Technisch X
o U?\?v:;:ictéi International Center
Dresden for Computational Logic

COMPLEXITY THEORY

Lecture 17: The Polynomial Hierarchy

Sergei Obiedkov
Knowledge-Based Systems

TU Dresden, 8 Dec 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review: ATM vs. DTM

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 2 of 32

ATM vs. DTM

We have observed four major relationships between alternating and deterministic
complexity classes. For the special case of polynomial bounds, we got:

Y APTime C PSpace (

How? Deterministic depth-first search on ATMs computation tree.

Y APTime 2 PSpace (

How? Use alternation to implement Savitch-style middle-first search in polyspace.

Y APSpace C ExpTime \

How? Analyse the exponential ATM configuration graph deterministically.

Y APSpace 2 ExpTime \

How? Re-trace exponential computation path by verifying local changes.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 3 of 32

From Deterministic Time To Alternating Space

Let 2: N — R be a function in O(g) that defines the exact time bound for M (no
O-notation) and that can be computed in space O(log g).

01 ATMSIMULATETM(TM M, input word w, time bound /) :

02
03
04
05
06
07
08
09
10
11
12
13
14
15

existentially guess s < h(w|) // halting step
existentially guessie{0,...,s} // halting position
existentially guess we O XI' // halting cell + state
if M would not accept in w:

return false
forj=ys,...,1do:

existentially guess (w_;, wy, w;) € O3

if M(w-1,wp, ws1) # W -

return false

universally choose ¢ € {-1,0, 1}

w = Wy

i=i+{
// after tracing back s steps, check input configuration:
return “input configuration of M on w has w at position i”

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 4 of 32

A Remark on (Non)determinism

For each cell that is to be verified:
® we guess three predecessor cells,
® which we then verify “recursively”.

~» The contents of the same cell is guessed in several places of the ATM computation
tree (“in several recursive subprocesses”).

If processes do not exchange information,
how do we know that the guesses do not contradict each other?

Because of determinism:
® The simulated TM is deterministic.

® Hence, if the starting point is determined, every future cell in every position is
determined too.

® Therefore, for every cell, there is only one possible guess that eventually leads to
the right input tape.

~» Independent guesses, if correct, must generally be the same.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 5 of 32

A Remark on Space-Constructibility

Our algorithm needs to compute % in logarithmic space w.r.t. its absolute value to
implement the line

02 existentially guess s<h(jw|) // halting step

However, we could also avoid this:
® The algorithm from line 03 on checks if the TM accepts after s steps.
* We can make algorithms that check if the TM does or does not halt after s steps.

® We can then use an algorithm that increments s one by one (starting from 1):

— For each value of s, guess if the TM halts after this time or not;
— Check the guess using the above procedures;
— Stop when the halting configuration has been found.

e Because of the time bound on the simulated TM, s will not become larger than 20
here; so we can always store it in space O(f).

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 6 of 32

Summary: Alternating vs. Deterministic Classes

We can sum up our findings as follows:

L ¢ PTime C PSpace < ExpTime < ExpSpace
Il I I Il

ALogSpace <€ APTime < APSpace < AExpTime

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 7 of 32

The Polynomial Hierarchy

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 8 of 32

Bounding Alternation

For ATMs, alternation itself is a resource. We can distinguish problems by how much
alternation they need to be solved.

We first classify computations by counting their quantifier alternations:

Definition 17.1: Let be a computation path of an ATM on some input.
® P is of type ¥, if all of its non-halting configurations are existential.?
e P is of type I, if all of its non-halting configurations are universal.?

* P is of type X, if it starts with a sequence of existential configurations,
followed by a path of type II,.

e P is of type I1;;, if it starts with a sequence of universal configurations,
followed by a path of type X;.

aRecall that we used existential and universal halting configurations for rejecting and
accepting, respectively. These are always allowed in all types of paths.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 9 of 32

Alternation-Bounded ATMs

We apply alternation bounds to every computation path:

Definition 17.2: A X; Alternating Turing Machine is an ATM for which every com-
putation path on every input is of type %; for some j < i.

