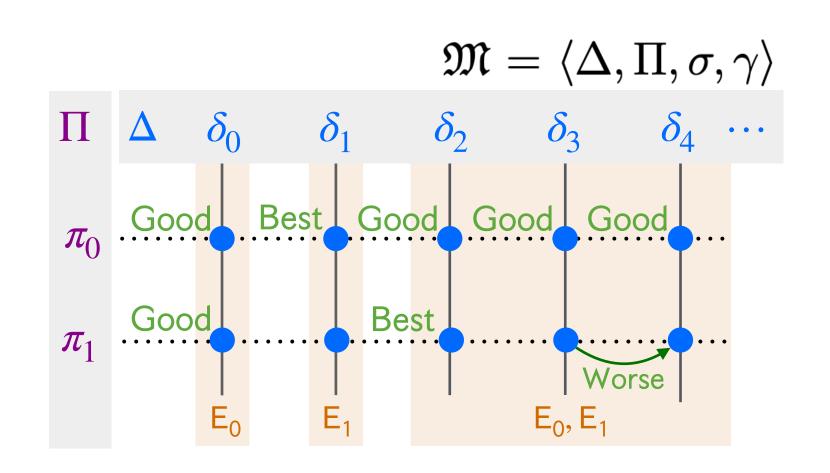


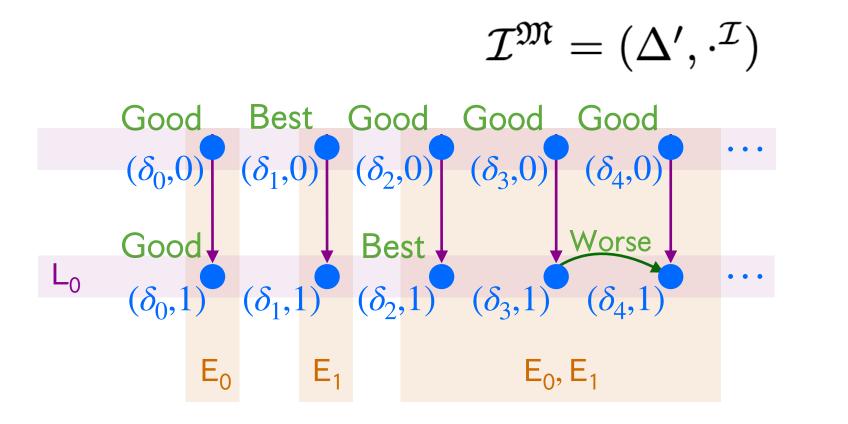
The <u>stacked interpretation</u> of  $\mathfrak{M}$  (with  $|\Pi| = 2^m$ ),  $\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}}) \text{ with signature } \langle \mathbf{P} \uplus \{\mathsf{F}, \mathsf{L}_0, ..., \mathsf{L}_{m-1}\}, \varnothing \rangle$ 

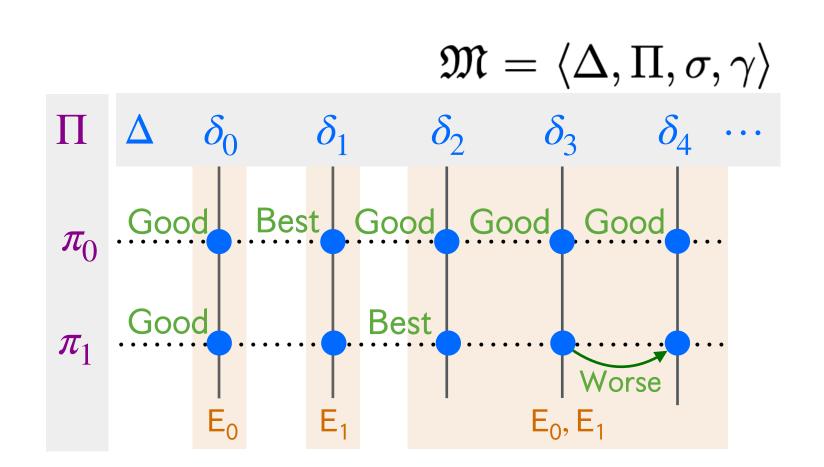
- $\Delta' = \Delta \times \{0, ..., 2^m 1\}$
- $L_i^{\mathcal{I}} = \{(\delta, i) \mid \text{the } j^{th} \text{ bit of bin}(i) \text{ is } 1\}$
- $F^{\mathcal{I}} = \{ ((\delta, i), (\delta, i + 1)) \mid \delta \in \Delta, i < 2^m 1 \}$
- $\mathsf{P}^{\mathcal{I}} = \{(\delta, i) \mid i < 2^m, \delta \in \mathsf{P}^{\gamma(\pi_i)}\}$
- $P^{\mathcal{I}} = \{ ((\delta_1, i), (\delta_2, i)) \mid i < 2^m, (\delta_1, \delta_2) \in P^{\gamma(\pi_i)} \}$

