Preserving Constraints with the Stable Chase

David Carral Markus Krötzsch Maximilian Marx Ana Ozaki
Sebastian Rudolph

TU Dresden

2018-03-27
ICDT 2018

Full paper: https://iccl.inf.tu-dresden.de/web/Incidentals/en
A bit of background

Motivation

- ontological modelling on knowledge graphs using *tuple-generating dependencies (TGDs)*: $\varphi(x, y) \rightarrow \exists z. \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]
Motivation

- ontological modelling on knowledge graphs using *tuple-generating dependencies* (TGDs): $\varphi(x, y) \rightarrow \exists z. \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]

Observation

- Some functional dependencies may not hold, but assuming them doesn’t change any (boolean) query answers.
- \leadsto “incidental functional dependencies”
- Query rewriting becomes easier if (some) incidentals are known.
A bit of background

Motivation

- ontological modelling on knowledge graphs using *tuple-generating dependencies (TGDs)*: $\varphi(x, y) \rightarrow \exists z. \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]

Observation

- Some functional dependencies may not hold, but assuming them doesn’t change any (boolean) query answers.
- \leadsto “incidental functional dependencies”
- Query rewriting becomes easier if (some) incidentals are known.

Now

- What about *incidental TGDs*?
Incidental TGDs

Example

Consider $\Sigma = \{\exists x, y. R(x, y), \ R(x, y) \rightarrow \exists z. R(y, z)\}$. Then

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots$$

(1)

is the unique universal model.
Incidental TGDs

Example

Consider $\Sigma = \{ \exists x, y. R(x, y), \quad R(x, y) \rightarrow \exists z. R(y, z) \}$. Then

\[
\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

\[
\ldots \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]
Incidental TGDs

Example

Consider $\Sigma = \{\exists x, y. R(x, y), \quad R(x, y) \rightarrow \exists z. R(y, z)\}$. Then

\[
\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]

(1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

\[
\ldots \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]

(2)

- Clearly, $\Sigma \not\models \rho$.

Definition

A TGD ρ is incidental for a set Σ of TGDs if $\text{BCQ}(\Sigma) = \text{BCQ}(\Sigma \cup \{\rho\})$.

$\text{ICDT}(\Sigma)$ is the set of all TGDs incidental for Σ.

Maximilian Marx (TU Dresden)
Incidental TGDs

Example

Consider $\Sigma = \{\exists x, y. R(x, y), \ R(x, y) \rightarrow \exists z. R(y, z)\}$. Then

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots$$

(1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\ldots \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots$$

(2)

- Clearly, $\Sigma \not\models \rho$.
- Is there a boolean conjunctive query (BCQ) separating the two models?
Incidental TGDs

Example

Consider \(\Sigma = \{ \exists x, y. R(x, y), \quad R(x, y) \rightarrow \exists z. R(y, z) \} \). Then

\[
\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]

is the unique universal model. Add \(\rho = R(y, z) \rightarrow \exists x. R(x, y) \):

\[
\ldots \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots
\]

- Clearly, \(\Sigma \not\models \rho \).
- Is there a *boolean conjunctive query (BCQ)* separating the two models?
- No, \(\text{BCQ}(\Sigma) = \text{BCQ}(\Sigma \cup \{ \rho \}) \).
Incidental TGDs

Example

Consider $\Sigma = \{\exists x, y. R(x, y), R(x, y) \rightarrow \exists z. R(y, z)\}$. Then

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots$$

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\ldots \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \ldots$$

Clearly, $\Sigma \not\models \rho$.

Is there a boolean conjunctive query (BCQ) separating the two models?

No, $\text{BCQ}(\Sigma) = \text{BCQ}(\Sigma \cup \{\rho\})$.

Definition

A TGD ρ is *incidental* for a set Σ of TGDs if $\text{BCQ}(\Sigma) = \text{BCQ}(\Sigma \cup \{\rho\})$. $\text{ICDT}(\Sigma)$ is the set of all TGDs incidental for Σ.

