
COMPLEXITY THEORY

Lecture 7: NP-Completeness

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5th Nov 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Are NP Problems Hard?

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 3 of 25

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 4 of 25

NP-Hardness and NP-Completeness

Definition 7.1:

(1) A language H is NP-hard, if L ≤p H for every language L ∈ NP.

(2) A language C is NP-complete, if C is NP-hard and C ∈ NP.

NP-Completeness

• NP-complete problems are the hardest problems in NP.

• They constitute the maximal class (wrt. ≤p) of problems within NP.

• They are all equally difficult – an efficient solution to one would solve them all.

Theorem 7.2: If L is NP-hard and L ≤p L′, then L′ is NP-hard as well.

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 5 of 25

Proving NP-Completeness

How to show NP-completeness
To show that L is NP-complete, we must show that every language in NP can be
reduced to L in polynomial time.

Alternative approach
Given an NP-complete language C, we can show that another language L is
NP-complete just by showing that

• C ≤p L

• L ∈ NP

However: Is there any NP-complete problem at all?

Yes, thousands of them!

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 6 of 25

The Cook-Levin Theorem

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 7 of 25

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

(1) Sat ∈ NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Sat is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded
NTM.

□

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 8 of 25

Proving the Cook-Levin Theorem: Main Objective

Given:

• a polynomial p

• a p-time bounded 1-tape NTMM = (Q,Σ,Γ, δ, q0, qaccept)
• a word w

Intended reduction: Define a propositional logic formula φp,M,w such that

(1) φp,M,w is satisfiable if and only if M accepts w in time p(|w|)

(2) φp,M,w is polynomial with respect to |w|

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 9 of 25

Proving the Cook-Levin Theorem: Rationale
Given: polynomial p, NTMM, word w

Intended reduction: Define a propositional logic formula φp,M,w such that

(1) φp,M,w is satisfiable if and only if M accepts w in time p(|w|)

(2) φp,M,w is polynomial with respect to |w|

Why does this prove NP-hardness of Sat?

Because it leads to a reduction L ≤p Sat for every language L ∈ NP:
• If L ∈ NP, then there is an NTMM that is time-bounded by some polynomial p,

such that L(M) = L.
• The function fM,p : w 7→ φp,M,w shows L ≤p Sat:

– f is a many-one reduction due to item (1) above
– f is polynomial due to item (2) above

Note: We do not claim the transformation ⟨p,M, w⟩ 7→ φp,M,w to be polynomial in the size of p,M,
and w. Indeed, this would not hold true under reasonable encodings of p. But being
(multi-)exponential in p is not a concern since the many-one reductions fM,p each use a fixed p
and only care about the asymptotic complexity as w grows.
Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 10 of 25

Proving Cook-Levin: Encoding Configurations
Idea: Use logic to describe a run ofM on input w by a formula.

Note: On input w of length n := |w|, every computation path ofM is of length ≤ p(n) and
uses ≤ p(n) tape cells.

Use propositional variables for describing configurations:

Qq for each q ∈ Q means “M is in state q ∈ Q”

Pi for each 0 ≤ i < p(n) means “the head is at Position i”

Sa,i for each a ∈ Γ and 0 ≤ i < p(n) means “tape cell i contains Symbol a”

Represent configuration (q, hp, a0 . . . ap(n)) by truth assignments to variables from the set

C := {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

using the truth assignment β defined as

β(Qs) :=

1 s = q

0 s , q
β(Pi) :=

1 i = hp

0 i , hp
β(Sa,i) :=

1 a = ai

0 a , ai

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 11 of 25

Proving Cook-Levin: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C = {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

as follows:

Conf(C) := “the assignment is a valid configuration”:∨
q∈Q

(
Qq ∧

∧
q′,q

¬Qq′
)

“TM in exactly one state q ∈ Q”

∧
∨

hp<p(n)

(
Php ∧

∧
hp′,hp

¬Php′
)

“head in exactly one position hp ≤ p(n)”

∧
∧

0≤i<p(n)

∨
a∈Γ

(
Sa,i ∧

∧
b,a∈Γ

¬Sb,i
)

“exactly one a ∈ Γ in each cell”

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 12 of 25

Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in C define

conf(C, β) :=

(q, hp, w0 . . .wp(n)) |
β(Qq) = 1,
β(Php) = 1,
β(Swi,i) = 1 for all 0 ≤ i < p(n)

Note: β may be defined on other variables besides those in C.

Lemma 7.4: If β satisfies Conf(C) then |conf(C, β)| = 1.
We can therefore write conf(C, β) = (q, hp, w) to simplify notation.

Observations:

• conf(C, β) is a potential configuration ofM, but it may not be reachable from the
start configuration ofM on input w.

• Conversely, every configuration (q, hp, w1 . . .wp(n)) induces a satisfying assignment
β or which conf(C, β) = (q, hp, w1 . . .wp(n)).

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 13 of 25

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula Next(C, C
′
) defined as

Conf(C) ∧ Conf(C
′
) ∧ NoChange(C, C

′
) ∧ Change(C, C

′
).

NoChange :=
∨

0≤hp<p(n)

(
Php ∧

∧
i,hp,a∈Γ

(
Sa,i → S′a,i

))
Change :=

∨
0≤hp<p(n)

(
Php ∧

∨
q∈Q
a∈Γ

(
Qq ∧ Sa,hp ∧

∨
(q′,b,D)∈δ(q,a)

(Q′q′ ∧ S′b,hp ∧ P′D(hp))
))

where D(hp) is the position reached by moving in direction D from hp.

