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Abstract. This paper establishes alternative characterizations of very
expressive classes of existential rule sets with decidable query entailment.
We consider the notable class of greedy bounded-treewidth sets (gbts)
and a new, generalized variant, called weakly gbts (wgbts). Revisit-
ing and building on the notion of derivation graphs, we define (weakly)
cycle-free derivation graph sets ((w)cdgs) and employ elaborate proof-
theoretic arguments to obtain that gbts and cdgs coincide, as do wgbts
and wcdgs. These novel characterizations advance our analytic proof-
theoretic understanding of existential rules and will likely be instrumen-
tal in practice.
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1 Introduction

The formalism of existential rules has come to prominence as an effective ap-
proach for both specifying and querying knowledge. Within this context, a knowl-
edge base takes the form K = (D,R), where D is a finite collection of atomic facts
(called a database) and R is a finite set of existential rules (called a rule set),
which are first-order formulae of the form ∀xy(φ(x,y) → ∃zψ(y, z)). Although
existential rules are written in a relatively simple language, they are expressive
enough to generalize many important languages used in knowledge representa-
tion, including rule-based formalisms as well as such based on description logics.
Moreover, existential rules have meaningful applications within the domain of
ontology-based query answering [2], data exchange and integration [9], and have
proven beneficial in the study of general decidability criteria [10].

The Boolean conjunctive query entailment problem consists of taking a knowl-
edge base K, a Boolean conjunctive query (BCQ) q, and determining if K |= q.
As this problem is known to be undecidable for arbitrary rule sets [7], much
work has gone into identifying existential rule fragments for which decidability
can be reclaimed. Typically, such classes of rule sets are described in one of two
ways: either, a rule set’s membership in said class can be established through
easily verifiable syntactic properties (such classes are called concrete classes), or
the property is more abstract (which is often defined on the basis of semantic
⋆ Work supported by the ERC through Consolidator Grant 771779 (DeciGUT).
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notions) and may be hard or even impossible to algorithmically determine (such
classes are called abstract classes). Examples of concrete classes include func-
tional/inclusion dependencies [11], datalog, and guarded rules [6]. Examples of
abstract classes include finite expansion sets [4], finite unification sets [3], and
bounded-treewidth sets (bts) [6].

Yet, there is another means of establishing the decidability of query entail-
ment: only limited work has gone into identifying classes of rule sets with decid-
able query entailment based on their proof-theoretic characteristics, in particular,
based on specifics of the derivations such rules produce. To the best of our knowl-
edge, only the class of greedy bounded treewidth sets (gbts) has been identified
in such a manner (see [14]). A rule set qualifies as gbts when every derivation
it produces is greedy, in a sense that it is possible to construct a tree decom-
position of finite width in a “greedy” fashion alongside the derivation, ensuring
the existence of a model with finite treewidth for the knowledge base under
consideration, thus warranting the decidability of query entailment [6].

In this paper, we investigate the gbts class and three new classes of rule sets
where decidability is determined proof-theoretically. First, we define a weakened
version of gbts, dubbed wgbts, where the rule set need only produce at least one
greedy derivation relative to any given database. Second, we investigate two new
classes of rule sets, dubbed cycle-free derivation graph sets (cdgs) and weakly
cycle-free derivation graph sets (wcdgs), which are defined relative to the notion
of a derivation graph. Derivation graphs were introduced by Baget et al. [5] and
are directed acyclic graphs encoding how certain facts are derived in the course
of a derivation. Notably, via the application of reduction operations, a derivation
graph may be reduced to a tree, which serves as a tree decomposition of a model
of the considered knowledge base. Such objects helped establish that (weakly)
frontier-guarded rule sets are bts [5]. In short, our key contributions are:

1. We investigate how proof-theoretic structures gives rise to decidable query
entailment and propose three new classes of rule sets.

2. We show that gbts = cdgs and wgbts = wcdgs, establishing a correspon-
dence between greedy derivations and reducible derivation graphs.

3. We show that wgbts properly subsumes gbts via a novel proof transfor-
mation argument. Therefore, by the former point, we also find that wcdgs
properly subsumes cdgs.

bts

wgbts = wcdgs

gbts = cdgs

Fig. 1. A graphic depicting the containment relations between the classes of rule sets
considered. The solid edges represent strict containment relations.
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The paper is organized accordingly: In Section 2, we define preliminary no-
tions. We study gbts and wgbts in Section 4, and show that the latter class
properly subsumes the former via an intricate proof transformation argument.
In Section 5, we define cdgs and wcdgs as well as show that gbts = cdgs and
wgbts = wcdgs. Last, in Section 6, we conclude and discuss future work.

2 Preliminaries

Syntax and formulae. We let Ter be a set of terms, which is the the union of
three countably infinite, pairwise disjoint sets, namely, the set of constants Con,
the set of variables Var, and the set of nulls Nul. We use a, b, c, . . . (occasionally
annotated) to denote constants, and x, y, z, . . . (occasionally annotated) to
denote both variables and nulls. A signature Σ is a set of predicates p, q, r, . . .
(which may be annotated) such that for each p ∈ Σ, ar(p) ∈ N is the arity of p.
For simplicity, we assume a fixed signature Σ throughout the paper.

An atom over Σ is defined to be a formula of the form p(t1, . . . , tn), where
p ∈ Σ, ar(p) = n, and ti ∈ Ter for each i ∈ {1, . . . , n}. A ground atom over Σ is
an atom p(a1, . . . , an) such that ai ∈ Con for each i ∈ {1, . . . , n}. We will often
use t to denote a tuple (t1, . . . , tn) of terms and p(t) to denote a (ground) atom
p(t1, . . . , tn). An instance over Σ is defined to be a (potentially infinite) set I of
atoms over constants and nulls, and a database D is a finite set of ground atoms.
We let X , Y, . . . (occasionally annotated) denote (potentially infinite) sets of
atoms with Ter(X ), Con(X ), Var(X ), and Nul(X ) denoting the set of terms,
constants, variables, and nulls occurring in the atoms of X , respectively.

Substitutions and homomorphisms. A substitution is a partial function over
the set of terms Ter. A homomorphism h from a set X of atoms to a set Y of
atoms, is a substitution h : Ter(X ) → Ter(Y) such that (i) p(h(t1), . . . , h(tn)) ∈
Y, if p(t1, . . . , tn) ∈ X , and (ii) h(a) = a for each a ∈ Con. If h is a homomor-
phism from X to Y, we say that h homomorphically maps X to Y. Atom sets
X ,Y are homomorphically equivalent, written X ≡ Y, iff X homomorphically
maps to Y, and vice versa. An isomorphism is a bijective homomorphism h
where h−1 is a homomorphism.

Existential rules. Whereas databases encode assertional knowledge, ontologies
consist in the current setting of existential rules, which we will frequently refer
to as rules more simply. An existential rule is a first-order sentence of the form:

ρ = ∀xy(φ(x,y) → ∃zψ(y, z))

where x, y, and z are pairwise disjoint collections of variables, φ(x,y) is a
conjunction of atoms over constants and the variables x,y, and ψ(y, z) is a
conjunction of atoms over constants and the variables y, z. We define body(ρ) =
φ(x,y) to be the body of ρ, and head(ρ) = ψ(y, z) to be the head of ρ. For
convenience, we will often interpret a conjunction p1(t1)∧ · · · ∧ pn(tn) of atoms
(such as the body or head of a rule) as a set {p1(t1), · · · , pn(tn)} of atoms; if h
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is a homomorphism, then h(p1(t1) ∧ · · · ∧ pn(tn)) := {p1(h(t1)), · · · , pn(h(tn))}
with h applied componentwise to each tuple ti of terms. The frontier of ρ, written
fr(ρ), is the set of variables y that the body and head of ρ have in common, that
is, fr(ρ) = Var(body(ρ)) ∩Var(head(ρ)). We define a frontier atom in a rule ρ
to be an atom containing at least one frontier variable. We use ρ and annotated
versions thereof to denote rules, as well as R and annotated versions thereof to
denote finite sets of rules (simply called rule sets).

Models. We note that sets of atoms (which include instances and databases)
may be seen as first-order interpretations, and so, we may use |= to represent
the satisfaction of formulae on such structures. A set of atoms X satisfies a set
of atoms Y (or, equivalently, X is a model of Y), written X |= Y, iff there exists
a homomorphic mapping from Y to X . A set of atoms X satisfies a rule ρ (or,
equivalently, X is a model of ρ), written X |= ρ, iff for any homomorphism
h, if h is a homomorphism from body(ρ) to X , then it can be extended to a
homomorphism h that also maps head(ρ) to X . A set of atoms X satisfies a rule
set R (or, equivalently, X is a model of R), written X |= R, iff X |= ρ for every
rule ρ ∈ R. If a model X of a set of atoms, a rule, or a rule set homomorphically
maps into every model of that very set of atoms, rule, or rule set, then we refer
to X as a universal model of that set of atoms, rule, or rule set [8].

Knowledge bases and querying. A knowledge base (KB) K is defined to be
a pair (D,R), where D is a database and R is a rule set. An instance I is a
model of K = (D,R) iff D ⊆ I and I |= R. We consider querying knowledge
bases with conjunctive queries (CQs), that is, with formulae of the form q(y) =
∃xφ(x,y), where φ(x,y) is a non-empty conjunction of atoms over the variables
x,y and constants. We refer to the variables y in q(y) as free and define a
Boolean conjunctive query (BCQ) to be a CQ without free variables, i.e. a BCQ
is a CQ of the form q = ∃xφ(x). A knowledge base K = (D,R) entails a CQ
q(y) = ∃xφ(x,y), written K |= q(y), iff φ(x,y) homomorphically maps into
every model I of K; we note that this is equivalent to φ(x,y) homomorphically
mapping into a universal model of D and R.

As we are interested in extracting implicit knowledge from the explicit knowl-
edge presented in a knowledge base K = (D,R), we are interested in deciding
the BCQ entailment problem:1

(BCQ Entailment) Given a KB K and a BCQ q, is it the case that K |= q?

While it is well-known that the BCQ entailment problem is undecidable in gen-
eral [7], restricting oneself to certain classes of rule sets (e.g. datalog or finite
unification sets [5]) may recover decidability. We refer to classes of rule sets for
which BCQ entailment is decidable as query-decidable classes.

