
Orel: Database-Driven Reasoning for OWL 2 Profiles

Markus Krötzsch, Anees ul Mehdi, and Sebastian Rudolph

Institute AIFB, Karlsruhe Institute of Technology, DE
{mak,ame,sru}@aifb.uni-karlsruhe.de

Abstract. We describe Orel, a reasoning system for an ontology language which
subsumes both the EL and the RL profile of the recently standardised web on-
tology language OWL 2. Orel performs consequence-driven reasoning on the
database level which is always sound. It is guaranteed to be complete if the ontol-
ogy is contained in one of the two profiles. We present the underlying calculus,
the core algorithm, and initial evaluation results.

1 Introduction

With the standardisation of the Web Ontology Language OWL 2 in 2009 [1], the de-
velopment of theoretically well-studied and practically deployable expressive ontology
languages for the Semantic Web has reached a new level of maturity. Among various
other improvements, the new version of OWL is the first that adequately addresses the
trade-off between logical expressivity and scalability that is inherent to formal knowl-
edge representation by specifying additional light-weight language profiles. The three
OWL 2 profiles EL, RL, and QL constitute sublanguages which – while still sufficiently
expressive for many applications – exhibit a polynomial time complexity for standard
reasoning tasks, and are therefore particularly suitable for working with large ontologi-
cal descriptions [2].

The Orel software that is introduced in this system description provides storage and
reasoning services for both OWL EL and RL. The specific features that set it apart from
existing implementations are twofold. First, its implementation is tailored toward ma-
terialisation of entailments in a persistent storage backend such as a relational database
management system (DBMS). Second, it realises a rule-basedapproach for implement-
ing both OWL RL and OWL EL inferencing in a single polytime algorithm.

Orel’s approach to reasoning is to express inference tasks for OWL 2 in terms of
inference tasks for the simple rule language datalog [3]. The basis of this method is
an entailment-preserving translation of description logics to datalog that has been intro-
duced in [4]. The latter approach has been presented for a hybrid ontology-rule language
that includes features which cannot be expressed in OWL 2. This provides an interest-
ing path for extending Orel to also cover some of the expressivity of rule languages like
SWRL [5] or RIF-BLD [6], but the present paper focusses on the supported OWL 2
features only.

In Section2, we discuss Orel’s inferencing calculus, and present some optimisa-
tions for data-centric processing. Thereafter, in Section3, we briefly highlight our basic
approach for extending this inferencing mechanism to efficient schema inferencing, and

PhD ⊑ AcademicDegree PostDoc ⊑ ∃has.PhD Graduate ≡ ∃has.AcademicDegree

PhD(x) → AcademicDegree(x)
PostDoc(x) → has(x, d∃has.PhD)
PostDoc(x) → PhD(d∃has.PhD)

Graduate(x) → has(x, d∃has.AD)
Graduate(x) → AcademicDegree(d∃has.AD)

has(x, y) ∧ AcademicDegree(y) → Graduate(x)

Fig. 1.Example translation to datalog

in Section4, we recall the general techniques for adapting a rule-basedcalculus for ex-
ecution in a relational DBMS. Section5 provides further details on the implementation
and initial evaluation results. We discuss related work in Section6 and give an outlook
to the future development of Orel in Section7. Orel is free software that can be obtained
athttp://code.google.com/p/orel/.

2 A Data-Driven Approach for Translating OWL into Datalog

The algorithms in [4] extend to a first-order knowledge representation languagedubbed
ELP that combines features of the description logicEL++ [7], Description Logic Rules
[8], and DL-safe Rules [9]. Yet, the expressivity ofELP has been restricted sufficiently
to allow for polynomial-time reasoning. Instead of repeating the formal details that can
readily be found in [4], we summarise the underlying approach by means of a brief
example, and provide more detailed descriptions of the algorithms that are actually im-
plemented in Orel. Throughout this work, we use descriptionlogic syntax for concisely
expressing the semantics of OWL 2 axioms.