A I1; Alternating Turing Machine is an ATM for which every computation path on
every input is of type II; for some j < i.

Note that it's always OK to use fewer alternations (“j < i”), but computation has to start
with the right kind of quantifier (3 for X; and V for IT;).

Example 17.3: A Z; ATM is simply an NTM. \

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 10 of 32

Alternation-Bounded Complexity

We are interested in the power of ATMs that are both time/space-bounded and
alternation-bounded:

Definition 17.4: Let f/: N — R* be a function. X, Time(f(n)) is the class of all
languages that are decided by some O(f(n))-time bounded X; ATM. The classes
[T, Time(f(n)), Z;Space(f(n)) and I1;Space(f(n)) are defined similarly.

The most popular classes of these problems are the alternation-bounded
polynomial-time classes:

TP =| JzTime!) and TP =|_JITime(?)
d>1 d>1

Hardness for these classes is defined by polynomial many-one reductions as usual.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 11 of 32

Basic Observations

\ Theorem 17.5: ;P = NP and II;P = coNP. \
Proof: Immediate from the definitions. m]
\ Theorem 17.6: cox,P = I1,P and coll,P = %,P. \

Proof: We observed previously that ATMs can be complemented by simply exchanging
their universal and existential states. This does not affect the amount of time or space
needed. O

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 12 of 32

Example

MinFormuLA
Input: A propositional formula ¢.

Problem: Is ¢ the shortest among formulas satis-
fied by the same assignments as ¢?

One can show that MinFormura is TT,P-complete. Inclusion is easy:

01 MinFormuLA (formula ¢) :

02 wuniversally choose ¢ := formula shorter than ¢

03 existentially guess 7 := assignment for variables in ¢
04 return ¢! # y’

Sergei Obiedkov; 8 Dec 2025 Complexity Theory

slide 13 of 32

The Polynomial Hierarchy

Like for NP and coNP, we do not know if X;P equals I1;P or not.
What we do know, however, is this:

Theorem 17.7:
e >PcCcX., Pand X,P CIl,P
L4 HlP - HH_]P and H,P (- EH.]P

Proof: Immediate from the definitions.

Thus, the classes X;P and I1;P form a kind of hierarchy:
the Polynomial (Time) Hierarchy. Its entirety is denoted PH:

PH:=| JzP = Jmp

i>1 i~1

Sergei Obiedkov; 8 Dec 2025 Complexity Theory

slide 14 of 32

Problems in the Polynomial Hierarchy

The “typical” problems in the Polynomial Hierarchy are restricted forms of True QBF:

True X, QBF

Input: A quantified Boolean formula ¢ with at
most k quantifier alternations of the form
X}, Xy, VX3, X3, O XN XE

Problem: Is ¢ true?

True I1,QBF is defined analogously, using formulae with k quantifier alternations that
start with V rather than 3.

Theorem 17.8: For every k, True £;QBF is X;P-complete and True I1,QBF is
[T P-complete.

Note: It is not known if there is any PH-complete problem.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 15 of 32

Alternative Views on the Polynomial Hierarchy

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 16 of 32

Certificates

For NP, we gave an alternative definition based on polynomial-time verifiers that use a
given polynomial certificate (witness) to check acceptance. Can we extend this idea to
alternation-bounded ATMs?

Notation: Given an input word w and a polynomial p, we write #¢ as abbreviation for
“there is a word c of length |c| < p(lw]).” Similarly for V7c.

We can rephrase our earlier characterisation of polynomial-time verifiers:

L € NP iff there is a polynomial p and language V € P such that

L = {w | Fc such that (w#c) € V}

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 17 of 32

Certificates for bounded ATMs

Fheorem 17.9: L € %P iff there are a polynomial p and a language V € P such
that
L={w|Fc;.¥c,...00ck such that (wic #eot# . . #ep) € VY,
where O, = 3 if kis odd and O, =V if k is even.
An analoguous result holds for L € IT;P.

