Preserving Constraints with the Stable Chase

David Carral Markus Krötzsch *Maximilian Marx* Ana Ozaki Sebastian Rudolph

TU Dresden

2018-03-27 ICDT 2018

Full paper: https://iccl.inf.tu-dresden.de/web/Incidentals/en

A bit of background

Motivation

- ▶ ontological modelling on knowledge graphs using *tuple-generating* dependencies (*TGDs*): $\varphi(x, y) \rightarrow \exists z. \ \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]

A bit of background

Motivation

- ▶ ontological modelling on knowledge graphs using *tuple-generating* dependencies (*TGDs*): $\varphi(x, y) \rightarrow \exists z. \ \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]

Observation

- Some functional dependencies may not hold, but assuming them doesn't change any (boolean) query answers.
- Query rewriting becomes easier if (some) incidentals are known.

A bit of background

Motivation

- ▶ ontological modelling on knowledge graphs using *tuple-generating* dependencies (*TGDs*): $\varphi(x, y) \rightarrow \exists z. \ \psi(x, z)$
- Ontologies for Knowledge Graphs: Breaking the Rules, Krötzsch & Thost [ISWC 2016]

Observation

- Some functional dependencies may not hold, but assuming them doesn't change any (boolean) query answers.
- Query rewriting becomes easier if (some) incidentals are known.

Now

What about incidental TGDs?

Example

Consider $\Sigma = \{ \exists x, y. R(x, y), R(x, y) \rightarrow \exists z. R(y, z) \}$. Then • $\xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \cdots$

is the unique universal model.

(1)

Example

Consider $\Sigma = \{\exists x, y, R(x, y), R(x, y) \to \exists z, R(y, z)\}$. Then $\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \dots$ (1) is the unique universal model. Add $a = R(y, z) \to \exists x, R(x, y)$:

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\dots \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
 (2)

Example

Consider $\Sigma = \{ \exists x, y, R(x, y), R(x, y) \rightarrow \exists z, R(y, z) \}$. Then $\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R}$ (1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\dots \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(2)

• Clearly,
$$\Sigma \not\models \rho$$
.

•

Example

Consider $\Sigma = \{ \exists x, y. R(x, y), R(x, y) \rightarrow \exists z. R(y, z) \}$. Then

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
 (1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\dots \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(2)

• Clearly,
$$\Sigma \not\models \rho$$
.

▶ Is there a *boolean conjunctive query* (*BCQ*) separating the two models?

Example

 $\text{Consider } \Sigma = \{ \exists x, y. R(x, y), \quad R(x, y) \to \exists z. R(y, z) \}. \text{ Then}$

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\dots \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(2)

- Clearly, $\Sigma \not\models \rho$.
- ▶ Is there a *boolean conjunctive query* (*BCQ*) separating the two models?
- No, $\mathsf{BCQ}(\Sigma) = \mathsf{BCQ}(\Sigma \cup \{\rho\}).$

Example

 $\text{Consider } \Sigma = \{ \exists x, y. R(x, y), \quad R(x, y) \to \exists z. R(y, z) \}. \text{ Then}$

$$\bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(1)

is the unique universal model. Add $\rho = R(y, z) \rightarrow \exists x. R(x, y)$:

$$\dots \xrightarrow{R} \bullet \xrightarrow{R} \dots$$
(2)

- Clearly, $\Sigma \not\models \rho$.
- ▶ Is there a *boolean conjunctive query* (*BCQ*) separating the two models?
- No, $BCQ(\Sigma) = BCQ(\Sigma \cup \{\rho\}).$

Definition

A TGD ρ is *incidental* for a set Σ of TGDs if BCQ(Σ) = BCQ($\Sigma \cup {\rho}$). ICDT(Σ) is the set of all TGDs incidental for Σ .

Definition

INCIDENTAL: Given Σ set of TGDs and ρ TGD, decide whether $\rho \in \text{ICDT}(\Sigma)$.

Definition

```
INCIDENTAL: Given \Sigma set of TGDs and \rho TGD, decide whether \rho \in ICDT(\Sigma).
```

Theorem

Let Σ be a set of TGDs with finite universal model \mathcal{I} . Then $\rho \in \mathsf{ICDT}(\Sigma)$ iff core $\mathcal{I} \models \rho$.

