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Abstract. The family of normal propositional modal logic systems are
given a highly systematic organisation by their model theory. This model
theory is generally given using Kripkean frame semantics, and it is sys-
tematic in the sense that for the most important systems we have a clean,
exact correspondence between their constitutive axioms as they are usu-
ally given in a Hilbert style and conditions on the accessibility relation
on frames. By contrast, the usual structural proof theory of modal logic,
as given in Gentzen systems, is ad-hoc. While we can formulate several
modal logics in the sequent calculus that enjoy cut-elimination, their
formalisation arises through system-by-system fine tuning to ensure that
the cut-elimination holds, and the correspondence to the formulation in
the Hilbert systems becomes opaque.
We introduce a systematic presentation for the systems K, D, M, and
S4 in the Calculus of structures, a structural proof theory that enjoys
the deep inference property. Because of this property, it is possible to
axiomatise the modal logics in a manner directly analogous to the Hilbert
axiomatisation. We show that the calculus possesses a cut-elimination
property directly analogous to cut-elimination for the sequent calculus
for these systems, and we discuss the extension to several other modal
logics.

1 Introduction

Propositional modal and tense logics provide a rich source of formalisms applied
in computer science, which are useful in declarative approaches to programming,
knowledge representation and the specification of computing systems due to a
number of reasons:

– They offer increased expressiveness to formal languages in a way that is
useful for the specification of a range of useful properties; for example, two
important such applications arose first in specifications for mobile systems
[8], and secondly in an extension of an important complexity result in the
theory of the λ-calculus [1], both taken from the proceedings of a recent
ACM Principles of Programming Languages conference.
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– While many propositional modal logics can be encoded in first-order pred-
icate logic in a standard way, for many applications the modal systems are
more intuitive, being closer to specification in natural language, and more
tractable, since most normal propositional modal logics are decidable;

– The normal modal logics possess an elementary model theory in the form of
frame semantics (due to Kripke, Hintikka and Kanger, see [7]) that provides
a systematic correspondence between their constitutive axioms as they are
usually given in Hilbert style and conditions on the accessibility relation on
frames1. Thus we can say the model theory of the normal modal logics is
systematic.

By contrast, the usual structural proof theory of modal logic, as given in
the sequent calculus and natural deduction, is ad-hoc. While we can formulate
several modal logics in the sequent calculus that enjoy cut-elimination, their
formalisation arises through system-by-system fine tuning to ensure that the
cut-elimination holds, and the correspondence to the formulation in the Hilbert
systems becomes opaque. This, no doubt, is responsible for the relatively low
profile of the proof theory of modal logic: for example the textbook of Blackburn,
de Rijke and Venema [3] does not cover the proof theory.

In this paper we will provide a new proof theoretic basis for modal logic us-
ing the calculus of structures introduced by Guglielmi [11]. This proof calculus
provides a structural proof theory in the sense of Gentzen for logical systems
because it possesses a notion of cut-free proof directly analogous to that for
the sequent calculus. It possesses several properties that give proof theory car-
ried out in the calculus of structures important advantages over the traditional
proof theory carried out in structural proof theory: these we call atomicity of
inference for cut, contraction and weakening, which depends upon the systems
formulation using deep inference2, symmetric inference3, and absence of a dis-
tinction between logical and extra-logical structure4 The immediate benefits of
these characteristics are that the whole calculus enjoys locality and finiteness.

1 See Garson [9], and Blackburn, de Rijke and Venema [3] for readable accounts of
this relationship.

2 The first proof theories making use of deep inference appear to be due to Schuette,
but these systems lack cut-elimination [14]. A weak form of deep inference is pos-
sessed by Belnap’s Display Logic, which possesses the most sophisticated set of cut-
elimination results for modal logic. The calculus is fundamentally asymmetric, and
possess a subtle and complex extra-logical machinery; relating the formal results in
that calculus to those developed here is a substantial task in need of further work
[2, 19].

3 Symmetric inference is possessd by the single-sided sequent systems developed by
Schuette and Tait, see for example [15].