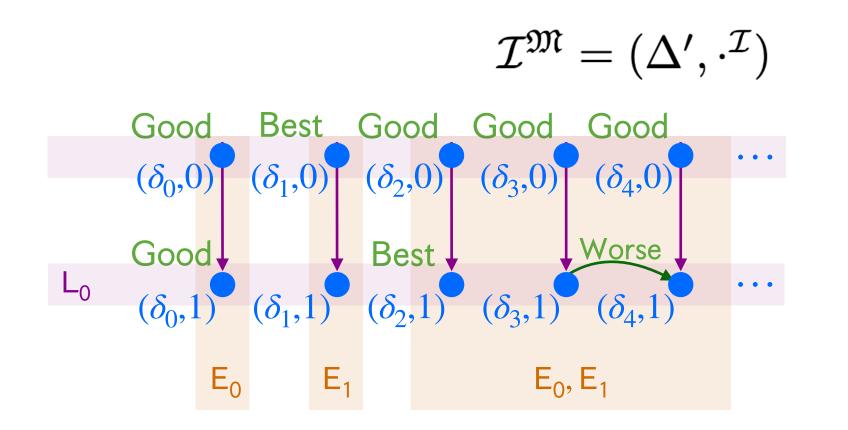




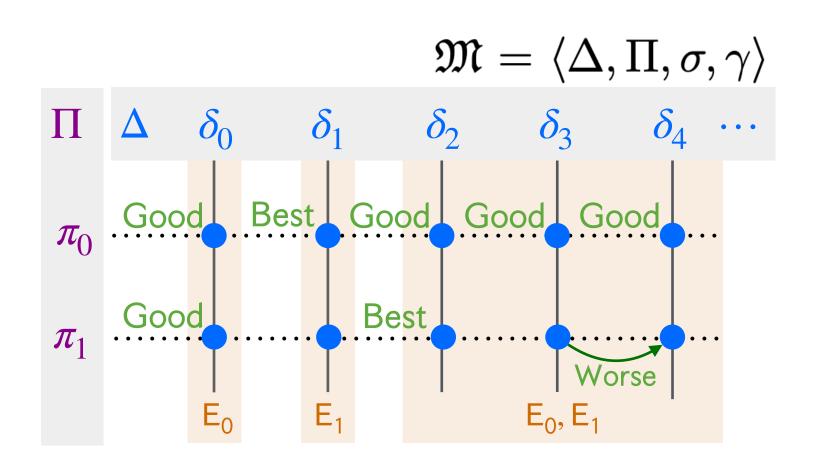


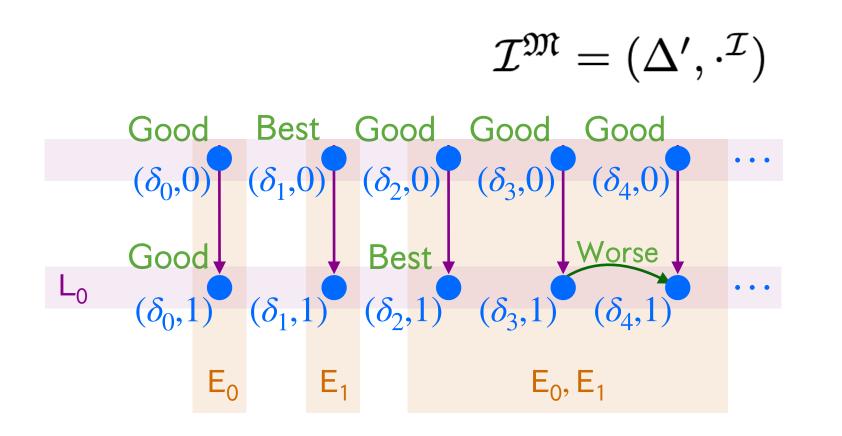




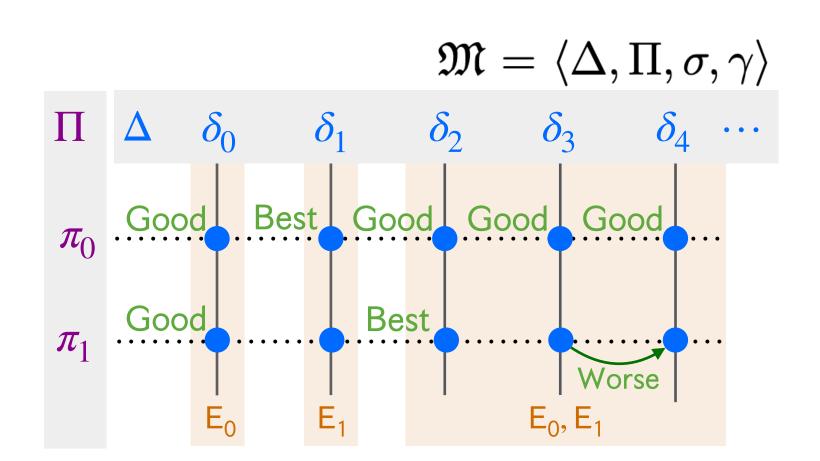


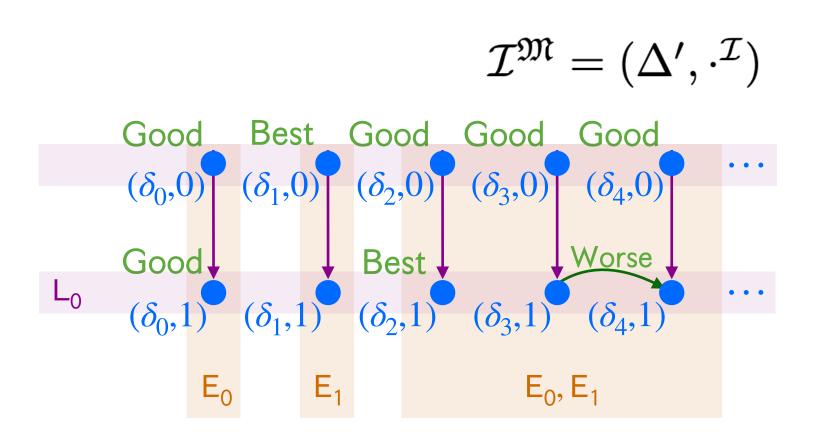
- 1 F-successor unless they have the last index
- 0 F-successors if they have the last index
- 1 F-predecessor unless they have the first index
- 0 F-predecessors if they have the first index



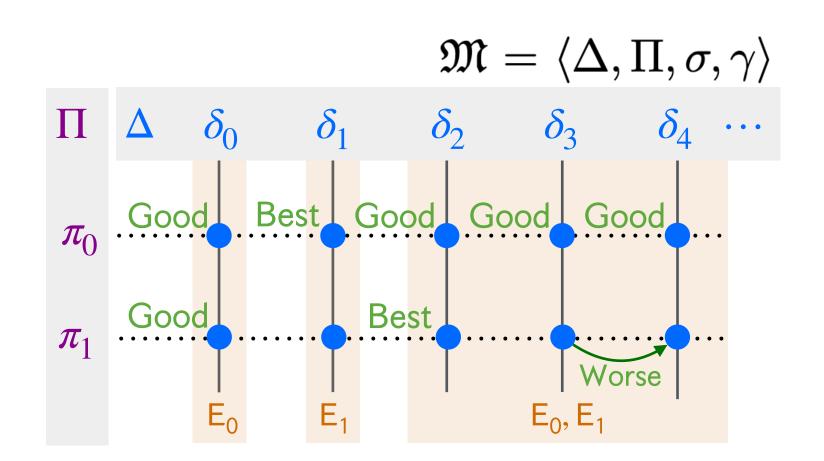


- 1 F-successor unless they have the last index
- 0 F-successors if they have the last index
- 1 F-predecessor unless they have the first index
- 0 F-predecessors if they have the first index
- Any two F-connected elements have consecutive indexes

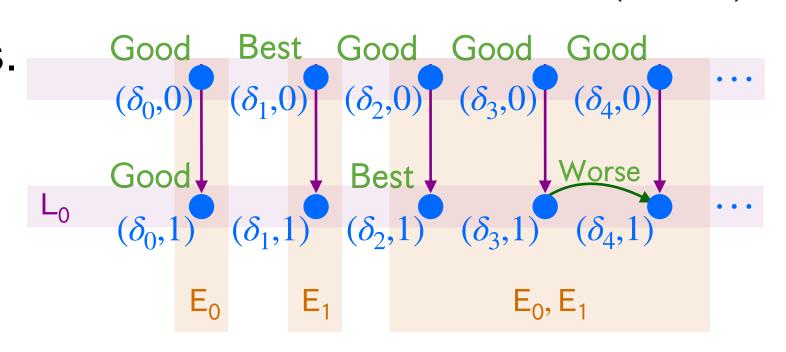




- 1 F-successor unless they have the last index
- 0 F-successors if they have the last index
- 1 F-predecessor unless they have the first index
- 0 F-predecessors if they have the first index
- Any two F-connected elements have consecutive indexes
- Binary predicates (except F) relate elements with matching indices.



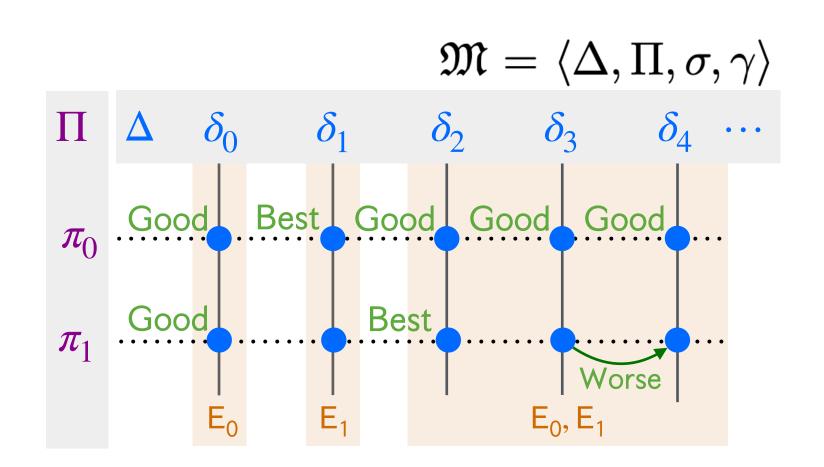
$$\mathcal{I}^{\mathfrak{M}} = (\Delta', \cdot^{\mathcal{I}})$$



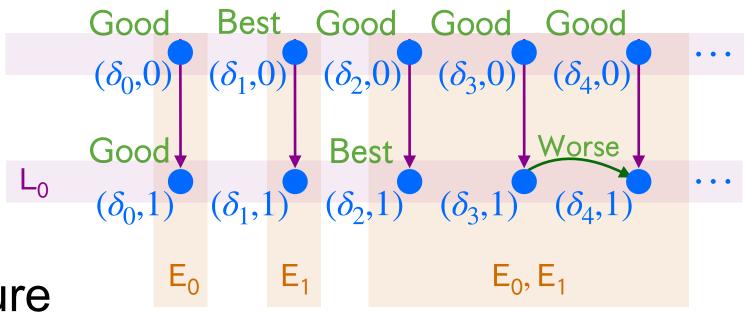
The  $C^2$  stacked formula  $\phi^m_{stack}$  forces all elements to have:

- 1 F-successor unless they have the last index
- 0 F-successors if they have the last index
- 1 F-predecessor unless they have the first index
- 0 F-predecessors if they have the first index
- Any two F-connected elements have consecutive indexes
- Binary predicates (except F) relate elements with matching indices.