As an example, consider the set of OWL 2 axioms in Fig.1 (top). Following a
strategy as in [4], this knowledge base would be translated into the rule set in Fig. 1
(bottom). These rules are intended to be read as first-order implications based on a
standard predicate logic semantics.1 Note that the translation is faithful regarding the
signature: OWL classes are translated into unary predicates, and OWL properties into
binary predicates. Thus it is not hard to see how axioms from the original ontology
relate to implications in the translated datalog program.

While this translation is straightforward in many cases, a special approach is needed
to cover existential expressions as inObjectSomeValuesFrom. Since datalog does not
allow existential entailments, auxiliary constants are introduced to represent additional
“anonymous” individuals the existence of which is requiredby the ontology. Please
note that only a single constant is introduced for affected class expressions during the
translations. This limits the amount of additional individuals that need to be considered,
and it is vital to retain polytime complexity.

While the above translation is rather intuitive for the mostpart, the presented en-
coding has several practical drawbacks that come to the forewhen attempting an actual
implementation. In particular, the created rule set may become rather large; it grows
linearly with the size of the knowledge base. However, typical LP engines exhibit far

1 Since we are only interested in positive entailments, assuming a non-monotonic semantics for
datalog would not lead to different inference results. See [3] for details.

http://code.google.com/p/orel/

A(n) 7→ inst(n, Â) A ⊑ C 7→ subClass(Â, Ĉ)
R(n,m) 7→ triple(n,R,m) A ⊓ B ⊑ C 7→ subIntersect(Â, B̂, Ĉ)

∃R.Self(n) 7→ self(n,R)
∃R.A ⊑ C 7→ subSomeValues(R, Â, Ĉ) ∃R.Self ⊑ C 7→ selfImplies(R, Ĉ)
A ⊑ ∃R.B 7→ someValues(Â,R, B̂, d∃R.B) A ⊑ ∃R.Self 7→ impliesSelf(Â,R)
A ⊑ ∀R.B 7→ allValuesFrom(Â,R, B̂) A ⊑ 61R.B 7→ atMostOne(Â,R, B̂)

R ⊑ T 7→ subProperty(R,T) Disj(R, S) 7→ disjoint(R, S)
R ◦ S ⊑ T 7→ subPropertyChain(R, S ,T) R− ⊑ S 7→ subInverseOf(R, S)
For each individual namen in the ontology, add the factnom(n) to the transformation.
For each class name or nominalA in the ontology, add the factsubClass(A,⊤).

Fig. 2.Creating an initial fact base from DL axioms in Orel; for a classC defineĈ ≔ n
if C = {n} is a nominal class, and̂C ≔ C if C is a class name,⊤, or⊥

better performance when more facts and less rules are given.Similarly, DBMS can han-
dle large amounts of data while implications in the above formulation work on this data
and would thus correspond to database operations. The next section therefore introduces
a modified approach that is taken in Orel. This observation calls for a different encod-
ing strategy, where ontological information (such as subclass relationships) is stored as
facts, while logical ramifications are governed by “meta-rules” that resemble the rules
of a deduction calculus. Thereby, classes and properties have to be treated as datalog
individuals. The above example might then be encoded by the following facts:

subClass(PhD,AcademicDegree)
someValues(PostDoc,Has,PhD, d∃has.PhD)
someValues(Graduate,Has,AcademicDegree, d∃has.AD)

subSomeValues(Has,AcademicDegree,Graduate)