4 This distinction exists in a hidden form in natural deduction, in the rules governing
assumptions, and more explicitly in the need to formulate the extra-logical notion of
sequents and their management by means of structural rules in the sequent calculus.
By contrast, the calculus of structures does not need to distinguish between formulae
and the structural context in which the formulae occur in proofs.



2 Proof theory of system M

Let us begin by establishing some terminology. A logical system is defined over a
formal language by an inference system that determines its theory, a subset of the
sentences of the language. Each formula in the theory of a logical system is called
a theorem. Logical systems are schematic, that is they allow schematic letters
that may stand in for arbitrary propositions, so the theory of a logical system
for a more restrictive language can naturally be projected to richer languages by
application of substitution. Two logical systems are equivalent if their theories are
the same, they are distinct otherwise. If the theory of one logical system strictly
contains the theory of another, then we call the former system the stronger
system.

We begin by showing how modal logic is defined using Hilbert Systems, as
these proof calculi give the oldest and most common axiomatisiations, and so
we may consider these axiomatisations as standard. The sentences of classical
propositional logic contain an inexhaustible supply of schematic letters, letters
for truth and falsity, and are closed under the binary operators ⊃, ↔, ∧ and
∨ and the unary operator ¬. The Hilbert-style axiomatisation of this logical
system proceeds in the standard way, with two rules, modus ponens and the
rule uniform substitution allowing the schematic letters to be replaced by any
proposition.

The weakest normal modal logic K is a logical system over this language
extended with two modal operators � and �, which are unary operators. The
system is axiomatised by extending classical propositional logic with the axioms
and rules:

Axiom K: �(p ⊃ q) ⊃ (�p ⊃ �q);
Axiom DM: ¬� p ↔ �¬p;
Necessitation rule: if ` p then ` �p.

Naturally, this corresponds to the class of frame models where there are no
conditions imposed on the frame accessibility relation. The stronger modal logics
are obtained by adding further axioms. All of the most studied systems of modal
logic arise by adding one or more of the following axioms:

Definition 1.

1. Axiom D: �p ⊃ �p
2. Axiom T: �p ⊃ p
3. Axiom 4: �p ⊃ � � p
4. Axiom B: p ⊃ � � p
5. Axiom 5: �p ⊃ � � p

which correspond to constraining the accessibility relation to be serial (ie. there
are always further frames accessible from any frame), reflexive, transitive, sym-
metric and Euclidean respectively. There are a total of fifteen distinct logical
systems obtainable, which we may organise in a lattice according to the ‘stronger
than’ relation, with the most important of these being:



D Obtained by extending system K with rule D;
M Obtained by extending system K with rule M: note this system is often

named T, a nomenclature we avoid to prevent confusion with Goedel’s sys-
tem T.

S4 Obtained by extending system M by rule 4;
B Obtained by extending system M by ruleB;
S5 Obtained by extending system M by rule 5, or equivalently by extending

system M by rules B and 4.

The strongest system from these modal logics that is perfectly strightfor-
ward to formulate in a sequent system and to prove cut-free is system G-M
(for Gentzen system M): we formulate this using Tait’s approach of one-sided
sequents. We make use of a dualising function in formulating the syntax of the
calculus: φ is defined recursively to be the De Morgan dual of a function:

¬A = A p = ¬p

A ∧B = A ∨B A ∨B = A ∧B

tt = ff ff = tt

where p is a schematic letter, and A ⊃ B and A ↔ B are treated as derived
connectives using the standard encodings. The inferences of the system are given
by trees generated by the following inference rules, where the nodes are multisets
of formulae (indicated by Γ,∆, with the notations �Γ, �∆ indicating the result
of prefixing each formula of the multiset appropriately):

Axiom and cut:

ax
Γ,A, A

Γ,A ∆,A
cut

Γ,∆

Contraction and weakening:

Γ,A, A
contr

Γ,A
Γ wk

Γ,A

Truth:
tttt

Logical connectives and modal operators:

Γ,A, B
∨

Γ,A ∨B

Γ,A Γ,B
∧

Γ,A ∧B

Γ,A ¬
Γ,¬A

Γ,A
�1

�Γ, �A

Γ,A �1
Γ, �A



The theorems of this system then are given by the concluding formulae of
inferences where the concluding sequent contains exactly one formula. It is eas-
ily shown that the sequent formulation contains all the theorems of the Hilbert
formulation, and with a little ingenuity, modelling the multisets by disjunctions,
the reverse containment can also be demonstrated. We can also show the follow-
ing theorem, where an inference rule or set of inference rules are admissible if all
theorems of the system may be proven without their use:

Theorem 1. The cut rule is admissible in the sequent calculus formalisation of
system M.