An FO interpretation satisfies  $\phi^m_{stack}$  iff it's isomorphic to a stacked interpretation of an exp. sized FOSL structure



$$\mathcal{I}^{\mathfrak{M}}=(\Delta',\cdot^{\mathcal{I}})$$



A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

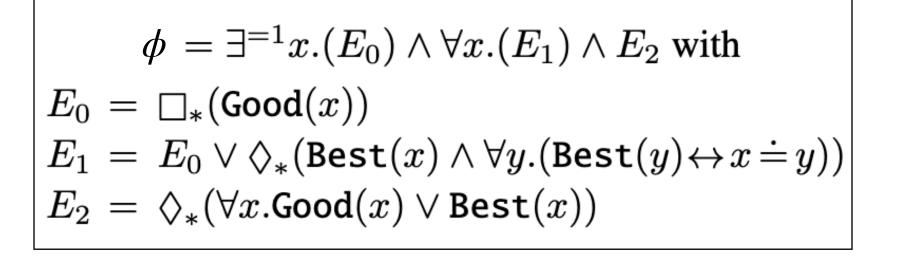
-  $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer

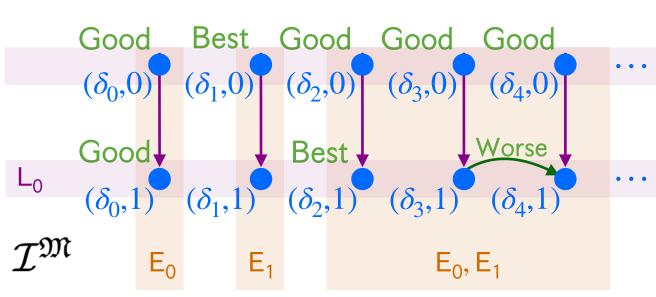
A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

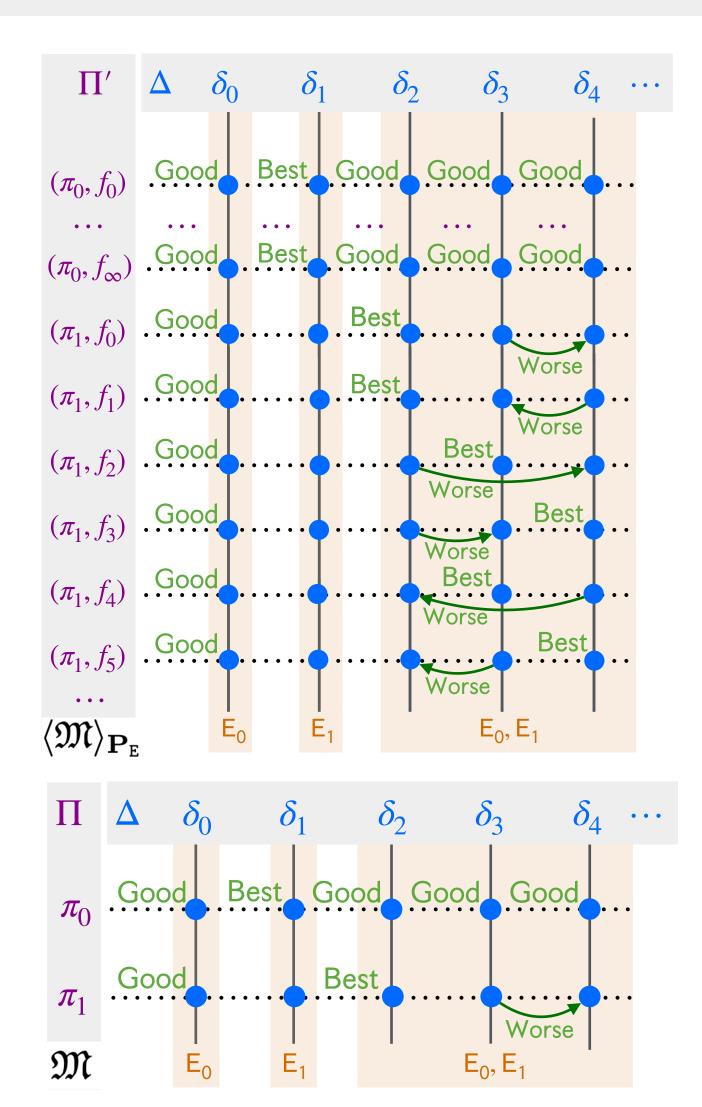
- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$ 
  - If  $\Diamond \phi$  is sentential, the variable assignment does nothing

A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type 
  If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

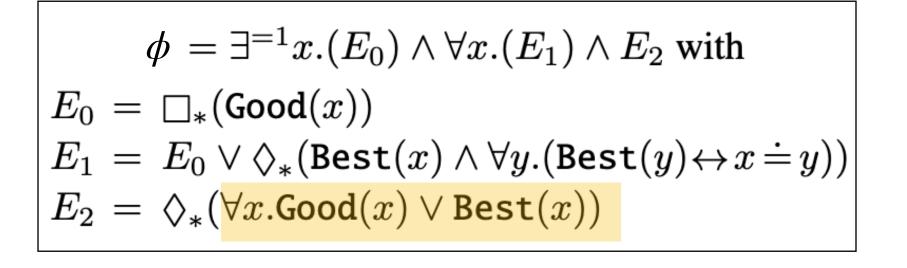


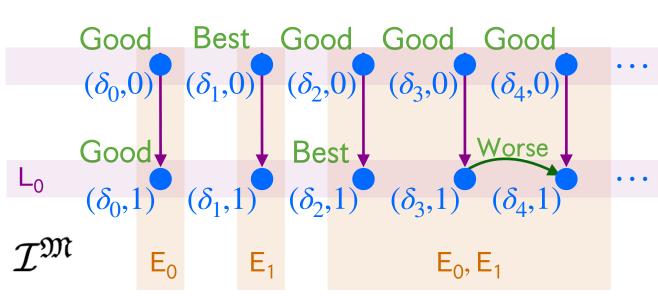


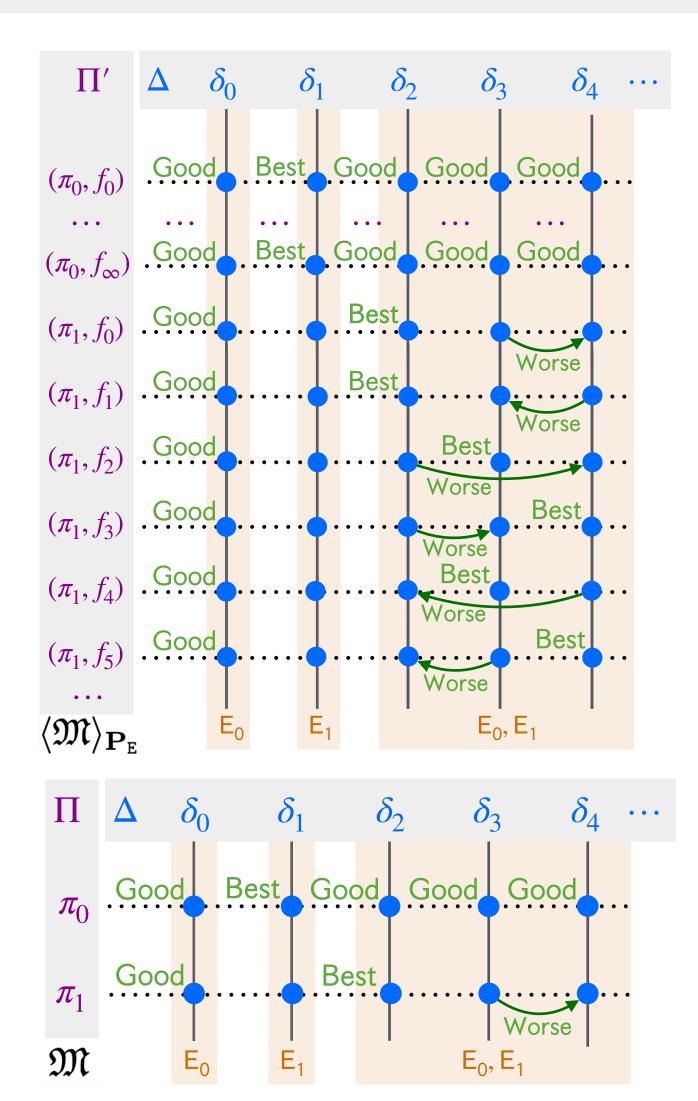


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type 
  If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