The predicate names used here hint at the intended interpretation but are not formally re-
lated to the OWL 2 vocabulary. Note that the auxiliary constantsd∃has.PhD andd∃has.AD

are already included in the above facts. Since we are interested in a rule set without
function symbols (datalog), all required constant symbolsmust be explicitly created
beforehand. We now can encode the intended semantics in derivation rules such as the
following:

subClass(a, b) ∧ inst(x, a) → inst(x, b)
someValues(a, r, b, d) ∧ inst(x, a) → triple(x, r, d)
someValues(a, r, b, d) ∧ inst(x, a) → inst(d, b)

subSomeValues(r, a, b) ∧ triple(x, r, y) ∧ inst(y, a) → inst(x, b),

Here we encode assertions about instances in the obvious waywith the additional meta-
predicatesinst for class instances, andtriple for role assertions. All terms in the
above rules are variables, but here and below we use different letters for capturing the
underlying intuition:a, b, c for class names,r, s, t for role names,x, y, z for individual
names, andd for auxiliary constants.

As in the above example, most features of OWL EL and RL can be supported by
suitable meta-rules based on the datalog translation in [4]. For the most prominent fea-
tures of the two profiles, the translation of axioms to meta-facts is specified in Fig.2,
and the according materialisation rules are presented in Fig. 3. The translation assumes

(1) nom(x) → inst(x, x)
(2) nom(x) ∧ triple(x, r, x) → self(x, r)
(3) subClass(a, b) ∧ inst(x, a) → inst(x, b)
(4) subIntersect(a, b, c) ∧ inst(x, a) ∧ inst(x, b) → inst(x, c)
(5) subSomeValues(r, a, c) ∧ triple(x, r, y) ∧ inst(y, a) → inst(x, c)
(6) someValues(a, p, b, d) ∧ inst(x, a) → triple(x, p, d)
(7) someValues(a, p, b, d) ∧ inst(x, a) → inst(d, b)
(8) selfImplies(r, c) ∧ self(x, r) → inst(x, c)
(9) impliesSelf(a, r) ∧ inst(x, a) → self(x, r)
(10) impliesSelf(a, r) ∧ inst(x, a) → triple(x, r, x)
(11) subProperty(r, t) ∧ triple(x, r, y) → triple(x, t, y)
(12) subProperty(r, t) ∧ self(x, r) → self(x, t)
(13) subPropertyChain(r, s, t) ∧ triple(x, r, y) ∧ triple(y, s, z) → triple(x, t, z)
(14) disjoint(r, s) ∧ triple(x, r, y) ∧ triple(x, s, y) → inst(x,⊥)
(15) inst(x, y) ∧ nom(y) → inst(y, x)
(16) inst(x, y) ∧ nom(y) → nom(x)
(17) triple(x1, r, y) ∧ inst(x2, y) ∧ nom(y) → triple(x1, r, x2)
(18) allValuesFrom(a, r, b) ∧ nom(x) ∧ nom(y) ∧

triple(x, r, y) ∧ inst(x, a) → inst(y, b)
(19) atMostOne(a, r, b) ∧ nom(x) ∧ nom(y1) ∧ nom(y2) ∧ inst(x, a) ∧

triple(x, r, y1) ∧ inst(y1, b) ∧ triple(x, r, y2) ∧ inst(y2, b) → inst(y1, y2)
(20) subInverseOf(r, s) ∧ nom(x) ∧ nom(y) ∧ triple(x, r, y) → triple(y, s, x)

Fig. 3. Inference rules for deriving entailments in Orel

that all axioms have first been decomposed into a simplified normal form that does not
use more than one concept operator per concept expression. To simplify the presenta-
tion, we use the names of classes, roles, and individuals, aswell as⊤ and⊥ as constant
symbols in the database instead of assigning numerical identifiers to such names as
done in the actual implementation.

Regarding the rules of Fig.3, we can observe that the rules only derive new facts
for the predicatesinst, triple, andself that correspond to assertional axioms, as
well as for the auxiliary predicatenom. To see the purpose of the latter, first note that
a special simplification of the rule set is achieved by using the same identifiers for
individual names and for nominal classes containing only this individual. Constants
that can be considered as nominal classes are marked withnom, so that the rule (1) of
Fig. 3 generates tautological assertions of the form{n}(n). It is not hard to see that all
equality statements that can be derived in OWL EL must involve at least one individual
name, and can thus be expressed by a class assertion axiom fora nominal class. These
observations allow us to simplify the equality theory of [4] to rules (15)–(17) of Fig.3.