This cut-elimination theorem is not really more complex to prove than that
for its subsystem of classical logic, though there is a novelty: since the inference
rules for the modal operators introduce ‘side-effects’; the rule �1 adds � modal-
ities to side assumptions, which can then be used in cuts. The new rule doesn’t
interfere with permutability of cuts, however.

3 The calculus of structures

Now we introduce modal logic for the calculus of structures for this system M.
As for the single-sided sequent calculus, we make use of De Morgan dualtities be-
tween connectives in the formulation of the system. By convention, the calculus
has a rather different notation for formulae than is used in Hilbert and Gentzen
proof calculi: the calculus of structures uses a bracket notation for the logical
connectives to suggest the associativity and commutativity properties: the calcu-
lus treats structures that are equivalence classes of the syntactic representations
quotiented over these relations, and also quotiented over rules for units. We also
introduce a dualising operator in the same way as for the single-sided sequent
calculus.

So the formulae of the calculus of structures are built up from the units tt,
ff , the schematic letters; for each schematic letter a we admit the complement
a as a formula; and whenever R1, . . . , Rn are formulae, so are [R1, . . . , Rn] and
(R1, . . . , Rn). A formula context S{−} is obtained from a formula by replacing
any leaf (eg. a schematic letter) by ‘−’; then S{R} is the formula obtained by
replacing this − by the formula R.

The duals of formulae are defined recursively, where the dual of each schematic
letter is its complement and vica versa, and

(R1, . . . , Rn) = [R1, . . . , Rn]

[R1, . . . , Rn] = (R1, . . . , Rn)

tt = ff ff = tt

so for any formula R, R = R.
The structures are the equivalence classes of formulae obtained by quotienting

over



1. (Associativity)

[R1, . . . , Ri, [T1, . . . , Tj ], U1, . . . , Uk] = [R1, . . . , Ri, T1, . . . , Tj , U1, . . . , Uk]

and

(R1, . . . , Ri, (T1, . . . , Tj), U1, . . . , Uk) = (R1, . . . , Ri, T1, . . . , Tj , U1, . . . , Uk)

2. (Congruence) If R1 = R2 then S{R1} = S{R2}, for any formula context
S{−};

3. (Commutativity) [R1, R2] = [R2, R1] and (R1, R2) = (R2, R1);
4. (Identitity) R = [R,ff] and R = (R, tt).

Inferences are chains of applications of inference rules, where each inference
rule has one premise and one conclusion, which is a structure rather than a
formula. All of the inference rules are deep, which means that each rule is given
by a pair of formulae specifying the premise and conclusion that are both given
with the same formula context. The inference rules for classical logic , the system
SKS are given:

Interaction and cut rules:

S{tt}
i ↓

S[R,R]
S(R,R)

i ↑
S{ff}

The switch rule:
S([R, T ], U)

s
S[(R,U), T ]

The medial rule:
S[(R,U), (T, V )]

m
S([R, T ], [U, V ])

The weakening rules:

S{ff}
w ↓

S{R}
S{R,R}

w ↑
S{tt}

And the contraction rules:

S[R,R]
c ↓

S{R}
S{R}

c ↑
S(R,R)

The theorems of this system are the formulas belonging to the structures
that occur as conclusions of inferences whose premise is the structure tt.

This system has several desirable properties, as discussed in [5]:

1. The system is self dual: each rule labelled with ↑ takes form:

S{R}
∗ ↑

S{T}



matching by De Morgan duality the form of the corresponding rule labelled
with ↓ takes form:

S{T}
∗ ↓

S{R}
where the two rules not labelled with ↑ or ↓ are self-dual.

