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Review: Datalog

A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

• Datalog is more complex than FO query answering

• Datalog is more expressive than FO query answering

• Semipositive Datalog with a successor ordering captures P

• Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?
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Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
{ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
{ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

• Bottom-up: derive conclusions by applying rules to given facts

• Top-down: search for proofs to infer results given query
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Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up:
the step-wise computation of the consequence operator TP

Bottom-up computation is known under many names:

• Forward-chaining since rules are “chained” from premise to conclusion
(common in logic programming)

• Materialisation since inferred facts are stored (“materialised”)
(common in databases)

• Saturation since the input database is “saturated” with inferences
(common in theorem proving)

• Deductive closure since we “close” the input under entailments
(common in formal logic)
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Naive Evaluation of Datalog Queries

A direct approach for computing T∞P

Notation for line 06/07:

• a substitution θ is a
mapping from variables to
database elements

• for a formula F, we write Fθ
for the formula obtained by
replacing each free variable
x in F by θ(x)

• for a CQ Q and database I,
we write θ ∈ Q(I) if I |= Qθ

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ Bℓ ∈ P :

06 for θ ∈ B1 ∧ . . . ∧ Bℓ(T i
P) :

07 T i+1
P := T i+1

P ∪ {Hθ}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P

Markus Krötzsch, 16 June 2025 Database Theory slide 5 of 25



What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 matches for (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

4 × (R1) + 3 × (R2)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

4 × (R1) + 8 × (R2)

T4
P = T3

P = T∞P

4 × (R1) + 10 × (R2)

In total, we considered 37 matches to derive 11 facts
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Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if the conclusion does not
need to be added – iteration takes time!
{ huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
{ semi-naive evaluation
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Semi-Naive Evaluation

The computation yields sets T0
P ⊆ T1

P ⊆ T2
P ⊆ . . . ⊆ T∞P

• For an IDB predicate R, let Ri be the “predicate” that contains exactly the R-facts in T i
P

• For i ≤ 1, let ∆i
R be the collection of facts Ri \ Ri−1

We can restrict rules to use only some computations.

Some options for the computation in step i + 1:

T(x, z)← Ti(x, y) ∧ Ti(y, z) same as original rule

T(x, z)← ∆i
T(x, y) ∧ ∆i

T(y, z) restrict to new facts

T(x, z)← ∆i
T(x, y) ∧ Ti(y, z) partially restrict to new facts

T(x, z)← Ti(x, y) ∧ ∆i
T(y, z) partially restrict to new facts

What to choose?
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Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

T0
P = ∅

∆1
T = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} T1

P = ∆
1
T

∆2
T = {T(1, 3), T(2, 4), T(3, 5)} T2

P = T1
P ∪ ∆

2
T

∆3
T = {T(1, 4), T(2, 5), T(1, 5)} T3

P = T2
P ∪ ∆

3
T

∆4
T = ∅ T4

P = T3
P = T∞P

To derive T(1, 4) in ∆3
T, we need to combine

T(1, 3) ∈ ∆2
T with T(3, 4) ∈ ∆1

T or T(1, 2) ∈ ∆1
T with T(2, 4) ∈ ∆2

T
{ rule T(x, z)← ∆i

T(x, y) ∧ ∆i
T(y, z) is not enough
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Semi-Naive Evaluation (3)
Correct approach: consider only rule application that use at least one newly derived
IDB atom

For example program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2) T(x, z)← Ti(x, y) ∧ ∆i
T(y, z)

There is still redundancy here: the matches for T(x, z)← ∆i
T(x, y) ∧ ∆i

T(y, z) are covered
by both (R2.1) and (R2.2)

{ replace (R2.2) by the following rule:

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

EDB atoms do not change, so their ∆ would be ∅
{ ignore such rules after the first iteration
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Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅

initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)}

4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)}

3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)}

3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P

1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts
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T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 16 June 2025 Database Theory slide 11 of 25



Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 16 June 2025 Database Theory slide 11 of 25



Semi-Naive Evaluation: Full Definition

In general, a rule of the form

H(⃗x)← e1 (⃗y1) ∧ . . . ∧ en (⃗yn) ∧ I1 (⃗z1) ∧ I2 (⃗z2) ∧ . . . ∧ Im (⃗zm)

is transformed into m rules

H(⃗x)← e1 (⃗y1) ∧ . . . ∧ en (⃗yn) ∧ ∆i
I1 (⃗z1) ∧ Ii2 (⃗z2) ∧ . . . ∧ Iim (⃗zm)

H(⃗x)← e1 (⃗y1) ∧ . . . ∧ en (⃗yn) ∧ Ii−1
1 (⃗z1) ∧ ∆i

I2 (⃗z2) ∧ . . . ∧ Iim (⃗zm)

. . .