All rules that relate to features that are specific to OWL RL are restricted to individ-
uals innom. This corresponds to the restriction of DL-safety that has been also used in
[4]. As noted there, the relevant entailments of an OWL RL ontology can be obtained
when restricting reasoning tonamed individuals.Anonymous individuals, in contrast,
cannot be inferred to exist in OWL RL and are only relevant forthe EL part of a knowl-
edge base. As discussed in [4], the DL-safe combination of EL and RL features not
only captures all entailments that would be expected from either language in isolation,

but also allows some semantic interactions between the two languages. In this case,
however, the above inferencing algorithm is not guaranteedto produce all entailments
– indeed, a polynomial time algorithm cannot achieve this goal.

Features that are missing in Fig.2 and 3 are only OWL EL’s restricted form of
property ranges, the universal role, and concrete domains (data ranges). Orel interprets
all property ranges as OWL RL axioms of the form⊤ ⊑ ∀R.C, and does not currently
support the universal role. Concrete domains, however, aresupported and the according
rules are omitted here for reasons of space. Various other features, such as assymmetry
of roles, that have been omitted above can readily be expressed in terms of the given
features.

Finally, it should be observed that the given inference rules do not materialise facts
that can be concluded if the knowledge base is inconsistent.However, it is ensured that
inconsistencies lead to derivations of the forminst(n,⊥) for some constantn. Orel
checks for this condition for being able to return correct answers without explicitly
materialising all possible inferences in the database.

3 Schema Reasoning with Orel

The calculus that has been introduced above is able to deriveassertional axioms such
as the instances of an atomic concept. For complex concept expressions, it might be
required to first extend the knowledge base with auxiliary axioms and to (re)complete
the materialisation process thereafter. Such auxiliary axioms, however, are hardly af-
fecting the semantics of the knowledge base since they conservatively extend it, and
hence many such checks can safely be performed without resetting the database.

The matter is different when checking for the entailment of schema axioms such
as concept subsumption. Indeed, there are practically important ontologies such as
SNOMED CT which do not contain any individual names, and for which concept sub-
sumption is the chief inferencing problem. It is well known that this problem can be
reduced to instance retrieval: for checking if an axiomA ⊑ B is entailed, a new “test”
individual c is introduced into the knowledge base together with the assertion A(c). If
this impliesB(c) then the subsumption is concluded.

Unfortunately, this approach to testing does not preserve the semantics of the knowl-
edge base. Indeed, assertingA(c) may even lead to a global inconsistency (in which case
B(c) and thusA ⊑ B is also entailed). Thus, test assertions disallow the naiveparallel
execution of many queries that could be considered typical for a database system, and
they require possibly expensive deletion operations afterthe test is finished. While it
is of course possible to execute each test on a separate copy of the database – possibly
realised by marking facts in the database as belonging to a particular test instead of sep-
arating databases on the DBMS layer – this approach multiplies the data that has to be
stored at each time, and reduces the performance gains due tothe re-use of persistently
stored previous computations.

The problem is less severe when restricting to smaller languages than OWL EL.
For example, the algorithm described in [10] computes all concept subsumptions of an
ELH knowledge base in parallel without executing separate tests for each. WhileELH
allows for this mode of reasoning, it is not clear how to establish such an algorithm for

EL++. In particular, the original algorithm as proposed in [7] is incomplete. The glitch
can be fixed, but only at the price of specifying the subsumption axiom the entailment
of which is to be tested before running the algorithm, thus requiring many runs instead
of one. We conjecture that this is unavoidable.