2. The entire up-fragment , ie. the rules labelled with ↑, is admissible. This
is shown, in op. cit. and discussed in more detail below, by means of a
translation from cut-free proofs of the sequent calculus into proofs of system
KS, that is, system SKS without the rules of the up-fragment. Since this
is so closely related to cut-elimination in the sequent calculus, we may call
this result cut-elimination for the calculus of structures.

3. We can restrict the interaction, cut, weakening and contraction rules to
atoms, by which we mean the applications of the rules using formulae R
can be restricted to the case where R is an atoms (ie. a or a) both for sys-
tem SKS and the cut-free system KS. Furthermore, these restrictions are
achieved by simple local transformations on inferences, as opposed to the
complex global transformation that we associate with cut-elimination. The
system with these restrictions we call atomic SKS (analogously atomic KS),
or just aSKS (analogously aKS). An analogous restriction to atoms can be
achieved for the sequent calculus by similarly local transformations in the
case of the axiom and weakening rules, but for fundamental reasons of the
shallowness of inference cannot be achieved at all for contraction, and only
by means of global transformations in the case of cut.

4. System aSKS enjoys important computational properties: it is local, and
so to is its subsystem aKS, in the sense that looking at the inferences go-
ing either up or down, structure is rearranged, or atoms introduced, aban-
doned or duplicated, but arbitrarily large substructures are never introduced,
abandoned or duplicated. Bruennler also discusses an important advantage
corrollary to locality and atomicity of cut: we obtain finiteness for a slight re-
striction of aKS, which offers exceptionally perspicacious consistency proofs
for predicate logic. It is fair to point out that these benefits do carry a cost:
by contrast to the sequent calculus there are a great many possible rules
that one may apply during proof search, so one cannot read off a tableaux
algorithm from KS in the way one can for cut-free LK. Devising efficient
proof search algorithms that can take advantage of these properties is an
important goal of the program of research in the calculus of structures.

We can extend this calculus to obtain the system M by allowing formulae
of the form �R, and �R, extending the equivalences defining structures with
tt = �tt and ff = �ff and extending the set of inferences as follows:

S{�[R, T ]
k ↓

S[�R, �T ]

S{�(R, T )
j ↓

S(�R,�T )



S{R}
t ↓

S{�R}
We call the system that extends system KS with the above down rules KS-

M, and the symmetric system extending system SKS with both the down and
up rules SKS-M.

We show the equivalence of system SKS-M to M in two steps. Firstly we
show we can map inferences of SKS-M onto inferences of M:

Definition 2. We define the map −s from formulae of M onto structures of
SKS-M recursively:

ps = p for p one of tt, ff, or a schematic letter;

(¬A)s = As

(A ⊃ B)s = [As, Bs]
(A ↔ B)s = ((A ⊃ B) ∧ (B ⊃ A))s

(A ∧B)s = (As, Bs)
(A ∨B)s = [As, Bs]

(�A)s = �As

(�A)s = �As

Proposition 1. 1. There is a map −h from structures of SKS-M to formulae
of M with the properties that −hs is the identity map on structures, and for
all formulae A, B, if A is a subformula of B then either Ash is a subformula
of Bsh or (¬A)sh is a subformula of (¬B)sh.

2. If As = Bs then ` A ↔ B is a theorem of M;
3. If R = As and A is a theorem of M, then R is a theorem of SKS-M;

Proof. Part 1 follows from defining the obvious recursive map from the formu-
lae of SKS-M, and observing that for any structure we may choose a lexically
simplest representative formula (given some total order on atoms and their com-
plements), to obtain the reverse map which is easily verified to have the desired
properties.

Part 2 follows easily from the observation that −s is bijective when restricted
to disjunctive normal forms.

To prove part 3, we must first prove that each axiom of M maps onto a
theorem of SKS-M, which is a strightforward exercise in the construction of
inferences in the calculus of structures: for didactic reasons we recommend the
reader works through at least two cases, for example (A ⊃ B ⊃ C) ⊃ (A ⊃ C) ⊃
B ⊃ C, and rule K.