Lemma 7.5: For any assignment β defined on C ∪ C
′
:

β satisfies Next(C, C
′
) if and only if conf(C, β) ⊢M conf(C

′
, β)

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 14 of 25

Proving Cook-Levin: Start and End

Defined so far:

• Conf(C): C describes a potential configuration

• Next(C, C
′
): conf(C, β) ⊢M conf(C

′
, β)

Start configuration: For an input word w = w0 · · ·wn−1 ∈ Σ
∗, we define:

StartM,w(C) := Conf(C) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi,i ∧
∧p(n)−1

i=n S␣,i

Then an assignment β satisfies StartM,w(C) if and only if C represents the start
configuration ofM on input w.

Accepting stop configuration:

Acc-Conf(C) := Conf(C) ∧ Qqaccept

Then an assignment β satisfies Acc-Conf(C) if and only if C represents an accepting
configuration ofM.

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 15 of 25

Proving Cook-Levin: Adding Time

SinceM is p-time bounded, each run may contain up to p(n) steps
{ we need one set of configuration variables for each

Propositional variables:

Qq,t for all q ∈ Q, 0 ≤ t ≤ p(n) means “at time t, M is in state q ∈ Q”

Pi,t for all 0 ≤ i, t ≤ p(n) means “at time t, the head is at position i”

Sa,i,t for all a ∈ Γ and 0 ≤ i, t ≤ p(n) means “at time t, tape cell i contains symbol a”

Notation:
Ct := {Qq,t, Pi,t, Sa,i,t | q ∈ Q, 0 ≤ i ≤ p(n), a ∈ Γ}

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 16 of 25

Proving Cook-Levin: The Formula
Given:
• a polynomial p
• a p-time bounded 1-tape NTMM = (Q,Σ,Γ, δ, q0, qaccept)
• a word w

We define the formula φp,M,w as follows:

φp,M,w := StartM,w(C0) ∧
∨

0≤t≤p(n)

Acc-Conf(Ct) ∧
∧

0≤i<t

Next(Ci, Ci+1)

“C0 encodes the start configuration” and, for some polynomial time t:

“M accepts after t steps” and “C0, ..., Ct encode a computation path”

Lemma 7.6: φp,M,w is satisfiable if and only if M accepts w in time p(|w|).

Note that an accepting or rejecting stop configuration has no successor.

Lemma 7.7: The size of φp,M,w is polynomial in |w|.

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 17 of 25

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

(1) Sat ∈ NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Sat is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded
NTM.

□

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 18 of 25

Further NP-complete Problems

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 19 of 25

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problems have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 20 of 25

NP-Completeness of Clique

Theorem 7.8: Clique is NP-complete.

Clique: Given G, k, does G contain a clique of order k?

Proof:

(1) Clique ∈ NP

Take the vertex set of a clique of order k as a certificate.

(2) Clique is NP-hard

We show Sat ≤p Clique

To every CNF-formula φ assign a graph Gφ and a number kφ such that

φ satisfiable ⇐⇒ Gφ contains clique of order kφ

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 21 of 25

Sat ≤p Clique

To every CNF-formula φ assign a graph Gφ and a number kφ such that

φ satisfiable if and only if Gφ contains clique of order kφ

Given φ = C1 ∧ · · · ∧ Ck:

• Set kφ := k

• For each clause Cj and literal L ∈ Cj add a vertex vL,j

• Add edge {vL,j, vK,i} if i , j and L ∧ K is satisfiable (that is: if L , ¬K and ¬L , K)

Example 7.9:
(X ∨ Y ∨ ¬Z)︸ ︷︷ ︸

C1

∧ (X ∨ ¬Y)︸ ︷︷ ︸
C2

∧ (¬X ∨ Z)︸ ︷︷ ︸
C3

vX,1 vY,1 v¬Z,1

vX,2

v¬Y,2

v¬X,3

vZ,3

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 22 of 25

Sat ≤p Clique

To every CNF-formula φ assign a graph Gφ and a number kφ such that

φ satisfiable if and only if Gφ contains clique of order kφ

Given φ = C1 ∧ · · · ∧ Ck:

• Set kφ := k

• For each clause Cj and literal L ∈ Cj add a vertex vL,j

• Add edge {vL,j, vK,i} if i , j and L ∧ K is satisfiable (that is: if L , ¬K and ¬L , K)

Correctness:
Gφ has clique of order k iff φ is satisfiable.

Complexity:
The reduction is clearly computable in polynomial time.

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 23 of 25

NP-Completeness of Independent Set

Independent Set

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

Theorem 7.10: Independent Set is NP-complete.

Proof: Hardness by reduction Clique ≤p Independent Set:

• Given G := (V, E) construct G :=
(
V,
{
{u, v} | {u, v} < E and u , v

})
• A set X ⊆ V induces a clique in G iff X induces an independent set in G.

• Reduction: G has a clique of order k iff G has an independent set of order k.

□

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 24 of 25

Summary and Outlook

NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

Clique and Independent Set are also NP-complete

What’s next?

• More examples of problems

• The limits of NP

• Space complexities

Markus Krötzsch; 5th Nov 2024 Complexity Theory slide 25 of 25

	NP Completeness
	Are NP Problems Hard?
	The Cook-Levin Theorem
	Further NP-complete Problems