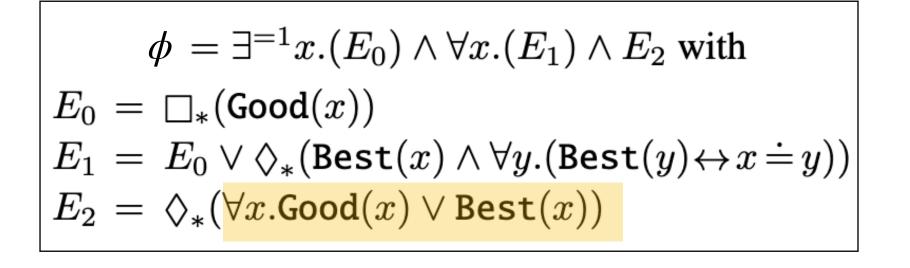


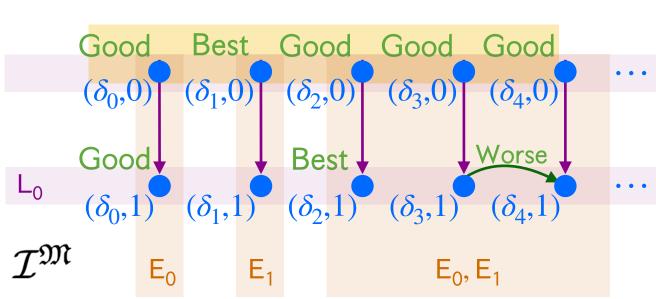


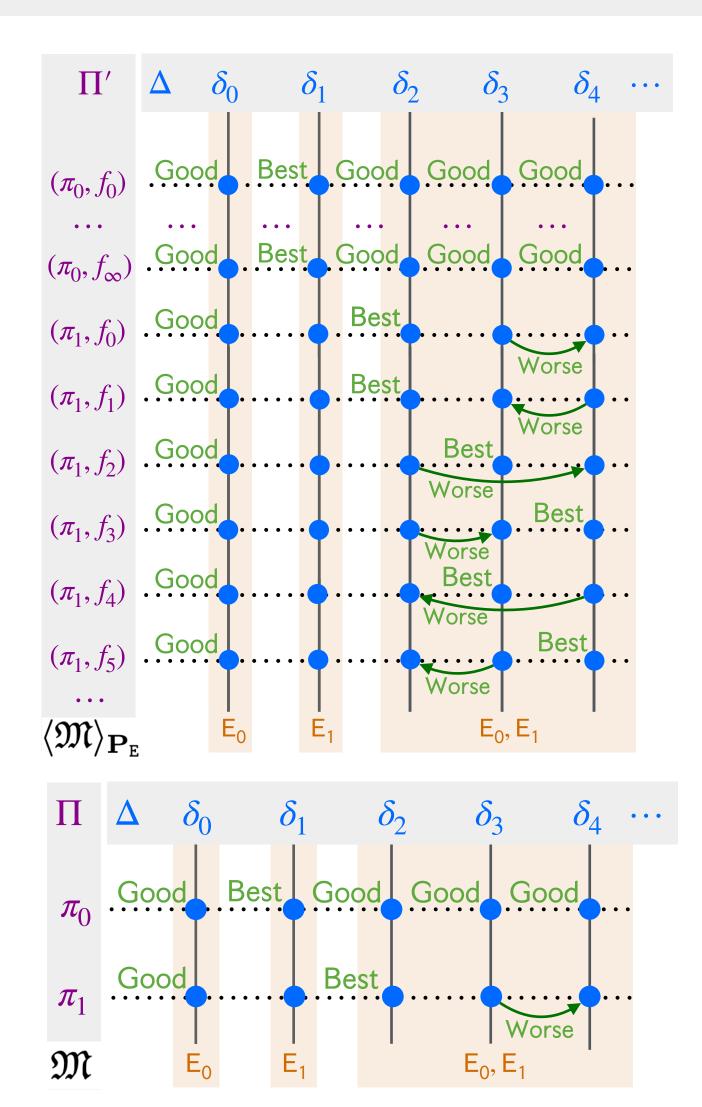


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

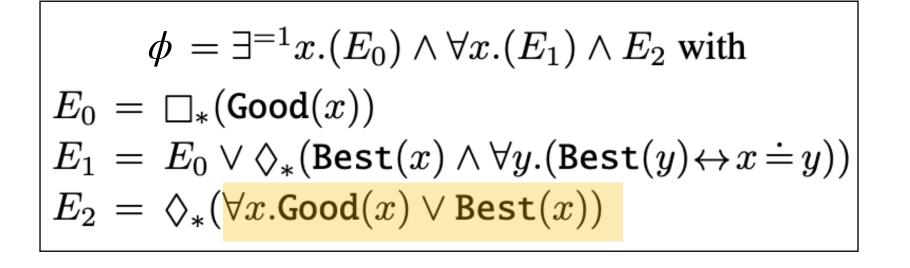


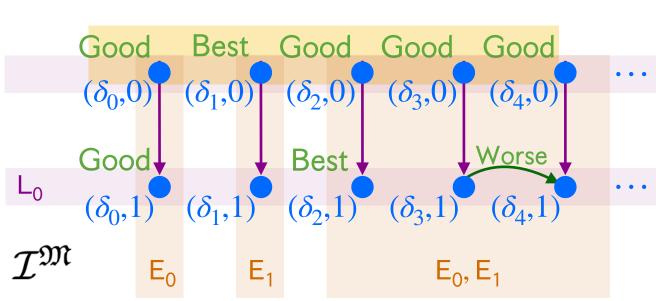


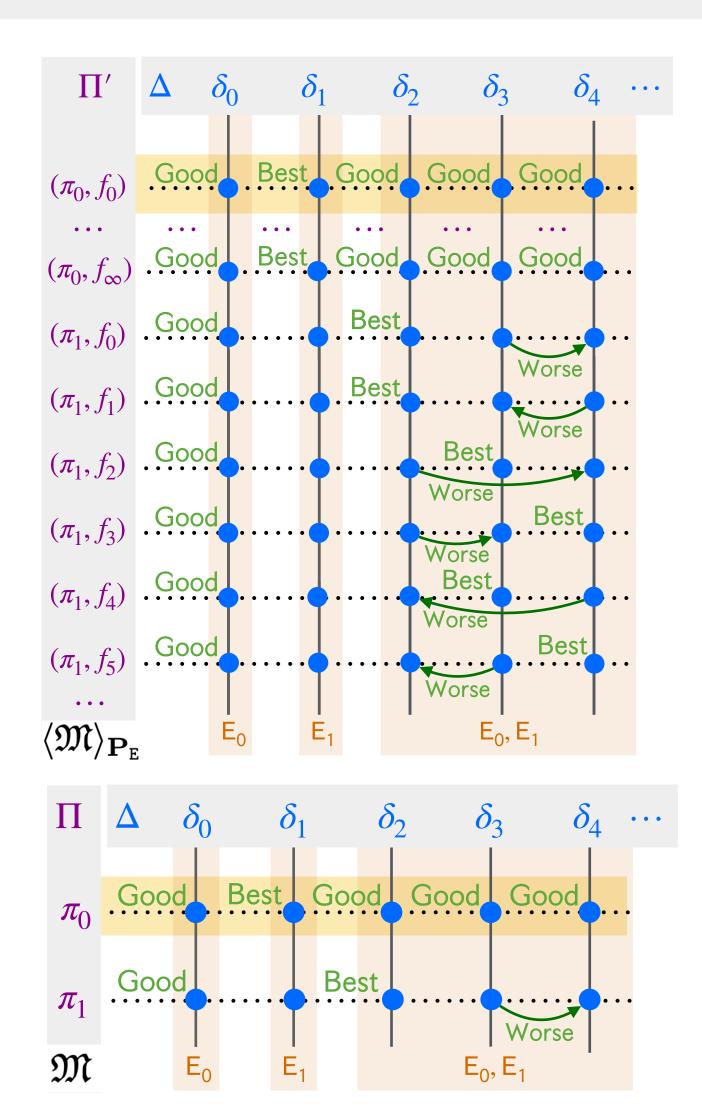


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

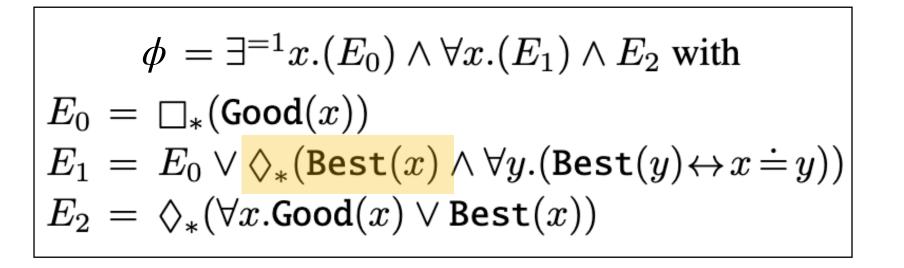


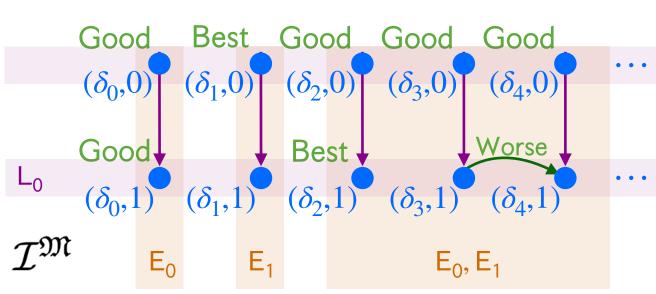


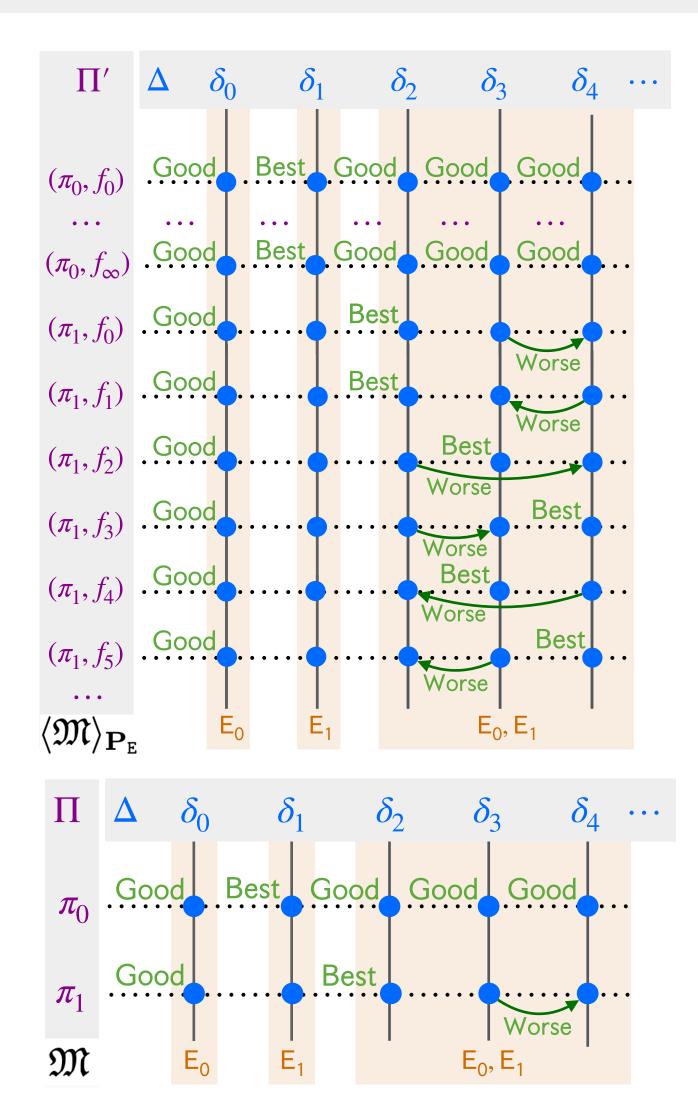