Proof sketch:

=: Similar as for NP. Use ¢; to encode the non-deterministic choices of the ATM. With all
choices given, the acceptance on the specified path can be checked in polynomial time.
<: Use an ATM to implement the certificate-based definition of L by using universal and
existential choices to guess the certificate before running a polynomial time verifier. O

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 18 of 32

Oracles (Revision)

Recall how we defined oracle TMs:

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine M with a
special tape, called the oracle tape, and distinguished states g2, gyes, and gno. For
a language O, the oracle machine M®° can, in addition to the normal TM opera-
tions, do the following:

Whenever MO reaches ¢, its next state is qyes if the content of the oracle tape is
in O and ¢no otherwise.

Let C be a complexity class:

® For a language O, we write CO for the class of all problems that can be solved by a
C-TM with oracle O.

® For a complexity class O, we write CP for the class of all problems that can be
solved by a C-TM with an oracle from class O.

Note: this notation will only be used for complexity classes C where it is clear what a “C-TM with an oracle” is.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 19 of 32

The Polynomial Hierarchy — Alternative Definition

We recursively define the following complexity classes:
Definition 17.10:
o 5P :=Pand =", := NPX

e 17 := P and IT",, := coNP'

Remark:
Complementing an oracle (language/class) does not change expressivity: we can just

swap states gyes and gno. Therefore = | = NP and e = coNPX.

Hence, we can also see that ¥ = coll}.

Question:
How do these relate to our earlier definitions of the PH classes?

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 20 of 32

Oracle TMs vs. ATMs

It turns out that this new definition leads to a familiar class of problems:’

Fheorem 17.11: For all k > 1, we have =¥ = %P and I1} = II;P. \

Proof: We only prove the case Z,'f = %P —the other follows by complementation.
The proof is by induction on k.

Base case: k = 1.
The claim follows from E’f =NPP = NP and ;P = NP (as noted before).

"Because of this result, both notations are used interchangeably in the literature, independently

of the definition used.
Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 21 of 32

Oracle TMs vs. ATMs (2)

Induction step: Assume the claim holds for k. We show ZEH =% P.

“D” Assume L € X, P.

® By Theorem 17.9, for some language V € P and polynomial p:
L={w]|3c1.VPc,... OIIZ+le+] such that (w#c #c# . . . #cy 1) € V)

® By Theorem 17.9, the following defines a language in I1;P:
L’ := {(w#cy) | YPcy ... OI/:CkH such that (w#c #c# .. . #cp) € VY.

e The following algorithm decides L, thus showing L € NPY':
on input w, non-deterministically guess cy;
then check (w#c;) € L’ using the L” oracle.

* By induction, L’ € IT}. Hence, L € NPT = NPX = =

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 22 of 32

Oracle TMs vs. ATMs (3)

Induction step: Assume the claim holds for k. We show Zf+1 =2 P.

“c” Assume L € 5 .
® There is a polynomial-time nondeterministic TM M that decides L using an oracle
Oexl.
e By induction, O € 3P, and thus O € II;P.
® For an X, P algorithm, first guess an accepting path of M including results of all
oracle queries.
® Then universally branch to verify all guessed oracle replies:

— For queries w € O with guessed answer “no”, use I1;P check for w € O;

— For queries w € O with guessed answer “yes”, use I1;_; P check for
(witcy) € O’, where O’ is constructed as in the 2-case and ¢, is guessed in
the first 3-phase.]

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 23 of 32

More about the Polynomial Hierarchy

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 24 of 32

The Polynomial Hierarchy Three Ways

We discovered a hierarchy of complexity classes between P and PSpace, with NP and
coNP on the first level and infinitely many further levels above:

Definition by ATM: Classes Z;’/Hf are defined by polytime ATMs with bounded
types of alternation, starting computation with existential/universal states.