The finite case

Definition

INCIDENTAL: Given Σ set of TGDs and ρ TGD, decide whether $\rho \in \text{ICDT}(\Sigma)$.

Theorem

Let Σ be a set of TGDs with finite universal model I. Then $\rho \in \text{ICDT}(\Sigma)$ iff $\text{core } I| = \rho$. Use the core chase to compute $\text{core } I| = \rho \Rightarrow$ Incidental is decidable if Σ has a finite universal model. But what can we say in general?
The finite case

Definition

INCIDENTAL: Given Σ set of TGDs and ρ TGD, decide whether $\rho \in \text{ICDT}(\Sigma)$.

Theorem

Let Σ be a set of TGDs with finite universal model \mathcal{I}. Then $\rho \in \text{ICDT}(\Sigma)$ iff $\text{core} \mathcal{I} \models \rho$.

Use the core chase to compute $\text{core} \mathcal{I}$.
The finite case

Definition

INCIDENTAL: Given Σ set of TGDs and ρ TGD, decide whether $\rho \in \text{ICDT}(\Sigma)$.

Theorem

*Let Σ be a set of TGDs with finite universal model \mathcal{I}. Then $\rho \in \text{ICDT}(\Sigma)$ iff $\text{core}\ \mathcal{I} \models \rho$.***

- Use the *core chase* to compute $\text{core}\ \mathcal{I}$
- check $\text{core}\ \mathcal{I} \models \rho$
- \rightsquigarrow **INCIDENTAL** is decidable if Σ has a finite universal model.
The finite case

Definition

INCIDENTAL: Given Σ set of TGDs and ρ TGD, decide whether $\rho \in \text{ICDT}(\Sigma)$.

Theorem

Let Σ be a set of TGDs with finite universal model \mathcal{I}. Then $\rho \in \text{ICDT}(\Sigma)$ iff $\text{core } \mathcal{I} \models \rho$.

- Use the *core chase* to compute $\text{core } \mathcal{I}$
- check $\text{core } \mathcal{I} \models \rho$
- \rightsquigarrow **INCIDENTAL** is decidable if Σ has a finite universal model.
- But what can we say in general?
Deciding INCIDENTAL

Theorem

INCIDENTAL is Π_2^0-complete, and thus neither in RE nor in coRE.
Deciding INCIDENTAL?

Theorem

INCIDENTAL is Π^0_2-complete, and thus neither in RE nor in coRE.

- Can we do better if BCQ entailment is decidable?

Maximilian Marx (TU Dresden)
Deciding **INCIDENTAL**?

Theorem

INCIDENTAL is Π^0_2-complete, and thus neither in RE nor in coRE.

- Can we do better if BCQ entailment is decidable?

Theorem

Let \mathcal{C} be a class of sets of TGDs for which BCQ entailment is decidable. Then **INCIDENTAL** is in coRE for any $\Sigma \in \mathcal{C}$.

Deciding **INCIDENTAL**?

Theorem

INCIDENTAL is \(\Pi^0_2 \)-complete, and thus neither in \(\text{RE} \) nor in \(\text{coRE} \).

- Can we do better if BCQ entailment is decidable?

Theorem

Let \(\mathcal{C} \) be a class of sets of TGDs for which BCQ entailment is decidable. Then **INCIDENTAL** is in \(\text{coRE} \) for any \(\Sigma \in \mathcal{C} \).

- Idea: if \(\rho \notin \text{ICDT}(\Sigma) \), there is a BCQ \(q \) with \(\Sigma \not\models q \) and \(\Sigma \cup \{\rho\} \models q \).
- Can we do better?
Deciding **INCIDENTAL**?

Theorem

INCIDENTAL is Π^0_2-complete, and thus neither in RE nor in coRE.