Due to these difficulties, Orel uses a mixed approach for finding concept subsump-
tions. The calculus uses the simple rules that have been introduced above when this is
guaranteed to yield correct results, but it creates additional copies of axioms when the
computation results in derivations that cannot be handled in this manner. The goal of
our approach is to avoid the significant overhead that is required in the general case
whenever possible, but tuning the calculus for this purposeis subject of ongoing work.
Currently, Orel’s schema inferencing is most efficient when ontologies do not contain
nominal classes (in certain problematic contexts), and it decreases in performance when
combinations of nominals, existential quantifiers, and OWLRL features occur.

4 Applying Derivation Rules on RDBMS

Relational database management systems (RDBMS) are tailored toward the process-
ing of large amounts of data, and the efficient manipulation of such data. As such they
appear to be well-suited for implementing materialisationon a persistent storage sys-
tem. However, inferencing operations are often still rather atypical for RDBMS since
they involve large inner joins over all entries in a table. Moreover, RDBMS provide
elaborate functions such as transaction management that are not required by typical
inferencing scenarios but that can significantly slow down operations. For this reason,
various optimisations are needed for using RDBMS as a basis for implementing the
outlined inferencing procedure.

It is well-known that datalog rules are closely related to operations in relational
algebra [3]. The correspondence is achieved by storing the extension of each datalog
predicate in a database table, the columns of which correspond to the arguments taken
by the predicate. Rule (3) of Fig.3 could therefore be realised by the following SQL
operation:

INSERT INTO inst (x,y) SELECT t1.x AS x, t2.y AS y

FROM subClass AS t1 INNER JOIN inst AS t2 ON t1.x=t2.y

Executing this SQL statement extends theinst table with all facts that can be de-
rived in one application of rule (3) of Fig.3. We provide this statement for illustrating
the mapping to SQL commands – using it iteratively in an implementation would lead to
prohibitively large amounts of unnecessary computations.Indeed, the operation derives
the same conclusions in each iteration, just like the original rule does when processed
operationally.

Various optimisations have been proposed and thoroughly investigated to overcome
this problem [3]. One way to increase efficiency is to keep track of the iteration step
in which a fact was derived, and to make sure that rule applications require new facts
to be involved in the derivation. This leads to the so-calledsemi-naive bottom-up eval-
uation which is largely used in Orel. Writinginsti for the predicate that corresponds
to the extension ofinst as derived in stepi, this strategy boils down to evaluating the
following rule:

subClass(x, y) ∧ insti(y, z)→ insti+1(x, z)

Unfortunately, semi-naive evaluation can still derive large numbers of redundant
facts during inferencing. More efficient general purpose optimisations likemagic sets
are available when only certain entailments are of interest(typically at query time) but
are not useful for full materialisation. But more efficient forward chaining algorithms
do exist as well, and have been studied in the area of databases, and in particular in
relation with transitive closure computations [11]. Since these approaches often assume
very simple rule sets, they can not be directly adopted to theinference rules of Orel, and
part of the ongoing development effort around the tool is to suitably adapt techniques
from this area.

5 Implementation and Initial Results

Orel is implemented in Java, using the OWL API [12] for accessing OWL documents.
The current default RDBMS that is used in Orel is MySQL although only minor adjust-
ments would be needed to move to another RDBMS. Orel is free software and can be
obtained (including its source code) fromhttp://code.google.com/p/orel/.

The current implementation of Orel is still not fully optimised in various respects.
On the one hand, we are exploring heuristics for improving the inferencing control
flow. On the other hand, optimising database queries for a particular RDBMS is a te-
dious process with many dependencies on the technical infrastructure used in testing.
We have found that different server setups and machine configurations can lead to a
50% reduction in ontology loading times while incurring a slow-down of several orders
of magnitude for materialisation. Thus, while we cannot give reproducible evaluation
figures, we can provide some first insights into general runtime behaviour.