Derivations. One means by which we can extract implicit knowledge from
a given KB is through the use of derivations, that is, sequences of instances

1 We recall that entailment of non-Boolean CQs or even query answering can all be
reduced to BCQ entailment in logarithmic space.
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obtained by sequentially applying rules to given data. We say that a rule ρ =
∀xy(φ(x,y) → ∃zψ(y, z)) is triggered in an instance I via a homomorphism h,
written succinctly as τ(ρ, I, h), iff h homomorphically maps φ(x,y) to I. In this
case, we define

Ch(I, ρ, h) = I ∪ h(ψ(y, z))

, where h is an extension of hmapping every variable z in z to a fresh null. Conse-
quently, we define an R-derivation to be a sequence I0, (ρ1, h1, I1), . . . , (ρn, hn, In)
such that (i) ρi ∈ R for each i ∈ {1, . . . , n}, (ii) τ(ρi, Ii−1, hi) holds for i ∈
{1, . . . , n}, and (iii) Ii = Ch(Ii−1, ρ, hi) for i ∈ {1, . . . , n}. We will use δ and
annotations thereof to denote R-derivations, and we define the length of an
R-derivation δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In), denoted |δ|, to be n. Further-
more, for instances I and I ′, we write I δ−→R I ′ to mean that there exists an
R-derivation δ of I ′ from I. Also, if I ′′ can be derived from I ′ by means of a rule
ρ ∈ R and homomorphism h, we abuse notation and write I δ−→R I ′, (ρ, h, I ′′)
to indicate that I δ−→R I ′ and I ′ δ′−→R I ′′ with δ′ = I ′, (ρ, h, I ′′). Derivations
play a fundamental role in this paper as we aim to identify (and analyze the
relationships between) query-decidable classes of rule sets based on how such
rule sets derive information, i.e. we are interested in classes of rule sets that may
be proof-theoretically characterized.

Chase. A tool that will prove useful in the current work is the chase, which
in our setting is a procedure that (in essence) simultaneously constructs all
K-derivations in a breadth-first manner. Although many variants of the chase
exist [5, 9, 12], we utilize the chase procedure (also called the k-Saturation) from
Baget et al. [5]. We use the chase in the current work as a purely technical tool
for obtaining universal models of knowledge bases, proving useful in separating
certain query-decidable classes of rule sets.

We define the one-step application of all triggered rules from some R in I by

Ch1(I,R) =
⋃

ρ∈R,τ(ρ,I,h)
Ch(I, ρ, h),

assuming all nulls introduced in the “parallel” applications of Ch to I are dis-
tinct. We let Ch0(I,R) = I, as well as let Chi+1(I,R) = Ch1(Chi(I,R),R),
and define the chase to be

Ch∞(I,R) =
⋃

i∈N
Chi(I,R).

For any KB K = (D,R), the chase Ch∞(D,R) is a universal model of K, that
is, D ⊆ Ch∞(D,R), Ch∞(D,R) |= R, and Ch∞(D,R) homomorphically maps
into every model of D and R.

Rule dependence. Let ρ and ρ′ be rules. We say that ρ′ depends on ρ iff there
exists an instance I such that (i) ρ′ is not triggered in I via any homomor-
phism, (ii) ρ is triggered in I via a homomorphism h, and (iii) ρ′ is triggered in
Ch(I, ρ, h) via a homomorphism h′. We define the graph of rule dependencies [1]
of a set R of rules to be G(R) = (V,E) such that (i) V = R and (ii) (ρ, ρ′) ∈ E
iff ρ′ depends on ρ.
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Treewidth. A tree decomposition of an instance I is defined to be a tree T =
(V,E) such that V ⊆ 2Ter(I) (where each element of V is called a bag) and
E ⊆ V × V , satisfying the following three conditions: (i)

⋃
X∈V X = Ter(I),

(ii) for each p(t1, . . . , tn) ∈ I, there is an X ∈ V such that {t1, . . . , tn} ⊆ X, and
(iii) for each t ∈ Ter(I), the subgraph of T induced by the bags X ∈ V with
t ∈ X is connected (this condition is referred to as the connectedness condition).
We define the width of a tree decomposition T = (V,E) of an instance I as
follows:

w(T ) := max{|X| : X ∈ V } − 1

i.e. the width is equal to the cardinality of the largest node in T minus 1. We
let w(T ) = ∞ iff for all n ∈ N, n ≤ max{|X| : X ∈ V }. We define the treewidth
of an instance I, written tw(I), as follows:

tw(I) := min{w(T ) : T is a tree decomposition of I}

i.e. the treewidth of an instance equals the minimal width among all its tree de-
compositions. If no tree decomposition of I has finite width, we set tw(I) = ∞.

3 Greediness

We now discuss a property of derivations referred to as greediness. In essence,
a derivation is greedy when the image of the frontier of any applied rule con-
sists solely of constants from a given KB and/or nulls introduced by a single
previous rule application. Such derivations were defined by Thomazo et al. [14]
and were used to identify the (query-decidable) class of greedy bounded-treewidth
sets (gbts), that is, the class of rule sets that produce only greedy derivations
(defined below) when applied to a database.

In this section, we also identify a new query-decidable class of rule sets,
referred to as weakly greedy bounded-treewidth sets (wgbts). The wgbts class
serves as a more liberal version of gbts, and contains rule sets that admit at least
one greedy derivation of any derivable instance. It is straightforward to confirm
that wgbts generalizes gbts since if a rule set is gbts, then every derivation
of a derivable instance is greedy, implying that every derivable instance has
some greedy derivation. Yet, what is non-trivial to show is that wgbts properly
subsumes gbts. We are going to prove this fact by means of a proof-theoretic
argument and counter-example along the following lines: first, we show under
what conditions we can permute rule applications in a given derivation (see
Lemma 3 below), and second, we provide a rule set which exhibits non-greedy
derivations (witnessing that the rule set is not gbts), but for which every deriva-
tion can be transformed into a greedy derivation by means of rule permutations
and replacements (witnessing wgbts membership).

Let us now formally define greedy derivations and provide examples to demon-
strate the concept of (non-)greediness. Based on this, we then proceed to define
the gbts and wgbts classes.
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Definition 1 (Greedy Derivation [14]). We define an R-derivation

δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In)

to be greedy iff for each i such that 0 < i ≤ n, there exists a j < i such that
hi(fr(ρi)) ⊆ Nul(hj(head(ρj))) ∪Con(I0,R) ∪Nul(I0).

To give examples of non-greedy and greedy derivations, let us define the
database D† := {p(a), r(b)} and the rule set R2 := {ρ1, ρ2, ρ3, ρ4}, with

ρ1 = p(x) → ∃yz.q(x, y, z) ρ3 = p(x) ∧ r(y) → ∃zwuv.q(x, z, w) ∧ s(y, u, v)
ρ2 = r(x) → ∃yz.s(x, y, z) ρ4 = q(x, y, z) ∧ s(w, u, v) → ∃o.t(x, y, w, u, o)

An example of a non-greedy derivation is the following:

δ1 = D†, (ρ1, h1, I1), (ρ1, h2, I2), (ρ2, h3, I3), (ρ4, h4, I4), with

I4 = {p(a), r(b)︸ ︷︷ ︸
D†

, q(a, y0, z0)︸ ︷︷ ︸
I1\D†

, q(a, y1, z1)︸ ︷︷ ︸
I2\I1

, s(b, y2, z2)︸ ︷︷ ︸
I3\I2

, t(a, y0, b, y2, o)︸ ︷︷ ︸
I4\I3

} and

h1 = h2 = {x 7→a}, h3 = {x 7→b}, h4 = {x 7→a, y 7→y0, z 7→z0, w 7→b, u7→y2, v 7→z2}.
Note that this derivation is not greedy because

h4(fr(ρ4)) = h4({x, y, w, u}) = {a,
∈Nul(h1(head(ρ1)))︷︸︸︷
y0 , b, y2︸︷︷︸

∈Nul(h3(head(ρ2)))

}

That is to say, the image of the frontier from the last rule application (i.e. the
application of ρ4) contains nulls introduced by two previous rule applications (as
opposed to containing nulls from just a single previous rule application), namely,
the first application of ρ1 and the application of ρ2. In contrast, the following is
an example of a greedy derivation

δ2 = D†, (ρ3, h
′
1, I ′

1), (ρ1, h
′
2, I ′

2), (ρ4, h
′
3, I ′

3), with

I ′
3 = {p(a), r(b)︸ ︷︷ ︸

D†

, q(a, y0, z0), s(b, y2, z2)︸ ︷︷ ︸
I′
1\D†

, q(a, y1, z1)︸ ︷︷ ︸
I′
2\I′

1

, t(a, y0, b, y2, o)︸ ︷︷ ︸
I′
3\I′

2

} and

h′1 = {x 7→a, y 7→b}, h′2 = {x 7→a}, h′3 = {x 7→a, y 7→y0, z 7→z0, w 7→b, u7→y2, v 7→z2}.

Greediness of δ2 follows from the frontier of any applied rule being mapped to
nothing but constants and/or nulls introduced by a sole previous rule application.

Definition 2 ((Weakly) Greedy Bounded-Treewidth Set). A rule set R
is a greedy bounded-treewidth set (gbts) iff if D δ−→R I, then δ is greedy. R
is a weakly greedy bounded-treewidth set (wgbts) iff if D δ−→R I, then there
exists some greedy R-derivation δ′ such that D δ′−→R I.
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Remark 1. Observe that gbts and wgbts are characterized on the basis of
derivations starting from given databases only, that is, derivations of the form
I0, (ρ1, h1, I1), . . . , (ρn, hn, In) where I0 = D is a database. In such a case, a
derivation of the above form is greedy iff for each i with 0 < i ≤ n, there exists
a j < i such that hi(fr(ρi)) ⊆ Nul(hj(head(ρj)))∪Con(D,R) as databases only
contain constants (and not nulls) by definition.