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

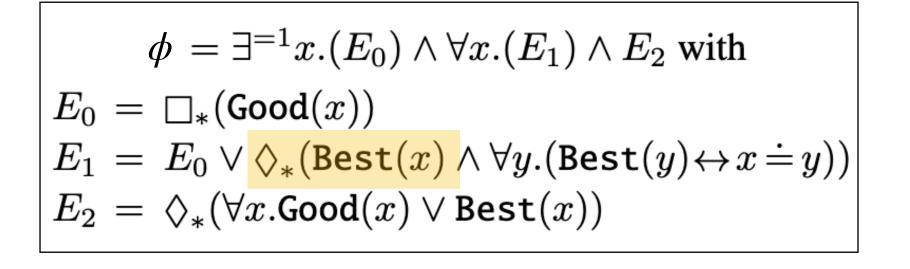


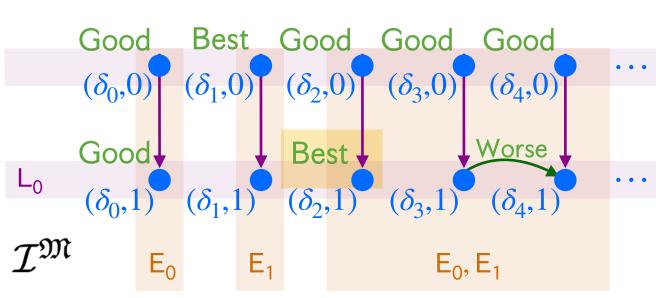


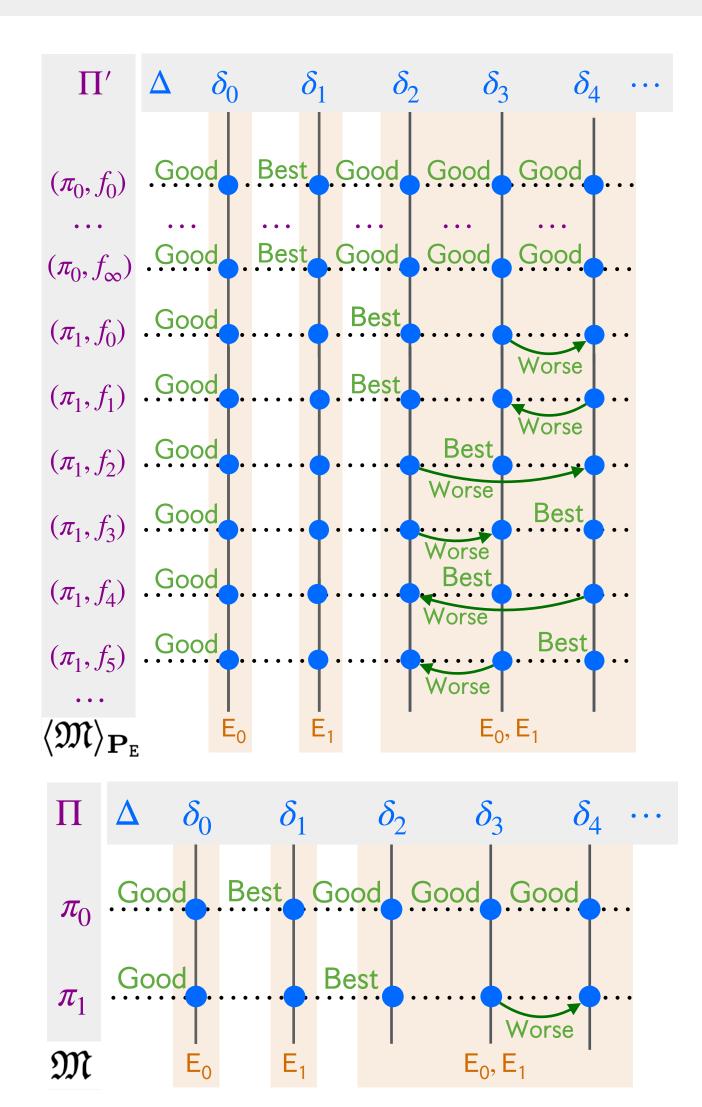


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

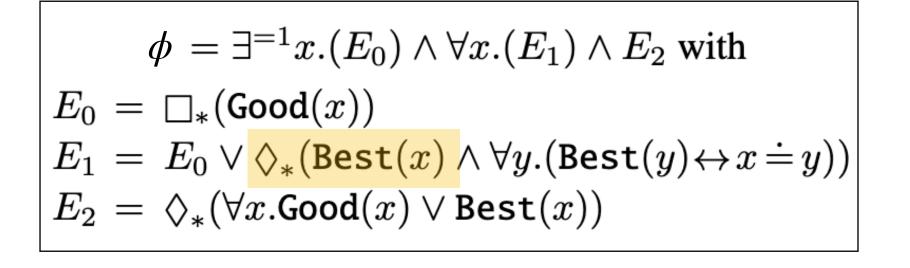


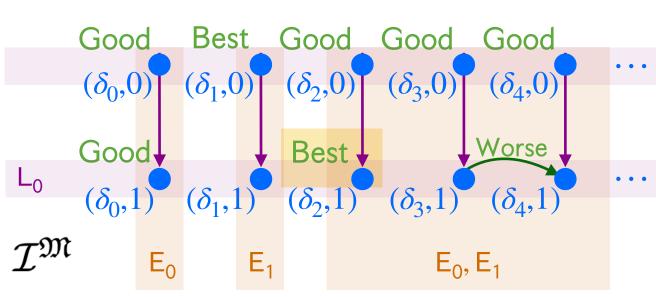


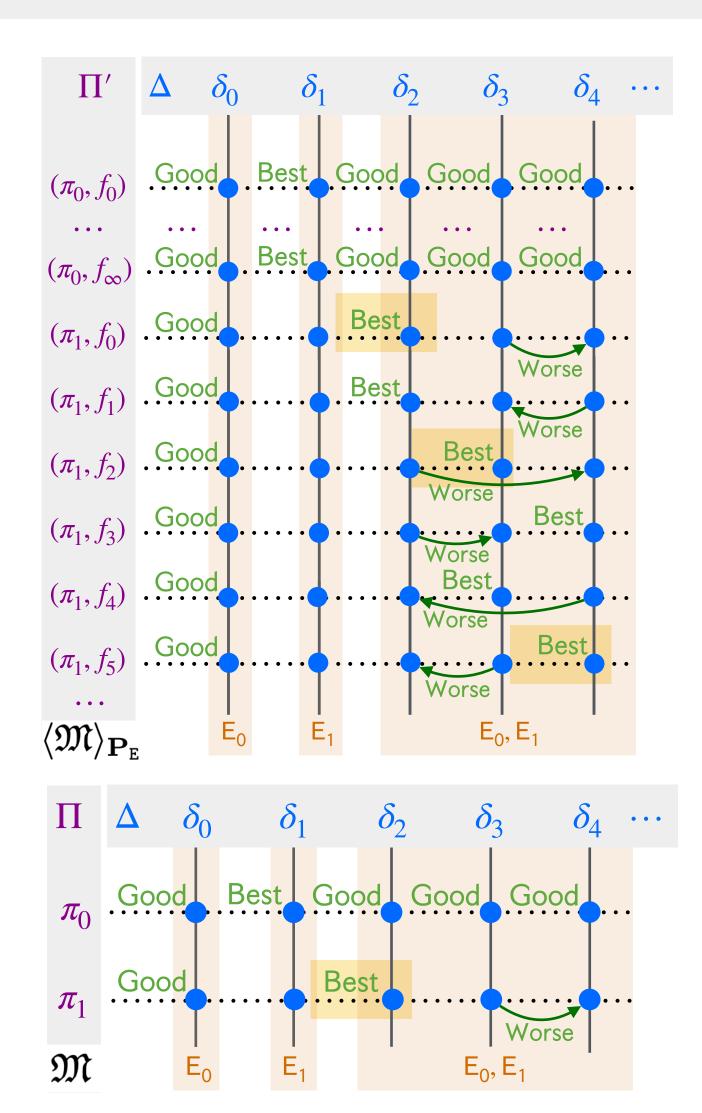


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type 
  If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