We then must show that inferences of the Hilbert calculus map onto inferences
of SKS-M by considering the three inference rules. To see that inferences making
use of uniform subsitutivity are modelled in SKS-M we need simply observe that
the inference rules of SKS-M are schematic. The other two rules we need an
inductive argument: for modus ponens and necessitation, assume the premisses
map onto theorems of SKS-M:



1. Modus ponens: observe that with deep inference, since tt = (tt, tt), if R
and T are theorems, so is (R, T ). Thus by the induction hypothesis, ((A ⊃
B)s, As) = ([As, Bs], As) is a theorem, and so we obtain:

([As, Bs], As)
s

([(As, As), Bs]
i ↑

[ff, Bs]

from which the conclusions follows by observing that [ff, Bs] = Bs.
2. Necessitation: since tt = �tt, deep inference allows us to infer that �R is a

theorem if R is, from which the result immediately follows.

Theorem 2. M and SK-M are equivalent.

Proof. For each inference rule of SK-M, which takes the general form:

S{R}
∗

S{T}

we show that Rh ⊃ Th is a theorem of M. The dual rules map onto these from
the theorem of classical logic: (A ⊃ B) ↔ (6 B ⊃6 A). The following lemma is a
straightforward exercise in modal logic provability:

Lemma 1. If A ⊃ B is a theorem of M, then so are:

1. A ∧ C ⊃ B ∧ C;
2. A ∨ C ⊃ B ∨ C;
3. �A ⊃ �B;
4. �A ⊃ �B.

from which, by an induction on the makeup of formula contexts S{−}, we obtain
for each inference rule (S{R})h ⊃ (S{T})h. Then inferences of SK-M can be
mapped onto chains of applications of modus ponens, starting from the theorem
tt.

Theorem 3. The up-fragment of SKS-M is admissible.

Proof. We show this by mapping cut-free proofs of G-M onto proofs of KS-M,
following just the same technique as [5], that is, for each rule of G-M

we must find an inference of KS-M with premise �i(Γ s
1 , . . . , Γ s

n) for some i and
conclusion ∆s, where we extend the mapping −s from formulae to sequents by
considering sequents to be disjunctions of their constituent formulae, and where
the notation �iA indicates the formulae obtained from A by prefixing � to it
i times. These proofs are straightforward; the only case where we need i to be
nonzero is mapping �1; the rule then maps onto a number of applications of the
k ↓ rule equal to the number of formulae in Γ . We can then use these inferences
to construct a our map on cut-free proofs recursively.



4 Systems K, D, S4, and S5

We can extend the account of the structural proof theory that we have given
of M to the systems K, D, and S4 quite analogously. First we consider the
axiomatisation of these systems in the sequent calculus: define two new inference
rules:

�Γ,A
�2

�Γ, �A

Γ,A �2
Γ, �A

Then we obtain our axiomatisations as follows:

1. G-K is obtained by dropping rule �1 from G-M;
2. G-D is obtained from G-M by substituting rule �2 for �1;
3. G-S4 is obtained from G-M by substituting rule �2 for �1;

Theorem 4. Each of these systems is equivalent to the matching Hilbert system,
and for each, the cut rule is admissible.

Proof. For G-K and G-D the proofs are quite analogous to that for G-M.
G-S4 is similarly shown to be equivalent to the matching system S4; the cut-
elimination proof is more subtle because many of the usual permutations on cuts
fail, a fact that is unfortunately rather glossed over in the literature. Cf. Ohnishi
and Matsumoto, and Valenti: [13, ?,?].

Our axiomatisation in the calculus of structures proceeds by defining the
inference rules:

S{�ff}
d ↓

S{ff}
S{� �R}

4 ↓
S{�R}

Then we obtain the equivalent systems:

1. KS-K is KS-T without the t ↓ rule;
2. KS-D is KS-K together with the d ↓ rule;
3. KS-S4 is KS-K and the t ↓ and 4 ↓ rules;
4. SKS-K, SKS-D, and SKS-S4 are the symmetric versions of the above.

Theorem 5. The analogs of proposition 1 and theorem 2 hold for each of SKS-
K, SKS-D, and SKS-S4.

The axiomatisation of systems S5 and B in the one-sided sequent calculus
present serious difficulties, however. For example, it is possible to axiomatise S5
by replacing the rule �1 of G-M by any one of the following three rules5:
5 The first of these three alternatives, using �3 is the one-sided analogue of the two-

sided sequent formulation of S5 due to Ohnishi and Matsumoto, [13].