As noted above, it is straightforward to show that wgbts subsumes gbts.
Still, establishing that wgbts strictly subsumes gbts, i.e. there are rule sets
within wgbts that are outside gbts, requires more effort. As it so happens,
the rule set R2 (defined above) serves as such a rule set, admitting non-greedy
R2-derivations, but where it can be shown that every instance derivable using
the rule set admits a greedy R2-derivation. As a case in point, observe that the
R2-derivations δ1 and δ2 both derive the same instance I4 = I ′

3, however, δ1 is
a non-greedy R2-derivation of the instance and δ2 is a greedy R2-derivation of
the instance. Clearly, the existence of the non-greedy R2-derivation δ1 witnesses
that R2 is not gbts. To establish that R2 still falls within the wgbts class, we
show that every non-greedy R2-derivation can be transformed into a greedy R2-
derivation using two operations: (i) rule permutations and (ii) rule replacements.

Regarding rule permutations, we consider under what conditions we may
swap consecutive applications of rules in a derivation to yield a new derivation
of the same instance. For example, in the R2-derivation δ1 above, we may swap
the consecutive applications of ρ1 and ρ2 to obtain the following derivation:

δ′1 = D†, (ρ1, h1, I1), (ρ2, h3, I1 ∪ (I3 \ I2)), (ρ1, h2, I3), (ρ4, h4, I4).

I1 ∪ (I3 \ I2) = {p(a), r(b), q(a, y0, z0), s(b, y2, z2)} is derived by applying ρ2
and the subsequent application of ρ1 reclaims the instance I3. Therefore, the
same instance I4 remains the conclusion. Although one can confirm that δ′1 is
indeed an R2-derivation, thus serving as a successful example of a rule permuta-
tion (meaning, the rule permutation yields another R2-derivation), the following
question still remains: for a rule set R, under what conditions will permuting
rules within a given R-derivation always yield another R-derivation?

We pose an answer to this question, formulated as the permutation lemma
below, which states that an application of a rule ρ may be permuted before an
application of a rule ρ′ so long as the former rule does not depend on the latter
(in the sense formally defined in Section 2 based on the work of Baget [1]). Fur-
thermore, it should be noted that such rule permutations preserve the greediness
of derivations. In the context of the above example, ρ2 may be permuted before
ρ1 in δ1 because the former does not depend on the latter.

Lemma 1 (Permutation Lemma). Let R be a rule set with I0 an instance.
Suppose we have a (greedy) R-derivation of the following form:

I0, . . . , (ρi, hi, Ii), (ρi+1, hi+1, Ii+1), . . . , (ρn, hn, In)

If ρi+1 does not depend on ρi, then the following is a (greedy) R-derivation too:

I0, . . . , (ρi+1, hi+1, Ii−1 ∪ (Ii+1 \ Ii)), (ρi, hi, Ii+1), . . . , (ρn, hn, In).
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As a consequence of the above lemma, rules may always be permuted in a
given R-derivation so that its structure mirrors the graph of rule dependencies
G(R) (defined in Section 2). That is, given a rule set R and an R-derivation δ, we
may permute all applications of rules serving as sources in G(R) (which do not
depend on any rules in R) to the beginning of δ, followed by all rule applications
that depend only on sources, and so forth, with any applications of rules serving
as sinks in G(R) concluding the derivation. For example, in the graph of rule
dependencies of R2, the rules ρ1, ρ2, and ρ3 serve as source nodes (they do not
depend on any rules in R2) and the rule ρ4 is a sink node depending on each of
the aforementioned three rules, i.e. G(R2) = (V,E) with V = {ρ1, ρ2, ρ3, ρ4} and
E = {(ρi, ρ4) | 1 ≤ i ≤ 3}. Hence, in any given R2-derivation δ, any application
of ρ1, ρ2, or ρ3 can be permuted backward (toward the beginning of δ) and any
application of ρ4 can be permuted forward (toward the end of δ).

Beyond the use of rule permutations, we also transform R2-derivations by
making use of rule replacements. In particular, observe that head(ρ3) and body(ρ3)
correspond to conjunctions of head(ρ1) and head(ρ2), and body(ρ1) and body(ρ2),
respectively. Thus, we can replace the first application of ρ1 and the succeeding
application of ρ2 in δ′1 above by a single application of ρ3, thus yielding the R2-
derivation δ′′1 = D†, (ρ3, h, I1∪ (I3 \I2)), (ρ1, h2, I3), (ρ4, h4, I4), where h(x) = a
and h(y) = b. Interestingly, inspecting the above R2-derivation, one will find
that it is identical to the greedy R2-derivation δ2 defined earlier in the section,
and so, we have shown how to take a non-greedy R2-derivation (viz. δ1) and
transform it into a greedy R2-derivation (viz. δ2) by means of rule permutations
and replacements. In the same way, one can prove in general that any non-greedy
R2-derivation can be transformed into a greedy R2-derivation, thus giving rise
to the following theorem, and demonstrating that R2 is indeed wgbts.

Theorem 1. R2 is wgbts, but not gbts. Thus, wgbts properly subsumes gbts.

4 Derivation Graphs

We now discuss derivation graphs – a concept introduced by Baget et al. [5] and
used to establish that certain classes of rule sets (e.g. weakly frontier guarded
rule sets [6]) exhibit universal models of bounded treewidth. A derivation graph
has the structure of a directed acyclic graph and encodes how atoms are derived
throughout the course of an R-derivation. By applying so-called reduction oper-
ations, a derivation graph may (under certain conditions) be transformed into a
treelike graph that serves as a tree decomposition of an R-derivable instance.

Below, we define derivation graphs and discuss how such graphs are trans-
formed into tree decompositions by means of reduction operations. To increase
comprehensibility, we provide an example of a derivation graph (shown in Fig-
ure 2) and give an example of applying each reduction operation (shown in
Figure 3). After, we identify two (query-decidable) classes of rule sets on the
basis of derivation graphs, namely, cycle-free derivation graph sets (cdgs) and
weakly cycle-free derivation graph sets (wcdgs). Despite their prima facie dis-
tinctness, the cdgs and wcdgs classes coincide with gbts and wgbts classes,
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respectively, thus showing how the latter classes can be characterized in terms
of derivation graphs. Let us now formally define derivation graphs, and after, we
will demonstrate the concept by means of an example.

Definition 3 (Derivation Graph). Let D be a database, R be a rule set, C =
Con(D,R), and δ be some R-derivation D, (ρ1, h1, I1), . . . , (ρn, hn, In). The
derivation graph of δ is the tuple Gδ := (V,E,At,L), where V := {X0, . . . , Xn} is
a finite set of nodes, E ⊆ V×V is a set of arcs, and the functions At : V → 2In

and L : E → 2Ter(In) decorate nodes and arcs, respectively, such that:

1. At(X0) := D and At(Xi) = Ii \ Ii−1;
2. (Xi, Xj) ∈ E iff there is a p(t) ∈ At(Xi) and a frontier atom p(t′) in ρj such

that hj(p(t′)) = p(t). We then set L(Xi, Xj) =
(
hj
(
Var(p(t′))∩fr(ρj)

))
\C.

We refer to X0 as the initial node and define the set of non-constant terms asso-
ciated with a node to be C(X) = Ter(X)\C where Ter(Xi) := Ter(At(Xi))∪C.

Toward an example, assume D‡ = {p(a, b)} and R3 = {ρ1, ρ2, ρ3, ρ4} where

ρ1 = p(x, y) → ∃z.q(y, z) ρ3 = r(x, y) ∧ q(z, x) → s(x, y)
ρ2 = q(x, y) → ∃z.(r(x, y) ∧ r(y, z)) ρ4 = r(x, y) ∧ s(z, w) → t(y, w)

Let us consider the following derivation:

δ = D‡, (ρ1, h1, I1), (ρ2, h2, I2), (ρ3, h3, I3), (ρ4, h4, I4) with

I4 = {p(a, b)︸ ︷︷ ︸
D‡

, q(b, z0)︸ ︷︷ ︸
I1\D‡

, r(b, z0), r(z0, z1)︸ ︷︷ ︸
I2\I1

, s(z0, z1)︸ ︷︷ ︸
I3\I2

, t(z0, z1)︸ ︷︷ ︸
I4\I3

} and

h1 = {x7→a, y 7→b}, h2 = {x 7→b, y 7→z0}, h3 = {x 7→z0, y 7→z1, z 7→b}, as well as
h4 = {x 7→b, y 7→z0, z 7→z0, w 7→z1}. The derivation graph Gδ = (V,E,At,L) corre-
sponding to δ is shown in Figure 2 and has fives nodes, V = {X0, X1, X2, X3, X4}.
Each nodeXi ∈ V is associated with a set At(Xi) of atoms depicted in the associ-
ated circle (e.g. At(X2) = {r(b, z0), r(z0, z1)}), and each arc (Xi, Xj) ∈ E is rep-
resented as a directed arrow with L(Xi, Xj) shown as the associated set of terms
(e.g. L(X3, X4) = {z1}). For each node Xi ∈ V, the set Ter(Xi) of terms associ-
ated with the node is equal to Ter(At(Xi))∪{a, b} (e.g. Ter(X3) = {z0, z1, a, b})
since C = Con(D‡,R3) = {a, b}.

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0}

{z0, z1} t(z0, z1) X4

{z0}

{z1}

Fig. 2. The derivation graph Gδ.
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As can be witnessed via the above example, derivation graphs satisfy a set of
properties akin to those characterizing tree decompositions [5, Proposition 12].

Lemma 2 (Decomposition Properties). Let D be a database, R be a rule
set, and C = Con(D,R). If D δ−→R I, then Gδ satisfies the following properties:

1.
⋃

Xn∈V Ter(Xn) = Ter(I);
2. For each p(t) ∈ I, there is an Xn ∈ V such that p(t) ∈ At(Xn);
3. For each term x ∈ C(I), the subgraph of Gδ induced by the nodes Xn such

that x ∈ C(Xn) is connected;
4. For each Xn ∈ V the size of Ter(Xn) is bounded by an integer that only

depends on the size of (D,R), viz. max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+|C|.

Let us now introduce our set of reduction operations. As remarked above,
in certain circumstances such operations can be used to transform derivation
graphs into tree decompositions of an instance.