Definition

```
INCIDENTAL: Given \Sigma set of TGDs and \rho TGD, decide whether \rho \in ICDT(\Sigma).
```

Theorem

Let Σ be a set of TGDs with finite universal model \mathcal{I} . Then $\rho \in \mathsf{ICDT}(\Sigma)$ iff core $\mathcal{I} \models \rho$.

- Use the *core chase* to compute core \mathcal{I}
- check core $\mathcal{I} \models \rho$
- \rightsquigarrow INCIDENTAL is decidable if Σ has a finite universal model.

Definition

```
INCIDENTAL: Given \Sigma set of TGDs and \rho TGD, decide whether \rho \in ICDT(\Sigma).
```

Theorem

Let Σ be a set of TGDs with finite universal model \mathcal{I} . Then $\rho \in \mathsf{ICDT}(\Sigma)$ iff core $\mathcal{I} \models \rho$.

- Use the *core chase* to compute core \mathcal{I}
- check core $\mathcal{I} \models \rho$
- \rightsquigarrow INCIDENTAL is decidable if Σ has a finite universal model.
- But what can we say in general?

Theorem

INCIDENTAL is Π_2^0 -complete, and thus neither in RE nor in CORE.

Theorem

INCIDENTAL is Π_2^0 -complete, and thus neither in RE nor in CORE.

Can we do better if BCQ entailment is decidable?

Theorem

INCIDENTAL is Π_2^0 -complete, and thus neither in RE nor in CORE.

Can we do better if BCQ entailment is decidable?

Theorem

Let C be a class of sets of TGDs for which BCQ entailment is decidable. Then INCIDENTAL is in CORE for any $\Sigma \in C$.

Theorem

INCIDENTAL is Π_2^0 -complete, and thus neither in RE nor in CORE.

Can we do better if BCQ entailment is decidable?

Theorem

Let C be a class of sets of TGDs for which BCQ entailment is decidable. Then INCIDENTAL is in CORE for any $\Sigma \in C$.

- Idea: if $\rho \notin \mathsf{ICDT}(\Sigma)$, there is a BCQ q with $\Sigma \not\models q$ and $\Sigma \cup \{\rho\} \models q$.
- Can we do better?

Theorem

INCIDENTAL is Π_2^0 -complete, and thus neither in RE nor in CORE.

Can we do better if BCQ entailment is decidable?

Theorem

Let C be a class of sets of TGDs for which BCQ entailment is decidable. Then INCIDENTAL is in CORE for any $\Sigma \in C$.

- Idea: if $\rho \notin \mathsf{ICDT}(\Sigma)$, there is a BCQ q with $\Sigma \not\models q$ and $\Sigma \cup \{\rho\} \models q$.
- Can we do better?
- Unfortunately, no.

Undecidability of INCIDENTAL

Theorem

There is a class ${\mathcal C}$ of sets of TGDs and a full dependency ρ such that

- BCQ entailment for $\Sigma \in C$ is decidable,
- $\Sigma \cup \{\rho\} \in \mathcal{C}$ for any $\Sigma \in \mathcal{C}$, and
- checking $\rho \in \mathsf{ICDT}(\Sigma)$ is undecidable.

Undecidability of INCIDENTAL

Theorem

There is a class ${\mathcal C}$ of sets of TGDs and a full dependency ρ such that

- BCQ entailment for $\Sigma \in C$ is decidable,
- $\Sigma \cup \{\rho\} \in \mathcal{C}$ for any $\Sigma \in \mathcal{C}$, and
- checking $\rho \in \mathsf{ICDT}(\Sigma)$ is undecidable.

What about incidentals in general?

- ▶ Recall: in the finite case, $\rho \in \mathsf{ICDT}(\Sigma)$ iff core $\mathcal{I} \models \rho$
- Is there some universal model that entails all incidental TGDs?
- The core looks like a promising candidate.

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \mathcal{I} is a *core* if every endomorphism $h: \mathcal{I} \to \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})}$ for an endomorphism $h: \mathcal{J} \to \mathcal{J}$.

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \mathcal{I} is a *core* if every endomorphism $h: \mathcal{I} \to \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})}$ for an endomorphism $h: \mathcal{J} \to \mathcal{J}$.

Unfortunately, there are sets Σ of TGDs with universal models ${\mathcal I}$ such that

- $\mathcal I$ doesn't have a core,
- I has two non-isomorphic cores, or
- \mathcal{I} has a core that is not a model of Σ .