The OWL 2 test cases2 have been used to test the correctness of the implementation.
For performance testing, we specifically focussed on the well-known SNOMED CT on-
tology, a medical terminology of about 425,000 axioms with astrong focus on subclass
subsumptions. We considered loading and inference materialisation for this ontology.
Load times have shown to be rather similar across very systems of diverse performance,
typically ranging between 9min and 20min. These times reflect the slow inserting be-
haviour of relational databases – the given times are already based on an optimised
loading phase that controls transaction management and indexing, and that exploits
client-side caching and rewritten bulk updates. Yet, the writing speed is a strong limit-
ing factor (computing the data for writing takes but a few seconds). Application areas
for DBMS-based systems of course assume axioms to change at aslow rate, thus re-
ducing the relevance of initial loading times.

Loading does not involve reasoning, i.e. materialisation.At the current stage of im-
plementation, Orel is able to successfully classify SNOMEDCT but it cannot compete
with highly optimised in-memory systems like Condor [13]: almost 2 hours are needed
on a fast database server. This reflects some of the limitations of using an off-the-shelf
RDBMS, and we expect significant potential for speed-up by using alternative back-
ends. Similar results have been reported for the SAOR inference engine for OWL Horst

2 http://owl.semanticweb.org/

http://code.google.com/p/orel/
http://owl.semanticweb.org/

[14], and we are not aware of any system that uses MySQL as a reasoning backend.
In spite of the comparatively low performance of the currentimplementation, we were
still able accomplish major speed improvements for the classification by improving con-
trol structure and inference rules. Most of these optimisations are directly applicable to
other backends as well.

6 Related Work

The objective or Orel is to provide a stable framework for OWLontology manage-
ment and inferencing based on persistent storage. Approaches of rule-based bottom-up
materialisation of consequences have a long history, and Orel therefore can build on a
significant amount of prior work, both practical and theoretical in nature.

On the theoretical side, there is a large body of well-established research to be found
in the area of (relational) databases, especially related to the optimisation of recursive
queries [3] and the construction of materialised views [15]. We have discussed herein
only briefly the basic use of a semi-naive evaluation strategy, but other approaches are
applicable in a similar fashion when optimising for furtheruse cases. Typical exam-
ples for such techniques are magic sets (used for optimisingcomplex bottom-up com-
putations needed at query time) and incremental materialisation (used for efficiently
recreating inferences when new data is added).

More recently, much work has been conducted on “no-SQL” approaches to per-
sistent storage, leading to a number of database-like systems that are tailored toward
improved efficiency for non-relational data schemes such as sets of RDF triples, JSON
documents, or simple key value pairs. These developments can be beneficial for se-
lecting more suitable storage backends for Orel in the future, but they are not directly
related to the work on the current system. Indeed, Orel’s architecture abstracts all stor-
age operations so that inference and control structures do not refer to SQL or any other
concrete DBMS feature in any way.

On the more practical side, there are a number of past and current systems that
support rule-based inferencing on relational databases. We are not aware of any tool
that supports more than a single OWL 2 profile based on such an approach, making
Orel’s multi-profile integration novel. Also, the overall architectures of systems differ
significantly, even if rule-based inferences are used at thecore. The main relationship
to Orel therefore is in the actual reasoning module that saturates a knowledge base
for a given set of rules, whereas functions such as checking ontology entailment are
often highly specific to a given tool. In fact, we do not know ofany freely available
database-driven reasoner that can check ontology entailment for any OWL profile, the
implementation of which was not a minor part of the current Orel system.

The system whose inferencing is most closely related to Orelis the DB reasoner
for ELH [10]. This system supports only a small fragment of the OWL EL profile, but
the rules applied for this part are closely related to those used in Orel for the respective
features. The only inference problem that DB supports is classification, but it shows
some very good performance characteristics for this task, especially regarding memory
usage.

The only other database-driven inference engine forEL that we are aware of is a
prototype system that was presented in [16]. In this case, the focus is on conjunctive
query answering, with the main contribution being to show that such queries can be
answered rather directly on databases with a certain state of materialisation. Loading
performance and memory consumption have not been optimisedin this work, and are
not as good as for the DB reasoner, but outstanding query performance could be ob-
tained. The existence of prototype systems like the above add to our motivation for
developing a stable, free platform that can be used to integrate and refine the underlying
approaches and algorithms.