We make use of three reduction operations, namely, (i) arc removal, denoted
(ar)[i,j], (ii) term removal, denoted (tr)[i,j,k,t], and (iii) cycle removal, denoted
(cr)[i,j,k,ℓ]. The first two reduction operations were already proposed by Baget
et al. [5] (they presented (tr) and (ar) as a single operation called redundant arc
removal), whereas cycle removal is introduced by us as a new operation that will
assist us in characterizing gbts and wgbts in terms of derivation graphs.2

Definition 4 (Reduction Operations). Let D be a database, R be a rule
set, D δ−→R In, and Gδ be the derivation graph of δ. We define the set RO of
reduction operations as {(ar)[i,j], (tr)[i,j,k,t], (cr)[i,j,k,ℓ] | i, j, k, ℓ≤n, t∈Ter(In)},
whose effect is further specified below. We let (r)Σ(Gδ) denote the output of
applying the operation (r) to the (potentially reduced) derivation graph Σ(Gδ) =
(V,E,At,L), where Σ ∈ RO∗ is a reduction sequence, that is, Σ is a (potentially
empty) sequence of reduction operations.

1. Arc Removal (ar)[i,j]: Whenever (Xi, Xj) ∈ E and L(Xi, Xj) = ∅, then
(ar)[i,j]Σ(Gδ) := (V,E′,At,L′) where E′ := E \ {(Xi, Xj)} and L′ = L ↾ E′.

2. Term Removal (tr)[i,j,k,t]: If (Xi, Xk), (Xj , Xk) ∈ E with Xi ̸= Xj and t ∈
L(Xi, Xk) ∩ L(Xj , Xk), then (tr)[i,j,k,t]Σ(Gδ) := (V,E,At,L′) where L′ is
obtained from L by removing t from L(Xj , Xk).

3. Cycle Removal (cr)[i,j,k,ℓ]: If (Xi, Xk), (Xj , Xk) ∈ E and there exists a node
Xℓ ∈ V with ℓ < k such that L(Xi, Xk) ∪ L(Xj , Xk) ⊆ Ter(Xℓ) then,
(cr)[i,j,k,ℓ]Σ(Gδ) := (V,E′,At,L′) where

E′ :=
(
E \ {(Xi, Xk), (Xj , Xk)}

)
∪ {(Xℓ, Xk)}

and L′ is obtained from L ↾ E′ by setting L(Xℓ, Xk) to L(Xi, Xk)∪L(Xj , Xk).

2 Beyond (tr) and (ar), we note that Baget et al. [5] introduced an additional reduction
operation, referred to as arc contraction. We do not consider this rule here however
as it is unnecessary to characterize gbts and wgbts in terms of derivation graphs
and prima facie obstructs the proof of Theorem 3.
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p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

∅

{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0, z1}

Fig. 3. Left to right: reduced derivation graphs (tr)(Gδ), (ar)(tr)(Gδ), and (cr)(ar)(tr)(Gδ).

Last, we say that a reduction sequence Σ ∈ RO∗ is a complete reduction sequence
relative to a derivation graph Gδ iff Σ(Gδ) is cycle-free.

Remark 2. When there is no danger of confusion, we will take the liberty to write
(tr), (ar), and (cr) without superscript parameters. That is, given a derivation
graph Gδ, the (reduced) derivation graph (cr)(tr)(Gδ) is obtained by applying an
instance of (tr) followed by an instance of (cr) to Gδ. When applying a reduction
operation we always explain how it is applied, so the exact operation is known.

We now describe the functionality of each reduction operation and illustrate
each by means of an example. We will apply each to transform the derivation
graph Gδ (shown in Figure 2) into a tree decomposition of I4 (which was defined
above). The (tr) operation deletes a term t within the intersection of the sets
labeling two converging arcs. For example, we may apply (tr) to the derivation
graph Gδ from Figure 2, deleting the term z0 from the label of the arc (X1, X3),
and yielding the reduced derivation graph (tr)(Gδ), which is shown first in Fig-
ure 3. We may then apply (ar) to (tr)(Gδ), deleting the arc (X1, X3), which is
labeled with the empty set, to obtain the reduced derivation graph (ar)(tr)(Gδ)
shown middle in Figure 3.

The (cr) operation is more complex and works by considering two converging
arcs (Xi, Xk) and (Xj , Xk) in a (reduced) derivation graph. If there exists a node
Xℓ whose index ℓ is less than the index k of the child node Xk and L(Xi, Xk)∪
L(Xj , Xk) ⊆ Ter(Xℓ), then the converging arcs (Xi, Xk) and (Xj , Xk) may be
deleted and the arc (Xℓ, Xk) introduced and labeled with L(Xi, Xk)∪L(Xj , Xk).
As an example, the reduced derivation graph (cr)(ar)(tr)(Gδ) (shown third in
Figure 3) is obtained from (ar)(tr)(Gδ) (shown middle in Figure 3) by applying
(cr) in the following manner to the convergent arcs (X2, X4) and (X3, X4): since
for X2 (whose index 2 is less than the index 4 of X4) L(X2, X4) ∪ L(X3, X4) ⊆
Ter(X2), we may delete the arcs (X2, X4) and (X3, X4) and introduce the arc
(X2, X4) labeled with L(X2, X4) ∪ L(X3, X4) = {z0} ∪ {z1} = {z0, z1}. Observe
that the reduced derivation graph (cr)(ar)(tr)(Gδ) is free of cycles, witnessing
that Σ = (cr)(ar)(tr) is a complete reduction sequence relative to Gδ. Moreover,
if we replace each node by the set of its terms and disregard the labels on arcs,
then Σ(Gδ) can be read as a tree decomposition of I4. In fact, one can show that
every reduced derivation graph satisfies the decomposition properties mentioned
in Lemma 4 above.
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Lemma 3. Let D be a database and R be a rule set. If D R−→δ I, then for any re-
duction sequence Σ, Σ(Gδ) = (V,E,At,L) satisfies the decomposition properties
1-4 in Lemma 4.

As illustrated above, derivation graphs can be used to derive tree decom-
positions of R-derivable instances. By the fourth decomposition property (see
Lemma 4 above), the width of such a tree decomposition is bounded by a con-
stant that depends only on the given knowledge base. Thus, if a rule set R
always yields derivation graphs that are reducible to cycle-free graphs – mean-
ing that (un)directed cycles do not occur within the graph – then all R-derivable
instances have tree decompositions that are uniformly bounded by a constant.
This establishes that the rule set R falls within the bts class, confirming that
query entailment is decidable with R. We define two classes of rule sets by means
of reducible derivation graphs:

Definition 5 ((Weakly) Cycle-free Derivation Graph Set). A rule set
R is a cycle-free derivation graph set (cdgs) iff if D δ−→RI, then Gδ can be re-
duced to a cycle-free graph by the reduction operations. R is a weakly cycle-free
derivation graph set (wcdgs) iff if D δ−→RI, then there is a derivation δ′ where
D δ′−→RI and Gδ′ can be reduced to a cycle-free graph by the reduction operations.

It is straightforward to confirm that wcdgs subsumes cdgs, and that both
classes are subsumed by bts.

Proposition 1. Every cdgs rule set is wcdgs and every wcdgs rule set is bts.

Furthermore, as mentioned above, gbts and wgbts coincide with cdgs and
wcdgs, respectively. By making use of the (cr) operation, one can show that
the derivation graph of any greedy derivation is reducible to a cycle-free graph,
thus establishing that gbts ⊆ cdgs and wgbts ⊆ wcdgs. To show the converse
(i.e. that cdgs ⊆ gbts and wcdgs ⊆ wgbts) however, requires more work. In
essence, one shows that for every (non-source) node Xi in a cycle-free (reduced)
derivation graph there exists another node Xj such that j < i and the frontier
of the atoms in At(Xi) only consist of constants and/or nulls introduced by
the atoms in At(Xj). This property is preserved under reverse applications of
the reduction operations, and thus, one can show that if a derivation graph is
reducible to a cycle-free graph, then the above property holds for the original
derivation graph, implying that the derivation graph encodes a greedy derivation.
Based on such arguments, one can prove the following:

Theorem 2. gbts coincides with cdgs and wgbts coincides with wcdgs. Mem-
bership in cdgs, gbts, wcdgs, or wgbts warrants decidable BCQ entailment.

Note that by Theorem 2, this also implies that wcdgs properly contains cdgs.
An interesting consequence of the above theorem concerns the redundancy

of (ar) and (tr) in the presence of (cr). In particular, since we know that (i)
if a derivation graph can be reduced to a cycle-free graph, then the derivation
graph encodes a greedy derivation, and (ii) the derivation graph of any greedy
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derivation can be reduced to an cycle-free graph by means of applying the (cr)
operation only, it follows that if a derivation graph can be reduced to a cycle-free
graph, then it can be reduced by only applying the (cr) operation. We refer to
this phenomenon as reduction-admissibility, which is defined below.

Definition 6 (Reduction-admissible). Suppose S1 = {(ri) | 1 ≤ i ≤ n} and
S2 = {(rj) | n + 1 ≤ j ≤ k} are two sets of reduction operations. We say that
S1 is reduction-admissible relative to S2 iff for any rule set R and R-derivation
δ, if Gδ is reducible to a cycle-free graph with S1 ∪ S2, then Gδ is reducible to a
cycle-free graph with just S2.

Corollary 1. {(tr), (ar)} is reduction-admissible relative to (cr).

5 Conclusion

In this paper, we revisited the concept of a greedy derivation, which immediately
gives rise to a bounded-width tree decomposition of the constructed instance.
This well-established notion allows us to categorize rule sets as being (weakly)
greedy bounded treewidth sets ((w)gbts), if all (some) derivations of a derivable
instance are guaranteed to be greedy, irrespective of the underlying database.
By virtue of being subsumed by bts, these classes warrant decidability of BCQ
entailment, while at the same time subsuming various popular rule languages,
in particular from the guarded family.

By means of an example together with a proof-theoretic argument, we ex-
posed that wgbts strictly generalizes gbts. In pursuit of a better understanding
and more workable methods to detect and analyze (w)gbts rule sets, we resorted
to the previously proposed notion of derivation graphs. Through a refinement
of the set of reduction methods for derivation graphs, we were able to make
more advanced use of this tool, leading to the definition of (weakly) cycle-free
derivation graph sets ((w)cdgs) of rules, of which we were then able to show
the respective coincidences with (w)gbts. This way, we were able to establish
alternative characterizations of gbts and wgbts by means of derivation graphs.
En passant, we found that the newly introduced cycle removal reduction opera-
tion over derivation graphs is sufficient by itself and makes the other operations
redundant.