H(⃗x)← e1 (⃗y1) ∧ . . . ∧ en (⃗yn) ∧ Ii−1
1 (⃗z1) ∧ Ii−1

2 (⃗z2) ∧ . . . ∧ ∆i
Im (⃗zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)
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Goal-Directed Datalog Evaluation
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Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

Example 14.1:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

Query(z)← T(2, z)

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like T(1, 4), which are
neither directly nor indirectly relevant for computing the query result.
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Assumption

Assumption: For all techniques presented in this lecture, we assume that the
given Datalog program is safe.

• This is without loss of generality (as shown in exercise).

• One can avoid this by adding more cases to algorithms.
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Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

• Apply backward chaining/resolution: start with query, find rules that can derive
query, evaluate body atoms of those rules (subqueries) recursively

• Evaluate intermediate results “set-at-a-time” (using relational algebra on tables)

• Evaluate queries in a “data-driven” way, where operations are applied only to newly
computed intermediate results (similar to idea in semi-naive evaluation)

• “Push” variable bindings (constants) from heads (queries) into bodies (subqueries)

• “Pass” variable bindings (constants) “sideways” from one body atom to the next

Details can be realised in several ways.
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Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 14.2: If we want to derive atom T(2, z) from the rule T(x, z) ← T(x, y) ∧
T(y, z), then x will be bound to 2, while z is free.

We use adornments to denote the free/bound parameters in predicates.

Example 14.3:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)

• since x is bound in the head, it is also bound in the first atom

• any match for the first atom binds y, so y is bound when evaluating the
second atom (in left-to-right evaluation)
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Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

Rbbb(x, y, z)← Rbbf (x, y, v) ∧ Rbbb(x, v, z)

Rfbf (x, y, z)← Rfbf (x, y, v) ∧ Rbbf (x, v, z)

The order of body predicates affects the adornment:

Sfff (x, y, z)← Tff (x, v) ∧ Tff (y, w) ∧ Rbbf (v, w, z)

Sfff (x, y, z)← Rfff (v, w, z) ∧ Tfb(x, v) ∧ Tfb(y, w)

{ For optimisation, some orders might be better than others
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Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we “call” a rule with a head where some variables are bound, we need to provide
the bindings as input
{ for adorned relation Rα, we use an auxiliary relation inputαR
{ arity of inputαR = number of b in α

The result of calling a rule should be the “completed” input, with values for the unbound
variables added
{ for adorned relation Rα, we use an auxiliary relation outputαR
{ arity of outputαR = arity of R (= length of α)
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Auxiliary Relations for QSQ (2)
When evaluating body atoms from left to right, we use supplementary relations supi

{ bindings required to evaluate rest of rule after the ith body atom
{ the first set of bindings sup0 comes from inputαR
{ the last set of bindings supn go to outputαR

Example 14.4:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

• sup0[x] is copied from inputbf
T [x] (with some exceptions, see exercise)

• sup1[x, y] is obtained by joining tables sup0[x] and outputbf
T [x, y]

• sup2[x, z] is obtained by joining tables sup1[x, y] and outputbf
T [y, z]

• outputbf
T [x, z] is copied from sup2[x, z]

(we use “named” notation like [x, y] to suggest what to join on; the relations are the same)
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QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned
rules)

General evaluation:

• add new tuples to auxiliary relations until reaching a fixed point

• evaluation of a rule can proceed as sketched on previous slide

• in addition, whenever new tuples are added to a sup relation that feeds into an IDB
atom, the input relation of this atom is extended to include all binding given by sup
(may trigger subquery evaluation)

{ there are many strategies for implementing this general scheme

Notation:

• for an EDB atom A, we write AI for table that consists of all matches for A in
the database
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Recursive QSQ

Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate Rα; current values of all QSQ relations

(1) Copy tuples inputαR (that unify with rule head) to supr
0

(2) For each body atom A1, . . . , An, do:
– If Ai is an EDB atom, compute supr

i as projection of supr
i−1 ▷◁ AIi

– If Ai is an IDB atom with adorned predicate Sβ:
(a) Add new bindings from supr

i−1, combined with constants in Ai, to
inputβS

(b) If inputβS changed, recursively evaluate all rules with head
predicate Sβ

(c) Compute supr
i as projection of supr

i−1 ▷◁ outputβS
(3) Add tuples in supr

n to outputαR
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QSQR Algorithm

Evaluation of query in QSQR:

Given: a Datalog program P and a conjunctive query q[⃗x] (possibly with con-
stants)

(1) Create an adorned program Pa:
– Turn the query q[⃗x] into an adorned rule Queryff ...f (⃗x)← q[⃗x]
– Recursively create adorned rules from rules in P for all adorned

predicates in Pa.

(2) Initialise all auxiliary relations to empty sets.

(3) Evaluate the rule Queryff ...f (⃗x)← q[⃗x].
Repeat until no new tuples are added to any QSQ relation.

(4) Return outputff ...fQuery.

Markus Krötzsch, 16 June 2025 Database Theory slide 23 of 25



QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).

{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)
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Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Next question:

• Can bottom-up evaluations be goal directed?

• What about practical implementations?

• Graph databases
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