Most other database systems that support OWL reasoning focus on OWL RL or on
a subset thereof. The most current such implementation thatwas reported is the OWL
reasoner of Oracle 11g.3 Many systems focus on DLP [17] or pD∗ [18], thus provid-
ing only incomplete coverage of OWL RL inferencing. Prominent examples include
OWLIM [19], DLDB2 [20], and Minerva [21].

Further systems provide yet more restricted amounts of OWL or RDFS inferences
mostly for augmenting RDF-based instance data. An interesting example is SAOR for
which a non-standard storage implementation has lead to significant performance in-
creases as compared to MySQL [14]. Even though SAOR does not support many OWL
features yet, this hints at the potential that non-SQL databases may have for improving
the efficiency of systems like Orel.

Finally, rule-based inferencing on top of RDF data has been supported by some
tools, the most prominent among which is probably Jena whichfeatures a proprietary
inference rule implementation.4 In this case, rules are rather understood in the sense of
production rule systems where they form a configurable part of an application that is
used to perform relevant computations.

A rather different class of database-driven ontology reasoners are systems that al-
low for OWL QL querying, such as the QuOnto system.5 The nature of the problems
involved here are somewhat different, and query rewriting often plays a central role.
However, recent works in this field have also suggested the use of partial materialisa-
tion for improved query performance [22].

7 Conclusion and Future Work

We have presented the new ontology inference and managementengine Orel, and its
underlying approach based on rule-based bottom-up materialisation of consequences
in a database. Similar materialisation approaches have been explored for (sometimes
incomplete) OWL Full/RDF(S) inferencing, most notably in SAOR [14] and OWLIM
[19]. Conversely, there are also a number of fast in-memory implementations available
for handling (parts of) OWL EL. Orel is different from both classes of systems as it
provides RDBMS based inferencing for OWL EL, and is using a new algorithmic basis
that allows for a unified treatment of OWL EL and RL.

3 http://www.oracle.com/technology/tech/semantic_technologies/
4 http://jena.sourceforge.net/inference/
5 http://www.dis.uniroma1.it/~quonto/

http://www.oracle.com/technology/tech/semantic_technologies/
http://jena.sourceforge.net/inference/
http://www.dis.uniroma1.it/~quonto/

The ongoing work on Orel pursues a number of independent goals. Of course, per-
formance is considered as a core challenge, and both the deduction calculus and the
storage backend can be improved to address it. For improvingthe calculus, we develop
rule sets that avoid redundant conclusions, and experimentwith optimisation methods
for efficiently computing closures of datalog programs. Regardingthe storage backend,
we consider other database paradigms related to recent no-SQL approaches. Another
vital feature for a database-driven system are efficient update methods for adding and
deleting axioms without recomputing all derivations. Methods for maintenance of ma-
terialised views are well known [15], but strongly depend on the details of the imple-
mented calculus.

Besides these obvious goals, there are a number of interesting directions to fur-
ther develop the core system. Relevant additional featuresinclude (conjunctive) query
answering, explanation, and extensions with non-standardexpressive features such as
nonmonotonic inferencing. Other important fields of research concern distribution and
parallelisation. At the same time, we seek concrete application scenarios that can be
used to explore the practical utility of a robust and scalable OWL inferencing system.

Acknowledgements. The work reported herein has been supported by the EU in project
ACTIVE (IST-2007-215040) and by the German Research Foundation under the Ex-
presST project.

References

1. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider,P.F., Rudolph, S., eds.: OWL 2
Web Ontology Language: Primer. W3C Recommendation (27 October 2009) Available at
http://www.w3.org/TR/owl2-primer/ .

2. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., eds.: OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009) Available
athttp://www.w3.org/TR/owl2-profiles/ .