For future work, we plan to put our newly found characterizations to use. In
particular, we aim to investigate if a rule set’s membership in gbts or wgbts is
decidable. For gbts, this has been widely conjectured, but never formally estab-
lished. In the positive case, derivation graphs might also be leveraged to pinpoint
the precise complexity of the membership problem. We are also confident that
the tools and insights in this paper – partially revived, partially upgraded, par-
tially newly developed – will prove useful in the greater area of static analysis
of existential rule sets. On a general note, we feel that the field of proof theory
has a lot to offer for knowledge representation, whereas the cross-fertilization
between these disciplines still appears to be underdeveloped.



Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 15

References

1. Baget, J.F.: Improving the forward chaining algorithm for conceptual graphs rules.
In: Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning. p. 407–414. KR’04, AAAI Press (2004)

2. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for
rules with existential variables. In: Proceedings of the 21st International Jont Con-
ference on Artifical Intelligence. p. 677–682. IJCAI’09, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2009)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases
for rules with existential variables. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence. p. 677–682. IJCAI’09, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2009)

4. Baget, J.F., Mugnier, M.L.: Extensions of simple conceptual graphs: the complexity
of rules and constraints. Journal of Artificial Intelligence Research 16, 425–465
(2002)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with exis-
tential variables: Walking the decidability line. Artificial Intelligence 175(9),
1620–1654 (2011). https://doi.org/https://doi.org/10.1016/j.artint.2011.03.002,
https://www.sciencedirect.com/science/article/pii/S0004370211000397

6. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query an-
swering under expressive relational constraints. Journal of Artificial In-
telligence Research 48, 115–174 (2013). https://doi.org/10.1613/jair.3873,
https://doi.org/10.1613/jair.3873

7. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational depen-
dencies and their inference problem. In: Proceedings of the 13th Annual ACM
Symposium on Theory of Computing (STOC’81). pp. 342–354. ACM (1981).
https://doi.org/10.1145/800076.802488, https://doi.org/10.1145/800076.802488

8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini,
M., Lembo, D. (eds.) Proceedings of the 27th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS’08).
pp. 149–158. ACM (2008). https://doi.org/10.1145/1376916.1376938,
https://doi.org/10.1145/1376916.1376938

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: se-
mantics and query answering. Theoretical Computer Science 336(1),
89–124 (2005). https://doi.org/https://doi.org/10.1016/j.tcs.2004.10.033,
https://www.sciencedirect.com/science/article/pii/S030439750400725X, database
Theory

10. Feller, T., Lyon, T.S., Ostropolski-Nalewaja, P., Rudolph, S.: Finite-
Cliquewidth Sets of Existential Rules: Toward a General Criterion for
Decidable yet Highly Expressive Querying. In: Geerts, F., Vandevoort,
B. (eds.) 26th International Conference on Database Theory (ICDT
2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 255,
pp. 18:1–18:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.ICDT.2023.18,
https://drops.dagstuhl.de/opus/volltexte/2023/17760

11. Johnson, D.S., Klug, A.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. In: Proceedings of the 1st ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems. p. 164–169. PODS
’82, Association for Computing Machinery, New York, NY, USA (1982).
https://doi.org/10.1145/588111.588138, https://doi.org/10.1145/588111.588138



16 T. S. Lyon, S. Rudolph

12. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data
dependencies. ACM Trans. Database Syst. 4(4), 455–469 (dec 1979).
https://doi.org/10.1145/320107.320115, https://doi.org/10.1145/320107.320115

13. Thomas, R.: The tree-width compactness theorem for hypergraphs (1988),
https://thomas.math.gatech.edu/PAP/twcpt.pdf, unpublished

14. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying al-
gorithm for greedy sets of existential rules. In: Brewka, G., Eiter, T., McIl-
raith, S.A. (eds.) Proceedings of the 13th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’12). AAAI (2012),
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4542

A Proofs for Section 4

Lemma 3 (Permutation Lemma) Let R be a rule set with I0 an instance.
Suppose we have a (greedy) R-derivation of the following form:

I0, . . . , (ρi, hi, Ii), (ρi+1, hi+1, Ii+1), . . . , (ρn, hn, In)

If ρi+1 does not depend on ρi, then the following is a (greedy) R-derivation too:

I0, . . . , (ρi+1, hi+1, Ii−1 ∪ (Ii+1 \ Ii)), (ρi, hi, Ii+1), . . . , (ρn, hn, In).

Proof. By assumption, ρi+1 does not depend on ρi, implying hi+1(body(ρi+1)) ⊆
Ii−1. Hence, we may apply ρi+1 with hi+1 directly to Ii−1 yielding the instance
I ′
i = Ii−1 ∪ (Ii+1 \ Ii). Since hi(body(ρi)) ⊆ Ii−1 ⊆ I ′

i, we may apply ρi di-
rectly after ρi+1 yielding the instance Ii+1. Moreover, if δ is greedy, then (i)
hi+1(fr(ρi+1)) ⊆ Nul(hj(head(ρj)))∪Con(I0,R)∪Nul(I0) for some j < i+1,
and (ii) hi(fr(ρi)) ⊆ Nul(hk(head(ρk)))∪Con(I0,R)∪Nul(I0) for some k < i.
As ρi+1 does not depend on ρi, it must be the case that j ̸= i, and so, we have
that δ′ will be greedy as well since (i) and (ii) will hold for j, k < i in δ′.

Lemma 4. Let R be a rule set. If R is gbts, then R is wgbts.

Proof. Let D be a database and R be a gbts rule set. If D δ−→R I, then δ is
greedy as R is gbts. Hence, there exists a greedy R-derivation (viz. δ) of I from
D, showing that R is wgbts as well.

Theorem 2 R2 is wgbts, but not gbts. Thus, wgbts properly subsumes gbts.

Proof. We know that wgbts subsumes gbts by Lemma 2 above, however, to
show that wgbts properly subsumes gbts, we prove that R2 is wgbts, but not
gbts. Therefore, let D be an arbitrary database and I be an instance such that
there exists an R2-derivation δ0 of I from D. We show by induction on the length
of δ0 that a greedy R2-derivation of I from D can always be found.

Base case. Any R2-derivation of an instance I from D of length n = 0 or
n = 1 is trivially greedy by Definition 2.

Inductive step. Suppose our derivation δ0 is of length n+ 1, that is

δ0 = D, (ρ1, h1, I1), . . . , (ρn, hn, In), (ρn+1, hn+1, In+1)
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By IH, we have that a greedy R2-derivation δ1 of In exists; hence, let δ2 =
δ1, (ρn+1, hn+1, In+1) and observe that δ2 is a valid R2-derivation as we already
know by the structure of δ0 above that ρn+1 is triggered in In with the homo-
morphism hn+1. If the last rule ρn+1 applied in δ2 is ρ1, ρ2, or ρ3, then since no
such rule depends on any rule in R2, it must be the case hn+1(head(ρn+1)) ⊆ D,
showing that δ2 is greedy. Therefore, let us assume that the last rule ρn+1 ap-
plied is ρ4. Recall that body(ρ4) = {q(x, y, z), s(w, u, v)}, and observe that if ρ4
is applied, then hn+1(q(x, y, z)), hn+1(s(w, u, v)) ∈ In. We make a case distinc-
tion depending on the how hn+1(q(x, y, z)) and hn+1(s(w, u, v)) entered into the
derivation δ1 below:

1. Suppose that hn+1(q(x, y, z)), hn+1(s(w, u, v)) ∈ D. Then, δ2 is greedy since

hn+1(fr(ρn+1)) ⊆ Con(D)

⊆ Nul(hj(head(ρj))) ∪Con(D,R)

for any j < n+ 1.
2. Suppose that hn+1(q(x, y, z)) ∈ D and hn+1(s(w, u, v)) was introduced by

an application of ρ2 or ρ3 at j < n+1 (i.e. ρj ∈ {ρ2, ρ3}). Then, δ2 is greedy
since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρj))) ∪Con(D)

⊆ Nul(hj(head(ρj))) ∪Con(D,R).

3. Suppose that hn+1(q(x, y, z)) was introduced by an application of ρ1 or ρ3
at j < n+1 (i.e. ρj ∈ {ρ1, ρ3}) and hn+1(s(w, u, v)) ∈ D. Then, δ2 is greedy
since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρj))) ∪Con(D)

⊆ Nul(hj(head(ρj))) ∪Con(D,R).

4. Suppose that hn+1(q(x, y, z)) and hn+1(s(w, u, v)) were introduced by a sin-
gle application of ρ3 at j < n+ 1 (i.e. ρj = ρ3). Then, δ2 is greedy since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρ3))) ∪Con(D)

⊆ Nul(hj(head(ρj))) ∪Con(D,R).