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \mathcal{I} is a *core* if every endomorphism $h: \mathcal{I} \to \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})}$ for an endomorphism $h: \mathcal{J} \to \mathcal{J}$.

Unfortunately, there are sets Σ of TGDs with universal models ${\mathcal I}$ such that

- \mathcal{I} doesn't have a core,
- $\mathcal I$ has two non-isomorphic cores, or
- \mathcal{I} has a core that is not a model of Σ .

Theorem

Let Σ be a set of TGDs. There is a core \mathcal{I} with $\mathcal{I} \models \Sigma$, BCQ(\mathcal{I}) = BCQ(Σ), and $\rho \in ICDT(\Sigma)$ iff $\mathcal{I} \models \rho$.

Different definitions of core agree on finite instances, but differ in general.

Definition

An instance \mathcal{I} is a *core* if every endomorphism $h: \mathcal{I} \to \mathcal{I}$ is an embedding. A core \mathcal{I} is a core of \mathcal{J} if $\mathcal{I} = \mathcal{J}|_{h(\mathcal{J})}$ for an endomorphism $h: \mathcal{J} \to \mathcal{J}$.

Unfortunately, there are sets Σ of TGDs with universal models ${\mathcal I}$ such that

- $\mathcal I$ doesn't have a core,
- I has two non-isomorphic cores, or
- \mathcal{I} has a core that is not a model of Σ .

Theorem

Let Σ be a set of TGDs. There is a core \mathcal{I} with $\mathcal{I} \models \Sigma$, BCQ(\mathcal{I}) = BCQ(Σ), and $\rho \in ICDT(\Sigma)$ iff $\mathcal{I} \models \rho$.

Can we generalise the core chase to this setting?

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

\mathcal{Q}_1 • • • •

 $n_0 \quad n_1$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

$$\begin{split} \Sigma &= \{ \exists x, y. \ R(x, y) \land S(x, y), \qquad R(y, z) \to \exists x. \ R(x, y), \\ &R(x, y) \land S(x, y) \to \exists z. \ R(y, z) \land S(y, z) \} \end{split}$$

Maximilian Marx (TU Dresden)

Preserving Constraints: The Stable Chase

The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
- apply TGDs to last instance and obtain a longer prefix, or
- ► rewrite prefix according to some non-embedding endomorphism between instances ~> enforce an embedding
- instances can only be rewritten finitely often and stabilise at some point
- The stable chase is the union of all stable instances.

The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
- apply TGDs to last instance and obtain a longer prefix, or
- ► rewrite prefix according to some non-embedding endomorphism between instances ~> enforce an embedding
- instances can only be rewritten finitely often and stabilise at some point
- The stable chase is the union of all stable instances.

Theorem

For any set Σ of TGDs, the stable chase \mathcal{I} of Σ is a core with $\mathcal{I} \models \Sigma$, BCQ(\mathcal{I}) = BCQ(Σ), and $\rho \in ICDT(\Sigma)$ iff $\mathcal{I} \models \rho$ for any full dependency ρ .

The stable chase

The idea

- Consider a sequence of initial segments of chase sequences (prefixes):
- apply TGDs to last instance and obtain a longer prefix, or
- ► rewrite prefix according to some non-embedding endomorphism between instances ~>> enforce an embedding
- instances can only be rewritten finitely often and stabilise at some point
- The stable chase is the union of all stable instances.

Theorem

For any set Σ of TGDs, the stable chase \mathcal{I} of Σ is a core with $\mathcal{I} \models \Sigma$, BCQ(\mathcal{I}) = BCQ(Σ), and $\rho \in ICDT(\Sigma)$ iff $\mathcal{I} \models \rho$ for any full dependency ρ .

- If Σ has a finite universal model \mathcal{J} , then core $\mathcal{J} = \mathcal{I}$.
- Beware: Stability of an instance is undecidable.

Conclusion & Outlook

Results

- ▶ Incidentality is Π_2^0 -complete, and still not in RE even when BCQ entailment is decidable.
- Each set Σ of TGDs has a BCQ-equivalent core \mathcal{I} with $\mathcal{I} \models \mathsf{ICDT}(\Sigma)$.
- The stable chase generalises the core chase to classes that don't admit finite universal models.
- The stable chase yields a core that characterises the full incidental dependencies.

Future work

- Further generalise the stable chase to characterise all incidentals.
- ► Investigate complexity of INCIDENTAL for decidable classes.
- Design (incomplete) algorithms that compute incidentals.