- Can we do better if BCQ entailment is decidable?

Theorem

Let \mathcal{C} be a class of sets of TGDs for which BCQ entailment is decidable. Then **INCIDENTAL** is in coRE for any $\Sigma \in \mathcal{C}$.

- Idea: if $\rho \notin \text{ICDT}(\Sigma)$, there is a BCQ q with $\Sigma \not\models q$ and $\Sigma \cup \{\rho\} \models q$.
- Can we do better?
- Unfortunately, no.
Undecidability of INCIDENTAL

Theorem

There is a class \(\mathcal{C} \) of sets of TGDs and a full dependency \(\rho \) such that

- BCQ entailment for \(\Sigma \in \mathcal{C} \) is decidable,
- \(\Sigma \cup \{\rho\} \in \mathcal{C} \) for any \(\Sigma \in \mathcal{C} \), and
- checking \(\rho \in \text{ICDT}(\Sigma) \) is undecidable.
There is a class C of sets of TGDs and a full dependency ρ such that
- BCQ entailment for $\Sigma \in C$ is decidable,
- $\Sigma \cup \{\rho\} \in C$ for any $\Sigma \in C$, and
- checking $\rho \in \text{ICDT}(\Sigma)$ is undecidable.

What about incidentals in general?
- Recall: in the finite case, $\rho \in \text{ICDT}(\Sigma)$ iff core $\mathcal{I} \models \rho$
- Is there some universal model that entails all incidental TGDs?
- The core looks like a promising candidate.
Cores of infinite instances

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \(\mathcal{I} \) is a core if every endomorphism \(h : \mathcal{I} \to \mathcal{I} \) is an embedding.

A core \(\mathcal{I} \) is a core of \(\mathcal{J} \) if \(\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})} \) for an endomorphism \(h : \mathcal{J} \to \mathcal{J} \).
Cores of infinite instances

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \mathcal{I} is a core if every endomorphism $h : \mathcal{I} \rightarrow \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J} \mid_{h(\mathcal{J})}$ for an endomorphism $h : \mathcal{J} \rightarrow \mathcal{J}$.

Unfortunately, there are sets Σ of TGDs with universal models \mathcal{I} such that

- \mathcal{I} doesn’t have a core,
- \mathcal{I} has two non-isomorphic cores, or
- \mathcal{I} has a core that is not a model of Σ.

Theorem

Let Σ be a set of TGDs. There is a core \mathcal{I} with $\mathcal{I} \mid_{BCQ(\mathcal{I})} = \Sigma$, $BCQ(\mathcal{I}) = BCQ(\Sigma)$, and $\rho \in IC\mathcal{D}\mathcal{T}(\Sigma)$ iff $\mathcal{I} \mid_{h(\mathcal{J})}$.

Can we generalise the core chase to this setting?
Cores of infinite instances

Different definitions of core agree on finite instances, but differ in general.

Definition
An instance \mathcal{I} is a core if every endomorphism $h : \mathcal{I} \to \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})}$ for an endomorphism $h : \mathcal{J} \to \mathcal{J}$.

Unfortunately, there are sets Σ of TGDs with universal models \mathcal{I} such that
- \mathcal{I} doesn’t have a core,
- \mathcal{I} has two non-isomorphic cores, or
- \mathcal{I} has a core that is not a model of Σ.

Theorem
Let Σ be a set of TGDs. There is a core \mathcal{I} with $\mathcal{I} \models \Sigma$, $BCQ(\mathcal{I}) = BCQ(\Sigma)$, and $\rho \in ICDT(\Sigma)$ iff $\mathcal{I} \models \rho$.
Cores of infinite instances

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \(\mathcal{I} \) is a core if every endomorphism \(h : \mathcal{I} \to \mathcal{I} \) is an embedding. A core \(\mathcal{I} \) is a core of \(\mathcal{J} \) if \(\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})} \) for an endomorphism \(h : \mathcal{J} \to \mathcal{J} \).