5. Suppose that hn+1(q(x, y, z)) was introduced by an application of ρj ∈
{ρ1, ρ3} and hn+1(s(w, u, v)) was introduced by an application of ρk ∈
{ρ2, ρ3} with j, k < n+1. We assume that if ρ3 introduced both hn+1(q(x, y, z))
and hn+1(s(w, u, v)), then both applications of ρ3 are distinct, and we as-
sume w.l.o.g. that j < k. Since ρk only depends on the database D, we may
repeatedly apply the permutation lemma (Lemma 3) to δ2, permuting the
application of ρk earlier in the derivation until we reach the application of
ρj , yielding:

δ3 = D, . . . , (ρj , hj , Ij), (ρk, hk, I ′
j+1), . . . , (ρn+1, hn+1, In+1)
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where I ′
j+1 = Ij ∪ (Ik \Ik−1). By the permutation lemma, we know that the

portion of δ′3 up to and including (ρn, hn, In) is greedy. We have four cases
to consider, and in each case, we show how to transform δ3 into a greedy
derivation δ′3 of the same conclusion.
(a) If ρj = ρ1 and ρk = ρ2, then replace (ρj , hj , Ij), (ρk, hk, I ′

j+1) in δ3 with
(ρ3, h

′, I ′
j+1) where h′(p(x)) = hj(body(ρj)), h′(r(y)) = hj(body(ρk)),

and h′(head(ρ3)) = hj(q(x, y, z)) ∧ hk(s(x, y, z)). This gives the deriva-
tion:

δ′3 = D, . . . , (ρ3, h′, I ′
j+1), . . . , (ρn+1, hn+1, In+1)

One can confirm that δ′3 is indeed a valid derivation as h′(body(ρ3)) ∈ D,
showing that ρ3 may be applied where it is. Also,

I ′
j+1 = Ij−1 ∪ {hj(q(x, y, z)), hk(s(x, y, z))} = Ij−1 ∪ {h′(head(ρ3))},

showing that I ′
j+1 is indeed derived by applying ρ3, and for any applica-

tion of a rule ρm with j < m (i.e. for any application of a rule occurring
after the application of ρ3 displayed in δ′3 above) if it previously de-
pended on ρj or ρk, it will now depend on the above application of ρ3,
which introduces the same atoms as ρj and ρk. This also shows that the
portion of δ′3 up to and including (ρn, hn, In) is greedy. Last, it follows
that ρn+1 = ρ4 now depends on the above application of ρ3, showing
that

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪Con(D,R),

and hence, δ′3 is greedy.
(b) If ρj = ρ1 and ρk = ρ3, then replace (ρj , hj , Ij) in δ3 with (ρ3, h

′, I ′
j)

such that h′(p(x)) = hj(p(x)), h′(r(y)) = hk(r(x)), h′(head(ρ3)) =
hj(q(x, y, z)) ∧ hk(s(x, y, z)), and

I ′
j = Ij−1 ∪ {hj(q(x, y, z)), hk(s(x, y, z))} = I ′

j+1.

Thus, we have the derivation:

δ′3 = D, . . . , (ρ3, h′, I ′
j), (ρk, hk, I ′

j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to confirm that δ′3 is indeed a valid derivation, and
furthermore, for any rule ρm with j < m < n+ 1, if it depended on ρj ,
it will now depend on the above application of ρ3, showing that for any
such m we have

hm(fr(ρm)) ⊆ Nul(hj(head(ρ1))) ∪Con(D,R)

⊆ Nul(h′(head(ρ3))) ∪Con(D,R).

Moreover, ρn+1 = ρ4 can be seen to depend on the application of ρ3
displayed in δ′3 above, that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪Con(D,R).

Hence, it follows that δ′3 is greedy.
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(c) If ρj = ρ3 and ρk = ρ2, then replace (ρk, hk, Ik) in δ3 with (ρ3, h
′, I ′

j+1)

such that h′(p(x)) = hj(p(x)), h′(r(y)) = hk(r(x)), h′(head(ρ3)) =
hj(q(x, y, z)) ∧ hk(s(x, y, z)), and

I ′
j+1 = Ij ∪ {hj(q(x, y, z)), hk(s(x, y, z))}.

Thus, we have the derivation:

δ′3 = D, . . . , (ρj , hj , Ij), (ρ3, h′, I ′
j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to confirm that δ′3 is indeed a valid derivation, and
furthermore, for any rule ρm with k < m < n+ 1, if it depended on ρk,
it will now depend on the above application of ρ3, showing that for any
such m we have

hm(fr(ρm)) ⊆ Nul(hk(head(ρ2))) ∪Con(D,R)

⊆ Nul(h′(head(ρ3))) ∪Con(D,R).

Additionally, ρn+1 = ρ4 can be seen to depend on the application of ρ3
displayed in δ′3 above, that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪Con(D,R).

Hence, it follows that δ′3 is greedy.
(d) If ρj = ρ3 and ρk = ρ3, then add (ρ3, h

′, I ′
j+1) after the two inferences

(ρj , hj , Ij), (ρk, hk, I ′
j+1) in δ3 where h′(p(x)) = hj(p(x)), h′(r(y)) =

hk(r(y)), and h′(head(ρ3)) = hj(q(x, y, z))∧hk(s(x, y, z)). Thus, we have
the derivation: δ′3 =

D, . . . , (ρj , hj , Ij), (ρk, hk, I ′
j+1), (ρ3, h

′, I ′
j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to confirm that δ′3 is indeed a valid derivation. Also,
observe

h′(fr(ρ3)) ⊆ Con(D,R) ⊆ Nul(hl(head(ρl))) ∪Con(D,R).

for any l ≤ k. Moreover, for every rule ρm with k < m < n+ 1, if

hm(fr(ρm)) ⊆ Nul(hm′(head(ρm′))) ∪Con(D,R).

held in δ3 with m′ < m, then it will continue to hold in δ′3. Last, ρn+1 =
ρ4 can be seen to depend on the application of ρ3 displayed in δ′3 above,
that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪Con(D,R).

Hence, it follows that δ′3 is greedy, and concludes our proof that R2 is a
wgbts, but is not a gbts.
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B Proofs for Section 5

Lemma 5. Let D be a database and R a rule set. If D R−→δ I with Σ(Gδ) =
(V,E,At,L) a (potentially reduced) derivation graph and Σ a reduction sequence,
then Σ(Gδ) has the following properties:

1. for each non-initial node Xn ∈ V, there exists a ρ ∈ R with ρ = φ(x,y) →
∃zψ(y, z) and a homomorphism h such that At(Xn) = h(ψ(y, z));

2. if (Xn, Xm) ∈ E, then n < m.

Proof. Both claims follow from the definition of a derivation graph along with
the fact that the reduction operations only affect arcs and labels.

Definition 7 (x-Generative, Source Node). Let D be a database, R be a rule
set, D δ−→R I, and Σ be a reduction sequence applicable to Gδ = (V,E,At,L).
We define a node in Σ(Gδ) = (V′,E′,At′,L′) to be x-generative with x ∈ C(I)
iff for every node Xk ∈ V′, if x ∈ C(Xk), then n ≤ k. We define a node X ∈ V′

to be a source node iff no node Y ∈ V′ exists such that (Y,X) ∈ E′, and we
define X to be non-source node otherwise.

Lemma 6. Let D be a database, R be a rule set, D δ−→R I, and Σ be a reduction
sequence with Σ(Gδ) = (V,E,At,L). For any nodes Xi, Xj ∈ V, if x ∈ C(Xi) ∩
C(Xj), (Xi, Xj) ∈ E, and x ̸∈ L(Xi, Xj), then there exists a node Xm ∈ V such
that x ∈ C(Xm), (Xm, Xj) ∈ E, and x ∈ L(Xm, Xj).

Lemma 7. Let D be a database and R be a rule set. If D δ−→R I, then for any
reduction sequence Σ, Σ(Gδ) = (V,E,At,L) satisfies the following two condi-
tions:

1. if x ∈ C(I), then there exists a unique x-generative node X ∈ V;
2. if Xn is the x-generative node in Σ(Gδ), then for every Xk ∈ V such that

x ∈ C(Xk), there is a directed path from Xn to Xk in Σ(Gδ) such that for
every node Xℓ along the path, ℓ ≤ k and x ∈ C(Xℓ).

Proof. Statement 1 is evident as there must be a first rule application in δ
that introduces the null x. Let Σ(Gδ) = (V,E,At,L). We argue statement 2 by
induction on the lexicographic ordering of pairs (|δ|, |Σ|), where |δ| is the length
of the derivation and |Σ| is the length of the reduction sequence. Suppose Xn is
the x-generative node in Σ(Gδ) and let Xk ∈ V such that x ∈ C(Xk). We aim
to show that a directed path exists from Xn to Xk such that for every node Xℓ

along the path, ℓ ≤ k and x ∈ C(Xℓ).
Base case. If |δ| = 0, meaning δ = D, then the result trivially follows. If

|Σ| = 0, then Σ(Gδ) = Gδ with Gδ = (V,E,At,L). If Xk = Xn, then the
claim trivially holds. However, if Xk ̸= Xn, then let us consider the derivation
D δ′−→R Ik−1, (ρ, h, Ik), where the application of ρ produces the node Xk. Since
x ∈ C(Xn) and x ∈ C(Xk), we know there exists a node Xm such that x ∈
C(Xm), (Xm, Xk) ∈ E, and x ∈ L(Xm, Xk). By IH, there is a directed path
from Xn to Xm such that for every Xℓ along the path ℓ ≤ m and x ∈ C(Xℓ).
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Therefore, since (Xm, Xk) ∈ E, we know that such a directed path from Xn to
Xk of the required shape exists as well.

Inductive step. Let (r) ∈ {(tr), (ar), (cr)} with Σ = (r)Σ′. Let Σ′(Gδ) =
(V′,E′,At′,L′). We consider the cases where (r) is either (ar) or (cr) as the case
when (r) is (tr) is trivial as all paths are preserved after the reduction operation
is applied.

(ar). Suppose that an arc (Xi, Xj) ∈ E′ exists such that L′(Xi, Xj) = ∅,
which is removed by applying (ar) to Σ′(Gδ). By IH, we know that a directed
path from Xn to Xk exists in Σ′(Gδ) such that for every node Xℓ along the
path ℓ ≤ k and x ∈ C(Xℓ). Let us suppose that (Xi, Xj) occurs along this path,
since otherwise, the result trivially follows. Then, we know that x ∈ C(Xi) and
x ∈ C(Xj). Since L′(Xi, Xj) = ∅, we know x ̸∈ L′(Xi, Xj), and therefore, by
Lemma 7, some Xm ̸= Xi exists such that Xm ∈ V′, x ∈ C(Xm), (Xm, Xj) ∈ E′,
and x ∈ L′(Xm, Xj). By IH, there exists a directed path from Xn to Xm such
that for every node Xℓ along the path ℓ ≤ m and x ∈ C(Xℓ). After (ar) is
applied, this path will still be present, and so, a path of the desired shape will
exist from Xn to Xk.