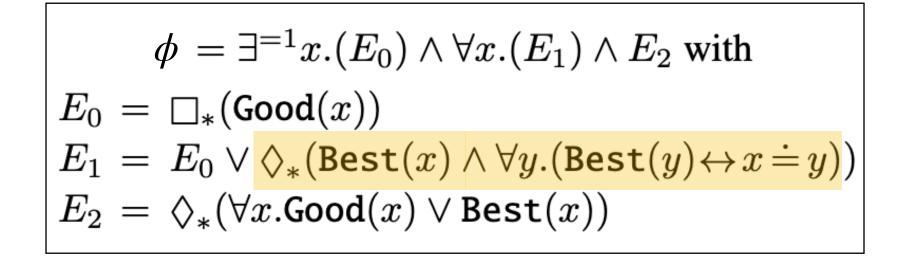


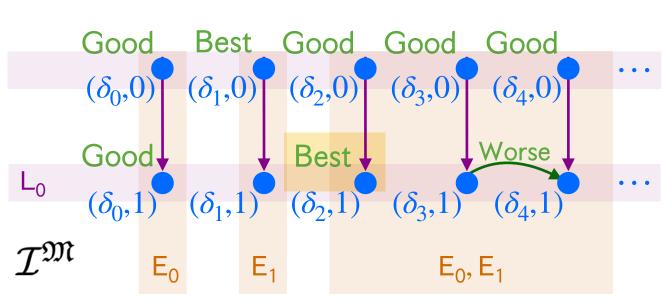


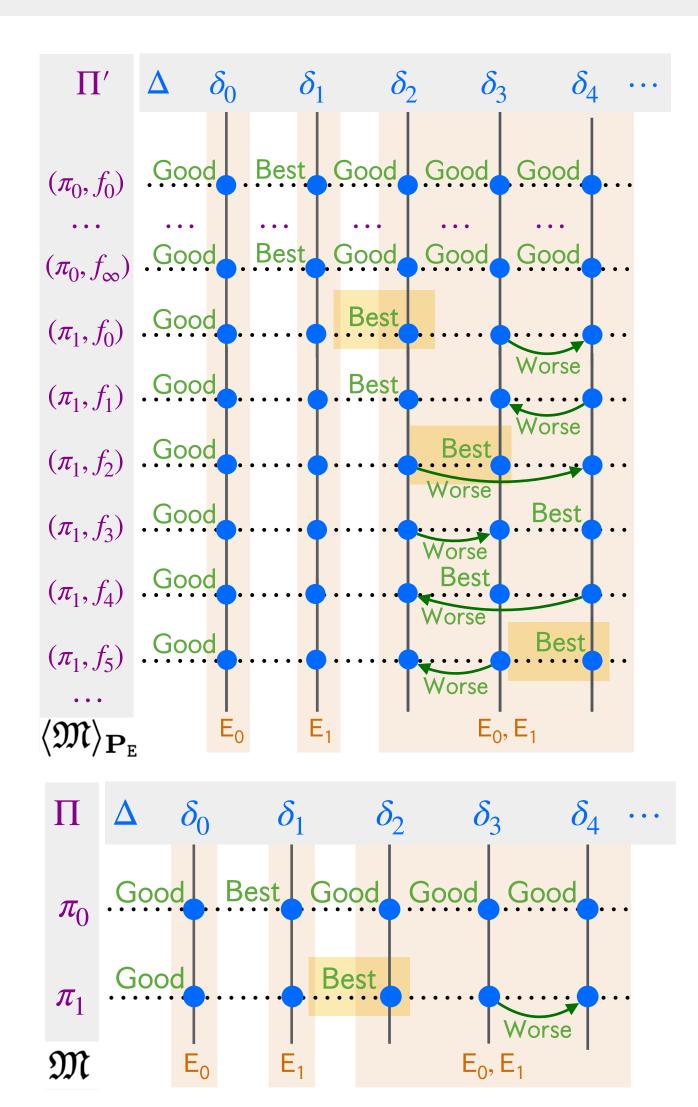


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

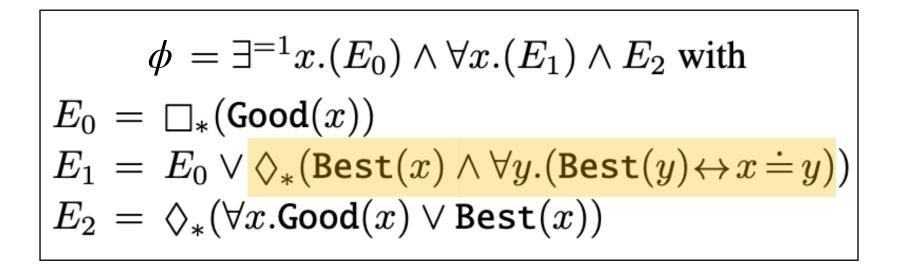


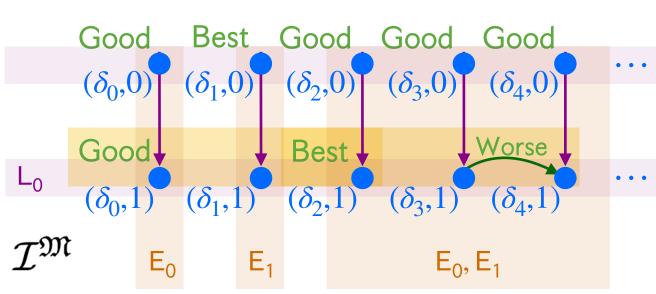


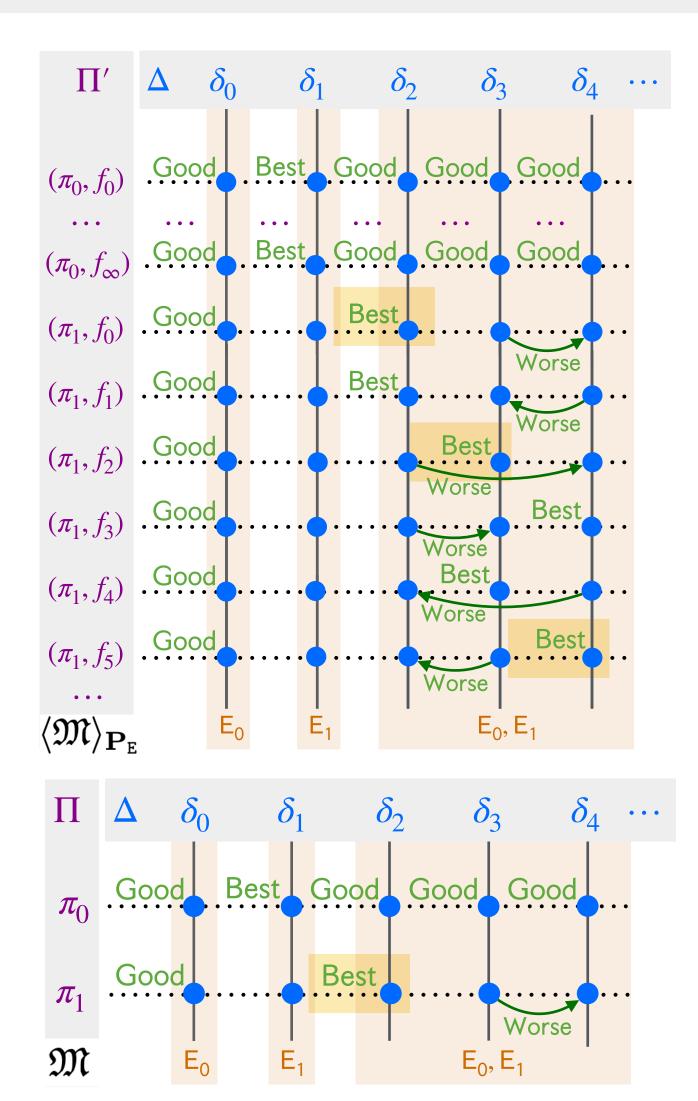


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

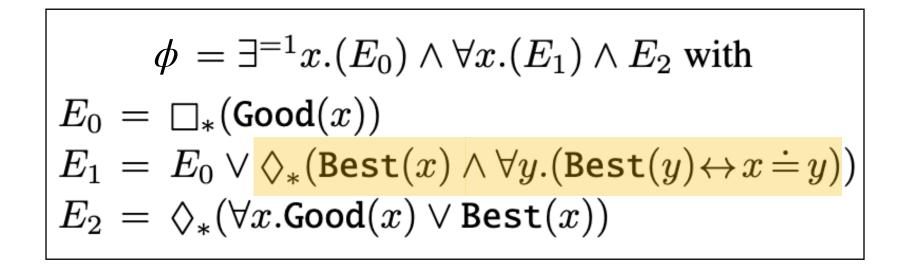