Unfortunately, there are sets \(\Sigma \) of TGDs with universal models \(\mathcal{I} \) such that
- \(\mathcal{I} \) doesn’t have a core,
- \(\mathcal{I} \) has two non-isomorphic cores, or
- \(\mathcal{I} \) has a core that is not a model of \(\Sigma \).

Theorem

Let \(\Sigma \) be a set of TGDs. There is a core \(\mathcal{I} \) with \(\mathcal{I} \models \Sigma \), \(\text{BCQ}(\mathcal{I}) = \text{BCQ}(\Sigma) \), and \(\rho \in \text{ICDT}(\Sigma) \) iff \(\mathcal{I} \models \rho \).

- Can we generalise the core chase to this setting?
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \to \exists x. R(x, y), \]
\[R(x, y) \land S(x, y) \to \exists z. R(y, z) \land S(y, z) \} \]
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \]
\[R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \}\]

Q_1

n_0 n_1
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \]
\[R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \} \]
The stable chase by example

$$\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \\
R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \}$$

Q_1

Q_2

Q_3
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \]
\[R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \} \]
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \]
\[\quad R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \} \]
The stable chase by example

\[\Sigma = \{ \exists x, y. R(x, y) \land S(x, y), \quad R(y, z) \rightarrow \exists x. R(x, y), \]
\[\quad R(x, y) \land S(x, y) \rightarrow \exists z. R(y, z) \land S(y, z) \} \]
The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
 - apply TGDs to last instance and obtain a longer prefix, or
 - rewrite prefix according to some non-embedding endomorphism between instances \(\leadsto \) enforce an embedding
 - instances can only be rewritten finitely often and stabilise at some point
 - The *stable chase* is the union of all stable instances.
The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
 - apply TGDs to last instance and obtain a longer prefix, or
 - *rewrite* prefix according to some non-embedding endomorphism between instances \leadsto enforce an embedding
 - instances can only be rewritten finitely often and stabilise at some point
 - The *stable chase* is the union of all stable instances.

Theorem

For any set Σ of TGDs, the stable chase \mathcal{I} of Σ is a core with $\mathcal{I} \models \Sigma$, $\text{BCQ}(\mathcal{I}) = \text{BCQ}(\Sigma)$, and $\rho \in \text{ICDT}(\Sigma)$ iff $\mathcal{I} \models \rho$ for any full dependency ρ.

Beware: Stability of an instance is undecidable.
The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
 - apply TGDs to last instance and obtain a longer prefix, or
 - rewrite prefix according to some non-embedding endomorphism between instances \(\sim\) enforce an embedding
 - instances can only be rewritten finitely often and stabilise at some point
 - The **stable chase** is the union of all stable instances.

Theorem

For any set \(\Sigma\) of TGDs, the stable chase \(\mathcal{I}\) of \(\Sigma\) is a core with \(\mathcal{I} \models \Sigma\), \(BCQ(\mathcal{I}) = BCQ(\Sigma)\), and \(\rho \in ICDT(\Sigma)\) iff \(\mathcal{I} \models \rho\) for any full dependency \(\rho\).

- If \(\Sigma\) has a finite universal model \(\mathcal{J}\), then core \(\mathcal{J} = \mathcal{I}\).
- Beware: Stability of an instance is undecidable.
Conclusion & Outlook

Results

- Incidence is Π_2^0-complete, and still not in RE even when BCQ entailment is decidable.
- Each set Σ of TGDs has a BCQ-equivalent core I with $I \models \text{ICDT}(\Sigma)$.
- The stable chase generalises the core chase to classes that don’t admit finite universal models.
- The stable chase yields a core that characterises the full incidental dependencies.

Future work

- Further generalise the stable chase to characterise all incidentals.
- Investigate complexity of Incidental for decidable classes.
- Design (incomplete) algorithms that compute incidentals.