(cr). Suppose that (Xi, Xm), (Xj , Xm) ∈ E′, and there exists a node Xℓ such
that ℓ < m and L′(Xi, Xm) ∪ L′(Xj , Xm) ⊆ Ter(Xℓ). After applying (cr), we
suppose that (Xi, Xm), (Xj , Xm) are removed from the set of arcs and (Xℓ, Xm)
is added such that L(Xℓ, Xm) = L′(Xi, Xm) ∪ L′(Xj , Xm). By IH, a directed
path from Xn to Xk exists in Σ′(Gδ) such that for every node Xu along the path
u ≤ k and x ∈ C(Xu). We assume w.l.o.g. that (Xi, Xm) occurs along this path,
since the other cases are trivial or similar. If x ∈ L′(Xi, Xm), then x ∈ C(Xℓ)
by assumption, implying that a directed path exists from Xn to Xℓ (because
Xn is assumed x-generative) of the required form. Hence, after applying (cr), a
directed path of the required form will exist consisting of the path from Xn to
Xℓ, the arc (Xℓ, Xm), and the path from Xm to Xk. However, if x ̸∈ L′(Xi, Xm),
then as in the (ar) case above, there exists some Xv ̸= Xi such that Xv ∈ V′,
x ∈ C(Xv), (Xv, Xm) ∈ E′, and x ∈ L′(Xv, Xm) (by Lemma 7). By an argument
similar to the (ar) case, we find that a directed path of the required form exists
from Xn to Xk in Σ(Gδ).

Lemma 5 Let D be a database and R be a rule set. If D δ−→R I, then for any re-
duction sequence Σ, Σ(Gδ) = (V,E,At,L) satisfies the decomposition properties
1-4 in Lemma 4, i.e. the following four conditions:

1.
⋃

Xn∈V Ter(Xn) = Ter(I);
2. For each p(t) ∈ I, there is an Xn ∈ V such that p(t) ∈ At(Xn);
3. For each term x ∈ C(I), the subgraph of Σ(Gδ) induced by the nodes Xn

such that x ∈ C(Xn) is connected;
4. For each Xn ∈ V the size of Ter(Xn) is bounded by an integer that only

depends on the size of (D,R), viz. max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+|C|.

Proof. It is straightforward to confirm properties 1, 2, and 4. Property 3 follows
from Lemma 8.
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Lemma 8. Let R be a rule set. If for every database D, there exists an n ∈ N
such that for every k ∈ N, tw(Chk(D,R)) ≤ n, then R is fts.

Proof. Let R be a rule set such that for every database D, there exists an n ∈ N
such that for every k ∈ N, tw(Chk(D,R)) ≤ n. Let D be an arbitrary database.
As Chk(D,R) is finite for every k ∈ N and monotonically increases (relative
to the subset relation) as k increases, we have that for every finite subset of
Ch∞(D,R), the treewidth of that subset is bounded by n. Thus, by the the
treewidth compactness theorem [13], tw(Ch∞(D,R)) ≤ n. Since Ch∞(D,R) is
a universal model of (D,R), it follows that (D,R) has a universal model of finite
treewidth. Last, since D was assumed arbitrary, we have that R is bts.

Proposition 3 Every cdgs rule set is wcdgs and every wcdgs rule set is bts.

Proof. We prove each conjunct of the claim in turn:

1. Suppose that R is cdgs and let D be an arbitrary database. Then, if D R−→δ I,
it follows that a derivation δ′ = δ exists such that D R−→δ′ I and Gδ′ can be
reduced to a cycle-free graph (since R is cdgs). Hence, R is wcdgs.

2. Suppose that R is wcdgs, D is a database, let C = Con(D,R), and let
n = max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+ |C|, and assume that D δ−→R I.
Our first aim is to show that tw(I) ≤ n, thus showing that any R-derivable
instance from D has a treewidth bounded by n. Since R is wcdgs, we know
there exists an R-derivation δ′ and a complete reduction sequence Σ such
that Σ(Gδ′) = (V′,E′,At′,L′) is a cycle-free graph. Let us define a tree
decomposition T = (V,E) of I by making use of Σ(Gδ′), where X ∈ V
iff there exists a node X ′ ∈ V′ such that X = Ter(X ′). We then define
(X,Y ) ∈ E′′ iff there exists an arc (X ′, Y ′) ∈ E′ such that X = Ter(X ′)
and Y = Ter(Y ′). In general, T ′ = (V,E′′) will be a finite forest, so if
we place each tree of T ′ in a line and connect the root of the first tree to
the root of the second, the root of the second tree to the root of the third,
etc., then this yields a tree decomposition T = (V,E) (where E extends
E′′ with the edges just mentioned). By Lemma 5, T is indeed a tree de-
composition, and furthermore, w(T ) ≤ n. Thus, we have shown that any
R-derivable instance from D has a treewidth bounded by n. Now, observe
that D δ−→R Chk(D,R) for every k ∈ N. Therefore, since D was assumed
arbitrary, we know that for every database D, there exists an n ∈ N such
that for every k ∈ N, tw(Chk(D,R)) ≤ n. By Lemma ?? above, it follows
that R is bts, establishing the claim.

Definition 8. Let Σ(Gδ) = (V,E,At,L) be a derivation graph with Σ a reduc-
tion sequence and Xn ∈ V. Moreover, let D be a database, R be a rule set, and
C = Con(D,R). We define the frontier fr(Xn) of a node Xn ∈ V relative to
(D,R) accordingly:

fr(Xn) =

{
∅ if Xn is a source node;
hi(yi) \ C otherwise.

where At(Xn) = hi(ψi(yi, zi)).
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Lemma 9. Let D be a database, R be a rule set, C = Con(D,R), and assume
that D R−→δ I. Then, for Σ a reduction sequence, the derivation graph Σ(Gδ) =
(V,E,At,L) satsifies the following properties:

1. for each Xn0
∈ V with parent nodes Xn1

, . . . , Xnk
∈ V,

fr(Xn0) =
⋃

i∈{1,...,k}

L(Xni , Xn0);

2. for each (Xm, Xn) ∈ E, L(Xm, Xn) ⊆ Ter(Xm);
3. for each Xn0

∈ V with parent nodes Xn1
, . . . , Xnk

∈ V,⋃
i∈{1,...,k}

L(Xni , Xn0) ⊆
⋃

i∈{1,...,k}

Ter(Xni).

Proof. Since 3 follows from 2, we only prove 1 and 2. We prove each claim in
turn by induction on the length of the reduction sequence Σ.

1. Base case. Suppose that Σ = ε, so that Σ(Gδ) = ε(Gδ) = Gδ. Observe that
for any Xn ∈ V with (a non-empty set of) parent nodes Xn1

, . . . , Xnk
∈ V,

fr(Xn) = h(y) \ C for ψ(y, z) = head(ρ) for some ρ ∈ R. Moreover, by
definition, it follows that

fr(Xn) =
⋃

i∈{1,...,k}

L(Xni
, Xn).

Inductive step. We assume for IH that the property holds for Σ(Gδ) and
show that the property holds for (r)Σ(Gδ) = (V′,E′,At′,L′) with (r) ∈
{(tr), (ar), (cr)}. We make a case distinction based on the last reduction op-
eration (r) applied.

(ar). Let (Xn1
, Xn0

) ∈ E such that L(Xn1
, Xn0

) = ∅. Assume that (ar) was
applied, so that (Xn1

, Xn0
) ̸∈ E′. For any node Xm ̸= Xn0

in (r)Σ(Gδ) prop-
erty 2 holds by IH, and for the node Xn0

with parent nodes Xm1
, . . . , Xmk

in (ar)Σ(Gδ) we have

fr(Xn0
) =

⋃
i∈{1,...,k}

L(Xmi
, Xn0

) ∪ L(Xn1
, Xn0

)

=
⋃

i∈{1,...,k}

L′(Xmi
, Xn0

) ∪ ∅

=
⋃

i∈{1,...,k}

L′(Xmi
, Xn0

)

where the first equality follows by IH, and the second by the definition of L′

along with the fact that L(Xn1
, Xn0

) = ∅.

(tr). Let (Xn1
, Xn0

), (Xn2
, Xn0

) ∈ E with t ∈ L(Xn1
, Xn0

) ∩ L(Xn2
, Xn0

).
Suppose we apply (tr), so that L′(Xn2 , Xn0) = L(Xn2 , Xn0) \ {t}. For any
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node Xm ̸= Xn0
in (tr)Σ(Gδ) the result holds by IH, and for the node Xn0

with parent nodes Xm1
, . . . , Xmk

we have

fr(Xn0
) =

⋃
i∈{1,...,k}

L(Xmi
, Xn0

) =
⋃

i∈{1,...,k}

L′(Xmi
, Xn0

)

as t ∈ L′(Xn1
, Xn0

).

(cr). Let (Xn1
, Xn0

), (Xn2
, Xn0

) ∈ E with a node Xm ∈ V such that m < n0
and L(Xn1 , Xn0) ∪ L(Xn2 , Xn0) ⊆ Ter(Xm). Assume that (cr) was applied,
so that (Xm, Xn0) ∈ E′ with L′(Xm, Xn0) = L(Xn1 , Xn0)∪L(Xn2 , Xn0). For
any node Xk ̸= Xn0

in (cr)Σ(Gδ), property 2 holds by IH, so let us consider
the node Xn0

, which has parents Xm1
, . . . , Xmk

, Xn1
, and Xn2

in Σ(Gδ)
and parents Xm1

, . . . , Xmk
, and Xm in (cr)Σ(Gδ). By IH, we have the first

equality below, and the second follows from the definition of L′, giving the
desired result:

fr(Xn0) =
⋃

i∈{1,...,k}

L(Xmi , Xn0) ∪ L(Xn1 , Xn0) ∪ L(Xn2 , Xn0)

=
⋃

i∈{1,...,k}

L′(Xmi , Xn0) ∪ L′(Xm, Xn0).

2. Base case. Suppose that Σ = ε, so that Σ(Gδ) = ε(Gδ) = Gδ. The result
immediately follows from the definition of an derivation graph.

Inductive step. We assume for IH that the property holds for Σ(Gδ) and
show that the property holds for (r)Σ(Gδ) = (V′,E′,At′,L′) with (r) ∈
{(tr), (ar), (cr)}.