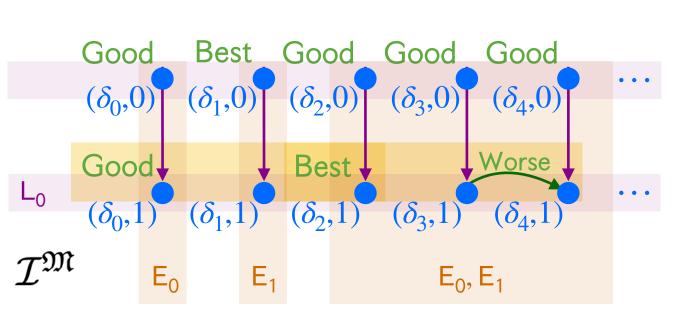


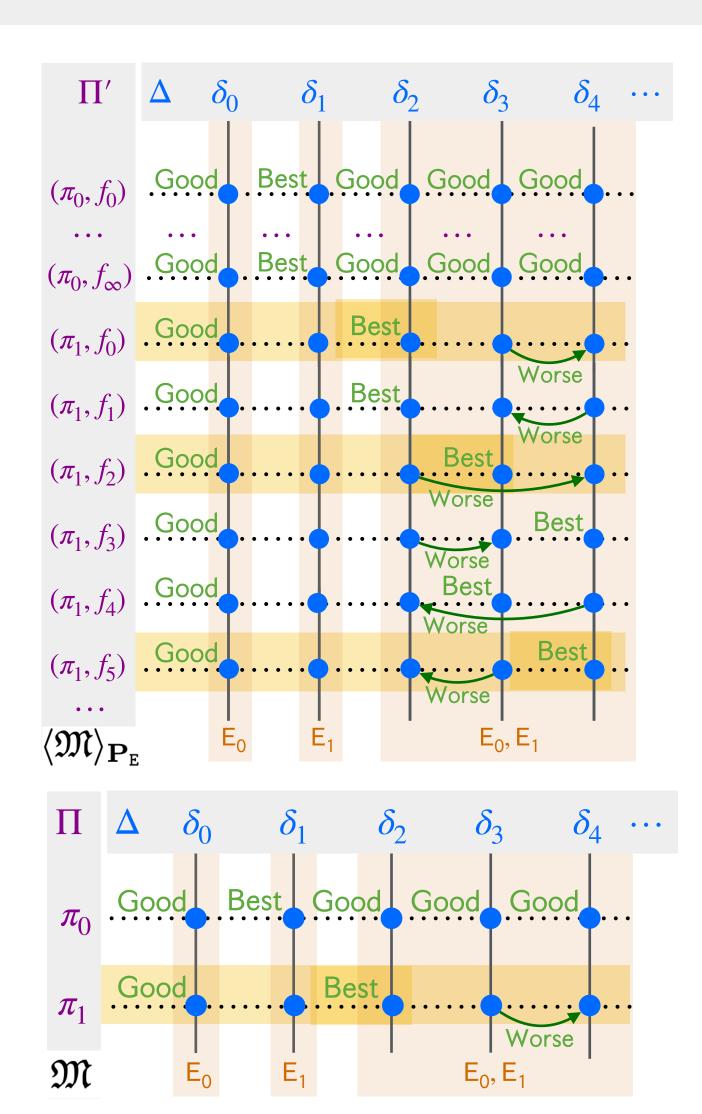


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

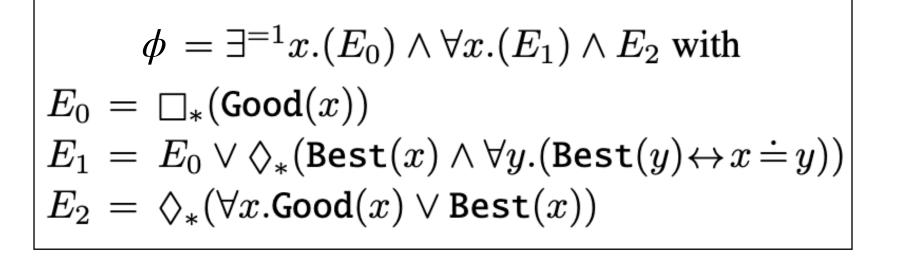


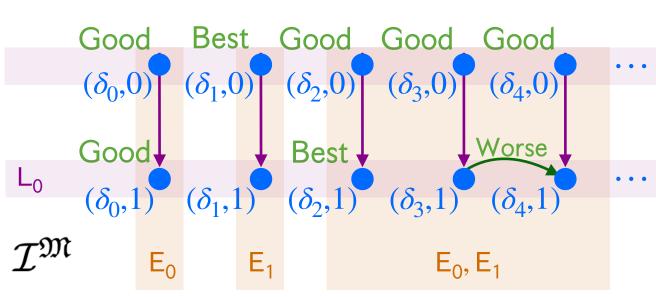


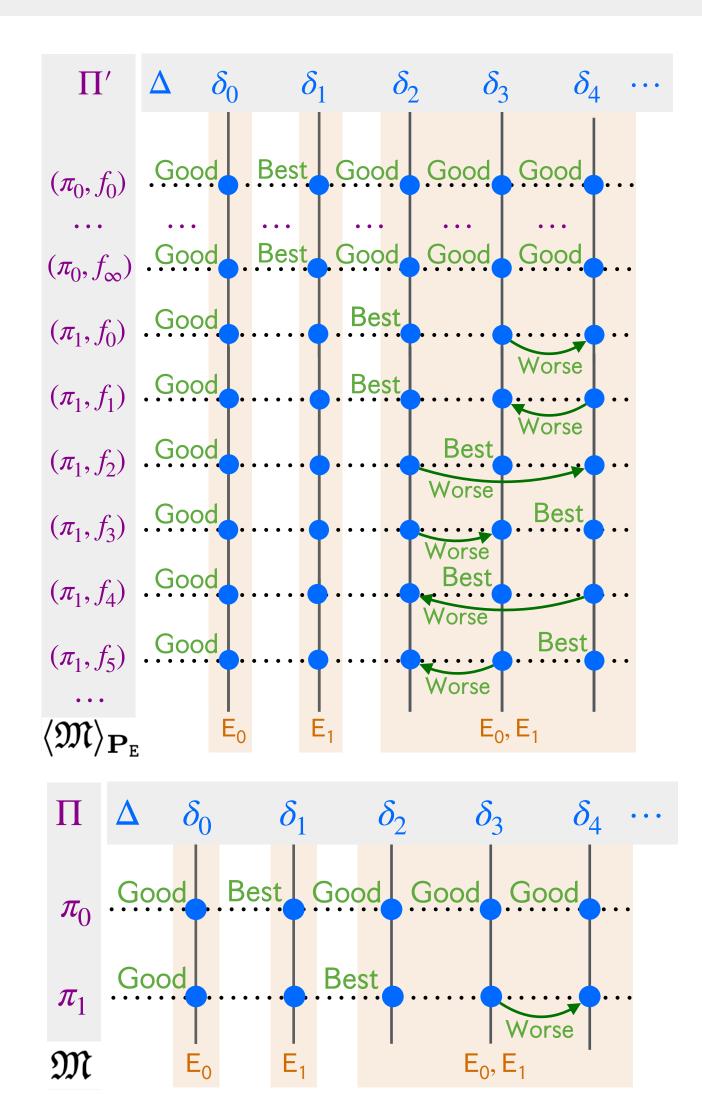


A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type 
  If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$