Definition by Verifier: Classes Ef/l'lf are given as projections of certain verifier
languages in P, requiring existence/universality of polynomial witnesses.

Definition by Oracle: Classes Ef/Hf are defined as languages of NP/coNP ora-
cle TMs with a 7 | (or, equivalently, IT7) oracle.

Using such oracles with deterministic TMs, we can also define classes Af.

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 25 of 32

More Classes in PH

We defined = and I} by relativising NP and coNP with oracles.

What happens if we start from P instead?

\ Definition 17.12: A} := P and A7, := P

Some immediate observations:
e AP=PP=pP
° AP PNP PCONP
* A? C 3} (since P € NP) and A} C IIY (since P coNP)

e P CAY andIIf C A},

Sergei Obiedkov; 8 Dec 2025 Complexity Theory

slide 26 of 32

Problems for A??

A,'f seems to be less common in practice, but there are some known complete problems

for PNP = AP:

Input:
Problem:

Uniquery OptimaL TSP [Paprabimitriou, JACM 1984]

Undirected graph G with edge weights (distances).
Is there exactly one shortest travelling salesman tour on G?

Input:
Problem:

DivisiBLe TSP [KrenteL, JCSS 1988]

Undirected graph G with edge weights; number k.
Is the shortest travelling salesman tour on G divisible by k?

Input:
Problem:

Obb FinaL SAT [KrenTeL, JCSS 1988]

Propositional formula ¢ with n variables.
Is X, true in the lexicographically last assignment satisfying ¢?

Sergei Obiedkov; 8 Dec 2025

Complexity Theory

slide 27 of 32

Is the Polynomial Hierarchy Real?
PH

Questions:

Are all of these classes really distinct?

%
Nobody knows. \

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P? 2 = NPV 115 = coNPN?
Nobody knows.

\

B>
o
|

T
z
T

y;

Are any of these classes distinct from PSpace? 2
Nobody knows. /
P = NP I = coNP

What do we know then? \

AP =sP=T=A=P

\

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 28 of 32

What We Know (Excerpt)

Theorem 17.13: If there is any k such that = = X7 |, then =7 = I17 = 3 for all
j > k and, therefore, PH = =F.
In this case, we say that the polynomial hierarchy collapses at level k.

Proof: Left as an exercise (not too hard to get from definitions). O
Forouary 17.14: If PH # P then NP # P. \

Intuitively speaking: “The polynomial hierarchy is built upon the assumption that NP has
some additional power over P. If this is not the case, the whole hierarchy collapses.”

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 29 of 32

What We Know (Excerpt)

\ Theorem 17.15: PH C PSpace. \
Proof: Left as an exercise (induction over PH levels, using PSpace”P2®® = PSpace). O
) Theorem 17.16: If PH = PSpace then there is some k with PH = 2,’:. \

Proof: If PH = PSpace, then True QBF € PH. Hence True QBF € EE for some k. Since
True QBF is PSpace-hard, this implies = = PSpace. O

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 30 of 32

What We Believe (Excerpt)

“Most experts” think that
® The polynomial hierarchy does not collapse completely (same as P # NP);

® The polynomial hierarchy does not collapse on any level
(in particular, PH # PSpace and there is no PH-complete problem).

But there can always be surprises. . .

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 31 of 32

Summary and Outlook

The Polynomial Hierarchy is a hierarchy of complexity classes between P and PSpace.

It can be defined by stacking NP-oracles on top of P/NP/coNP or, equivalently, by
bounding alternation in polytime ATMs.

The typical complete problems for the classes in the polynomial hierarchy are QBF with
bounded forms of quantifier alternation.

What’s next?
e Computing with circuits
® End-of-year consultation

Sergei Obiedkov; 8 Dec 2025 Complexity Theory slide 32 of 32

	The Polynomial Hierarchy
	Review: ATM vs. DTM
	The Polynomial Hierarchy
	Alternative Views on the Polynomial Hierarchy
	More about the Polynomial Hierarchy