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
4. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In Sheth, A., Staab,

S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K., eds.: Proc. 7th Int.
Semantic Web Conf. (ISWC’08). Volume 5318 of LNCS., Springer (2008) 649–664

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.N., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 2004) Available at
http://www.w3.org/Submission/SWRL/.

6. Boley, H., Kifer, M., eds.: RIF Basic Logic Dialect. W3C Candidate Recommendation (1
October 2009) Available athttp://www.w3.org/TR/rif-bld/.

7. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Professional Book Center
(2005) 364–369

8. Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In Ghallab, M., Spyropoulos,
C.D., Fakotakis, N., Avouris, N., eds.: Proceedings of the 18th European Conference on
Artificial Intelligence (ECAI’08), IOS Press (2008) 80–84

9. Motik, B., Sattler, U., Studer, R.: Query answering for OWL DL with rules. Journal of Web
Semantics3(1) (2005) 41–60

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-profiles/

10. Delaitre, V., Kazakov, Y.: ClassifyingELH ontologies in SQL databases. In Patel-Schneider,
P.F., Hoekstra, R., eds.: Proceedings of the OWLED 2009 Workshop on OWL: Experiences
and Directions. Volume 529 of CEUR Workshop Proceedings., CEUR-WS.org (2009)

11. Ioannidis, Y.E., Ramakrishnan, R.: Efficient transitive closure algorithms. In Bancilhon,
F., DeWitt, D.J., eds.: Proceedings of the 14th International Conference on Very Large Data
Bases (VLDB’88), Morgan Kaufmann (1988) 382–394

12. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 touch paper: The OWL
API. In Golbreich, C., Kalyanpur, A., Parsia, B., eds.: Proceedings of the OWLED 2007
Workshop on OWL: Experiences and Directions. Volume 258 of CEUR Workshop Proceed-
ings., CEUR-WS.org (2007)

13. Kazakov, Y.: Consequence-driven reasoning for hornSHIQ ontologies. [23] 2040–2045
14. Hogan, A., Harth, A., Polleres, A.: SAOR: authoritativereasoning for the web. International

Journal on Semantic Web and Information Systems (IJSWIS)2 (2009)
15. Gupta, A., Mumick, I.S., eds.: Materialized Views: Techniques, Implementations, and Ap-

plications. MIT Press (1999)
16. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logicEL

using a relational database system. [23] 2070–2075
17. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining

logic programs with description logic. In: Proceedings of the 12th International Conference
on World Wide Web (WWW’03), ACM (2003) 48–57

18. ter Horst, H.: Completeness, decidability and complexity of entailment for RDF Schema and
a semantic extension involving the OWL vocabulary. Journalof Web Semantics3 (2005)

19. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a pragmatic semantic repository for
OWL. In: In Proc. Conf. on Web Information Systems Engineering (WISE) Workshops.
(2005) 182–192

20. Pan, Z., Zhang, X., Heflin, J.: Dldb2: A scalable multi-perspective semantic web repository.
In: Proc. 2008 IEEE/WIC/ACM Int. Conf. on Web Intelligence (WI’08), IEEE (2008) 489–
495

21. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable OWL ontology
storage and inference system. In Mizoguchi, R., Shi, Z., Giunchiglia, F., eds.: Proc. 1st Asian
Semantic Web Conf. (ASWC’08). Volume 4185 of LNCS., Springer (2006) 429–443

22. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: Combined fo rewritabil-
ity for conjunctive query answering in dl-lite. In Cuenca Grau, B., Horrocks, I., Motik, B.,
Sattler, U., eds.: Proceedings of the 22nd International Workshop on Description Logics
(DL’09). Volume 477 of CEUR Workshop Proceedings., CEUR-WS.org (2009)

23. Boutilier, C., ed.: Proceedings of the 21st International Conference on Artificial Intelligence
(IJCAI’09), IJCAI (2009)