A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

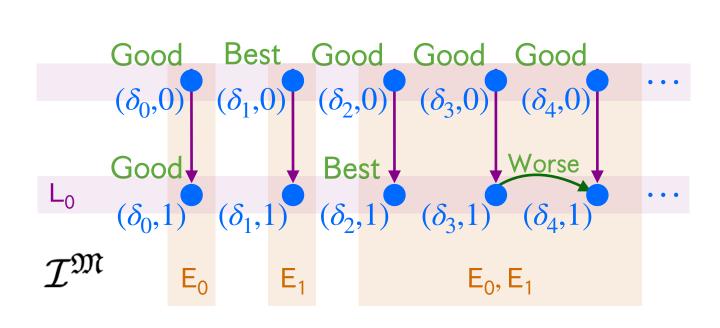
- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type

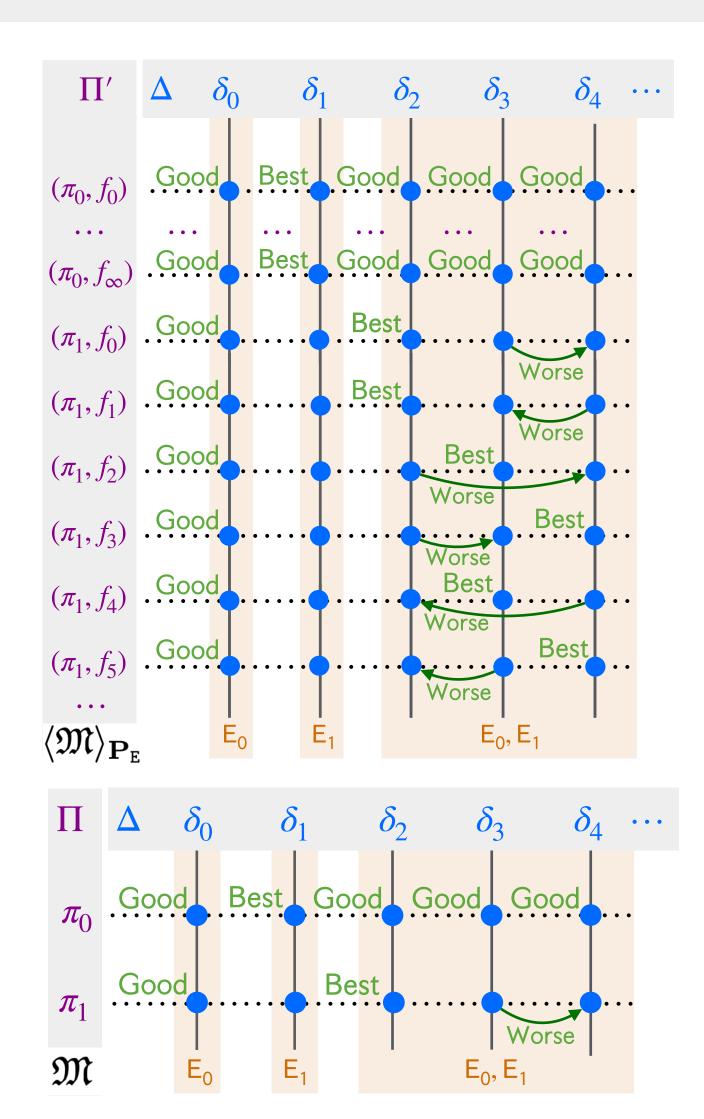
  If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

If  $\Diamond \phi$  is sentential, the variable assignment does nothing

#### $\phi$ and its $C^2$ translation are equisatisfiable

$$\begin{array}{c} \phi = \exists^{=1}x.(E_0) \wedge \forall x.(E_1) \wedge E_2 \text{ with} \\ E_0 = \Box_*(\mathsf{Good}(x)) \\ E_1 = E_0 \vee \lozenge_*(\mathsf{Best}(x) \wedge \forall y.(\mathsf{Best}(y) {\leftrightarrow} x \dot{=} y)) \\ E_2 = \lozenge_*(\forall x.\mathsf{Good}(x) \vee \mathsf{Best}(x)) \end{array}$$



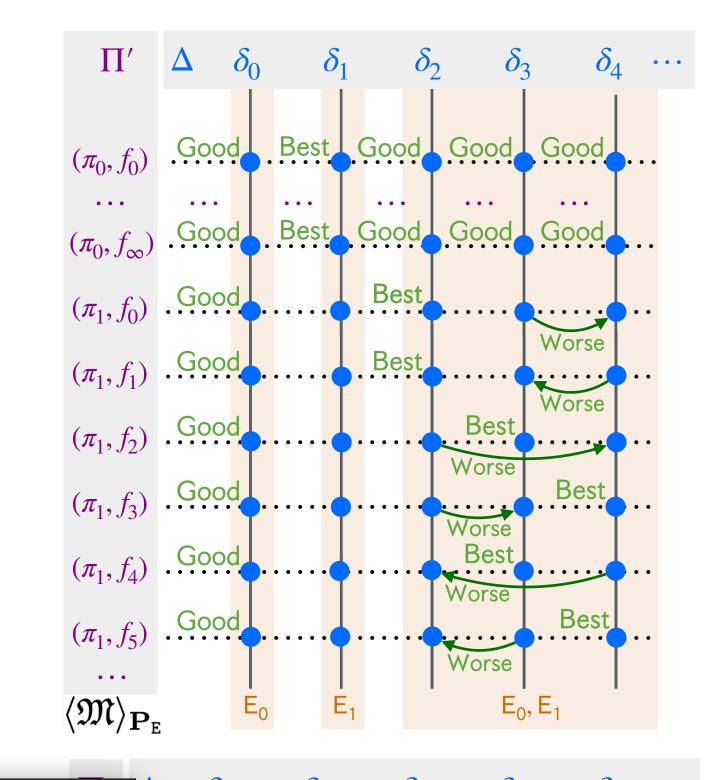


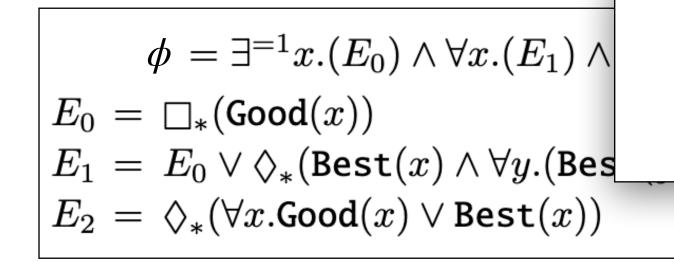
A translation maps a monodic  $C^2$  FOSL formula  $\phi$  to a plain  $C^2$  formula

- $\exists^{\triangleleft n} x . \phi$  is evaluated on elements in the same L-layer
- $\Diamond \phi$  is evaluated on elements with the same E-type If an element of an E-type satisfies  $\phi$ , there are permutations so all elements satisfy  $\Diamond \phi$

If  $\Diamond \phi$  is sentential, the variable assignment does nothing

 $\phi$  and its  $C^2$  translation are equisatisfiable





Corollary: Satisfiability in monodic standpoint  $\mathbb{C}^2$  is NExpTime-complete

 $\mathcal{I}^{\mathfrak{M}}$   $\mathsf{E}_0$   $\mathsf{E}_1$   $\mathsf{E}_0,\mathsf{E}_1$ 