(tr). Let (Xn1 , Xn0), (Xn2 , Xn0) ∈ E with t ∈ L(Xn1 , Xn0) ∩ L(Xn2 , Xn0).
Suppose we apply (tr), so that L′(Xn2 , Xn0) = L(Xn2 , Xn0)\{t}. For any arc
(Xm1

, Xm0
) ̸= (Xn2

, Xn0
) in (tr)Σ(Gδ), the result holds by IH, so let us focus

on (Xn2
, Xn0

) ∈ E′. Observe that L′(Xn2
, Xn0

) ⊆ L(Xn2
, Xn0

) ⊆ Ter(Xn2
).

(ar). Let (Xn1 , Xn0) ∈ E such that L(Xn1 , Xn0) = ∅. Assume that (ar) was
applied, so that (Xn1

, Xn0
) ̸∈ E′. For any (Xm1

, Xm0
) ∈ E′, L′(Xm1

, Xm0
) =

L(Xm1
, Xm0

) ⊆ Ter(Xm1
) by the definition of L′ and IH.

(cr). Let (Xn1 , Xn0), (Xn1 , Xn0) ∈ E with a node Xm ∈ V such that m < n0
and L(Xn1

, Xn0
) ∪ L(Xn1

, Xn0
) ⊆ Ter(Xm). Assume that (cr) was applied,

so that (Xm, Xn0
) ∈ E′ with L′(Xm, Xn0

) = L(Xn1
, Xn0

) ∪ L(Xn1
, Xn0

).
For any arc (Xk1

, Xk2
) ̸= (Xm, Xn0

) in (cr)Σ(Gδ), the result holds by IH,
so let us focus on (Xm, Xn0

) ∈ E. We have L′(Xm, Xn0
) = L(Xn1

, Xn0
) ∪

L(Xn1 , Xn0) ⊆ Ter(Xm) by the definition of L′ and the condition required
to apply (cr). This concludes the proof of the case.

Definition 9 (Sub-reduction Sequence). Let Σ = (r1) · · · (rn) be a reduction
sequence. We define a sub-reduction sequence Σ′ of Σ to be a reduction sequence
of the form (r1) · · · (ri) with 0 ≤ i ≤ n, which is the empty reduction sequence
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ε when n = 0. If Σ′ is a sub-reduction sequence of Σ, then we write Σ′ ⊑ Σ,
and we note that we take Σ′ to be the same instances of the reduction operations
occurring within the reduction sequence Σ.

Lemma 10. Let D be a database, R be a rule set, and assume that D R−→δ I.
Moreover, assume that Σ(Gδ) = (V,E,At,L) is a cycle-free derivation graph
with Σ a complete reduction sequence. For each Σ′ ⊑ Σ, the derivation graph
Σ′(Gδ) = (V′,E′,At′,L′) satisfies the following: For each non-source node Xn ∈
V′, there exists a node Xm ∈ V′ such that m < n and fr(Xn) ⊆ Ter(Xm).

Proof. We first show (1) that the claim holds for Σ(Gδ), and then (2) show that
if the claim holds for Σ′(Gδ) with Σ′ = (r)Σ′′ and (r) ∈ {(tr), (ar), (cr)}, then it
holds for Σ′′(Gδ).

(1) Let Xn ∈ V be a non-source node of Σ(Gδ) with parent nodes Xni for
i ∈ {1, . . . , k}. By Lemma 9, we know that

fr(Xn) =
⋃

i∈{1,...,k}

L(Xni
, Xn) ⊆

⋃
i∈{1,...,k}

Ter(Xni
).

Since Σ is a complete reduction sequence and Σ(Gδ) is cycle-free, we know that
Σ(Gδ) is a forest, implying that each non-source node has a single parent node.
Hence, Xn has a single parent node Xm, implying that fr(Xn) ⊆ Ter(Xm), thus
confirming the desired result as m < n by Lemma 6.

(2) Let Σ′(Gδ) = (V′,E′,At′,L′), Σ′′(Gδ) = (V′′,E′′,At′′,L′′), and suppose
that for every non-source node Xn ∈ V′, there exists a node Xm ∈ V′ such that
m < n and fr(Xn) ⊆ Ter(Xm). We show the claim by a case distinction on if
(tr), (ar), or (cr) was applied last in Σ′.

(tr). Observe that if (tr) was applied last in Σ′, then the only difference be-
tween Σ′(Gδ) and Σ′′(Gδ) is that for some arc (Xk1

, Xk0
) ∈ E′∩E′′, L′′(Xk1

, Xk0
) =

L′(Xk1 , Xk0) ∪ {t} , for some term t. Hence, for an arbitrary non-source node
Xn ∈ V′′, Xn ∈ V′ since V′′ = V′, implying that there exists a node Xm ∈ V′ =
V′′ such that m < n and fr(Xn) ⊆ Ter(Xm), completing the proof of the case.

(ar). If (ar) was applied last in Σ′, then the only difference between Σ′(Gδ)
and Σ′′(Gδ) is that for some arc (Xk1

, Xk0
), E′′ = E′ ∪ {(Xk1

, Xk0
)}, where

L′′(Xk1
, Xk0

) = ∅. For any non-source node Xn ∈ V′′ such that Xn is a non-
source node in V′, the result immediately holds. However, it could be the case
that even though Xk0 is a non-source node in V′′, Xk0 is a source node in Σ′(Gδ)
as (Xk1

, Xk0
) ∈ E′′. In this case, by Lemma 9 and the fact that Xk1

is the only
parent of Xk0

∈ V′′, we know that fr(Xk0
) ⊆ L′′(Xk1

, Xk0
) = ∅, implying that

fr(Xk0
) = ∅. As Xk1

is a parent of Xk0
in Σ′′(Gδ), we know that k1 < k0 by

Lemma 6, and trivially fr(Xk0) ⊆ Ter(Xk1), proving the case.
(cr). If (cr) is applied last in Σ′, then the only difference between Σ′′(Gδ)

and Σ′(Gδ) is that there exist arcs (Xn1
, Xn0

), (Xn2
, Xn0

) ∈ E′′ and E′ = (E′′ \
{(Xn1

, Xn0
), (Xn2

, Xn0
)}) ∪ {(Xm, Xn0

)} as there exists a node Xm ∈ V′′ such
that m < n0 and L′′(Xn1

, Xn0
) ∪ L′′(Xn2

, Xn0
) = Ter(Xm). Hence, for an

arbitrary non-source node Xk ∈ V′′, Xk ∈ V′ as V′′ = V′, implying the existence
of a node Xk′ such that k′ < k and fr(Xk) ⊆ Ter(Xk′), thus completing the
proof.
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Lemma 11. Let R be a rule set. Then,

1. If R is gbts, then R is cdgs;
2. if R is wgbts, then R is wcdgs.

Proof. We argue claim 1 since the proof of claim 2 is similar. Let D be a
database, R be gbts, and assume D δ−→R I. Since R is gbts, we know that
the R-derivation

δ = D, (ρ1, h1, I1), . . . , (ρn, hn, In)

is greedy. Therefore, for each i such that 0 < i < n, there exists a j < i such
that hi(fr(ρi)) ⊆ Nul(hj(head(ρj))) ∪ Con(D,R). Let us now show that R is
cdgs by arguing that Gδ = (V,E,At,L) is reducible to a cycle-free graph.

Let us suppose that there exist arcs (Xn1 , Xn0), (Xn2 , Xn0) ∈ E. By our as-
sumption that δ is greedy, we know that there exists a node Xm ∈ V such that
m < n0 and fr(Xn0

) ⊆ Ter(Xm). By Lemma 9, it follows that L(Xn1
, Xn0

) ∪
L(Xn2

, Xn0
) ⊆ Ter(Xm), meaning we can apply (cr) toGδ. Observe that (cr)(Gδ)

has one less “convergence point” as (Xn1
, Xn0

) and (Xn2
, Xn0

) have been re-
placed by the single arc (Xm, Xn0). By repeating this process, all such conver-
gence points will be removed, yielding a reduced, cycle-free derivation graph.
Hence, R is cdgs.

Lemma 12. Let R be a rule set. Then,

1. If R is cdgs, then R is gbts;
2. if R is wcdgs, then R is wgbts.

Proof. We prove claim 2 since claim 1 is shown in a similar fashion. Let D be
a database, R be wcdgs, C = Con(D,R), and assume D δ−→R I. Since R is
wcdgs, we know there exists an R-derivation

δ′ = D, (ρ1, h1, I1), . . . , (ρk, hk, Ik)

such that Gδ′ = (V,E,At,L) is reducible to a cycle-free graph. That is to say,
there exists a (complete) reduction sequence Σ such that Σ(Gδ′) is cycle-free. By
Lemma 10, we know that for every Σ′ ⊑ Σ, Σ′(Gδ′) = (V′,E′,At′,L′) satisfies
the following property: For each non-source node Xn ∈ V′, there exists a node
Xm ∈ V′ such that m < n and fr(Xn) ⊆ Ter(Xm). In particular, this property
holds for Σ′ = ε, i.e. for Gδ′ . Since hk(fr(ρk)) ⊆ C when Xk ∈ V is a source
node, and due to the fact that for each non-source node Xn ∈ V, fr(Xn) =
hn(fr(ρn)) \ C = hn(fr(ρn)) \ C, we have that

hn(fr(ρn)) ⊆ fr(Xn) ∪ C ⊆ Ter(Xm) = Nul(hm(head(ρm)) ∪Con(D,R),

for each 0 < n ≤ k and some m < n, where the last equality above follows from
the definition of Ter(Xm). Therefore, δ′ is greedy, showing that R is wgbts.

Theorem 3 gbts coincides with cdgs and wgbts coincides with wcdgs. Mem-
bership in cdgs, gbts, wcdgs, or wgbts warrants decidable BCQ entailment.
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Proof. The first statement follows from Lemma 11 and Lemma 12. The second
statement follows from the fact that BCQ entailment is decidable for bts and
every class of rule sets mentioned is a subset of bts.

Corollary 1 {(tr), (ar)} is reduction-admissible relative to (cr).

Proof. Let δ be an arbitrary R-derivation and assume that Gδ can be reduced to
a cycle-free graph. By the proof of Lemma 12 above, δ is a greedy R-derivation.
Thus, by the proof of Lemma 11, δ is reducible to a cycle-free graph using only
the (cr) operation.