�Γ,�∆, A
�3

�Γ, �∆, �A

Γ,�∆, A
�4

�Γ, �∆, �A

�Γ,∆,A
�5

�Γ, �∆, �A

This system can be mapped onto a reasonable axiomatisation of KS-S5
which we axiomatise as SKS-S4 plus the following rule:

S{R}
B ↓

S{� �R}

We can show that the theories of the systems S5, the three possible formu-
lations of G-S5 and SKS-S5 are equivalent, and that cut-free proofs of G-S5
map onto KS-S5, but unfortunately cut-elimination for all three variants of
G-S5 fails:

Proposition 2. 1. The axiomatisations of G-S5 formulated using rules �3

and �5 have no cut-free proof of ¬A ∨� �A, a theorem of S5.
2. The axiomatisation of G-S5 formulated using rule �4 has no cut-free proof

of ¬� �A ∨ �A, a theorem of S5.

Proof. The cut-bearing proofs for part 1 have cut formula �A that c, and for
part 2 cut formula � � A: in both cases all the side formulae have � as their
main operator, which in each case is the principal conclusion of the appropriate
�i rule.

While cut-free sequent systems for S5 have appeared in the literature (see,
for example, [4]), these formulations do not take the simple form of the sequent
systems treated in this paper, possessing either more complex conditions on
side-formulae, or being given in a two-sided formulation that is not easily sym-
metrisable. Furthermore, we do not know of any cut-free sequent formulation of
B.

5 Further directions

The most serious defect of the account given here from the point of view of
formal aesthetics is that our proofs are entirely parasiti: we show cut-elimination
for our systems in the calculus of structures by means of translations into a
quite separate theory, so though we could pedantically claim to have provided
a syntactic proof of cut-elimination, the proof is quite as external as so-called
semantical proofs of cut-elimination. Furthermore, we are left without resources
to deal with the cases where we do not have appropriate cut-free axiomatisations,
such as for system B. Guglielmi [11] provides a technique, called splitting, that



may be regarded as the preferred way to give internal, syntactic proofs of cut-
elimination in the calculus of structures, and in joint work with one of the authors
(in preparation) has shown how this technique may be extended to deal with
the case of SKS. Clearly the most pressing direction for future work is to extend
this technique to the systems described here.

Given ‘good’ proofs of cut-elimination for these systems, what next? We can
axiomatise system B in the calculus of structure by adding B ↓ to KS-M to
obtain KS-B, and likewise SKS-B. Here our inference rules dealing with the
modal operators find themselves in a one-one relationship to four of the five
axioms given in the lattice of Hilbert systems described in definition 1; we can
extend this to rule 5 with the inference rule:

S{�R}
5 ↓

S{� �R}

Conjecture 1. 1. For the thirteen asymmetric systems corresponding to those
systems from the lattice of modal Hilbert systems that can be formulated
either without rule 5 ↓ or with rule 4 ↓, the up-fragment is admissible.

2. For the systems KS-K5, and KS-D5 obtained by extending systems KS-K
and KS-D with the rule 5 ↓, cut is inadmissible.

If true, a further problem is to find cut-free formulations KS-K5, and KS-
D5, ideally in a manner that conserves the attractive correspondence to the
lattice of Hilbert systems.

Finally, in our discussion of Bruennler’s work on classical logic in the cal-
culus of structures, we saw how the calculus of structures possesses important
advantages over the sequent calculus, namely atomicity for cut, contraction and
weakening; and locality and finiteness for the whole system. Atomicity of cut
we obtain immediately by duality, however the other advantages do not hold
for our system in its current formulation. The close formal similiarities to the
modal operators of linear logic makes the work on locality of Strassburger [10,
16] in the context of non-commutative linear logic relevant here, although there
are special difficulties that face modal systems without rule t ↓ that need to be
dealt with separately. Success in obtaining locality here may allow us to leverage
the work of Bruscoli tying proof search in noncommutative linear logic to the
evolution of processes in CCS-like algebras [6, 12]
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